PAS Ntr- 1) UNIVARIATE ANALYSIS
luction do Single 3 variables: .
ste Bhalis P 4a) An arg ar ‘
Te iden Aummarg Bratiibes jor 28
craw data set (009 Auumnrnaciy Oly oe
box 'p lot t get a plot, Dred otbd on
Bit Sitorq? aa toe
| Pre Chast,
nods car moe ley
Piste pret : an ot Ai,
Tha disbsbutton plot ges Th dent 9)
: i spt en gestae.
n that? Apecifies alt possible
a and “alio) ayant es the relative ‘
\aaiph A, aie
3 Ya geaph ured) +o: Yepreant the
a dew date points of
count Pe man an
seine a! ie ov bis mace.
babengyad atte
E Srs-piet, hey {dota ‘age ss
Gao ind» leiSl Biehad: =
ber that B a chock or gaph fa
ta) data corte veetangle bars wre
or bg opr fe He velar Kot
Bovthowt io) ase tke '
4
O01 2540 =
eT hoale Jem
Pistatistica | paphie! which
scl peste PP":co
(s
De da gu apy
B hens
a _ ath wos fn tle std
P cnet Taos
ee Set !
Beale in ol ding out aa He, we
OTN
Lonsur
ables: —
gow (hesputeiatics of patient tothe diabetn
dled get surr as Gender, ee ical
Obeét B ee 8! ae
ee Ae nab
~ Sea ae
Dy & und fo ee ae worth,
BF ABs :
A bk pruasuserment |
Cases Con a i ay pap) be
tober without inhaserth ovale
1, vewabls sss a
al | sl a ches Y dash gh Caio ar
‘ sroeipeliss ims Ne asdon a aare eo
by Lattug -
wd Sa B. eabting, off oF Pranratiy “Hea ones “a |
%
Ue don!t want
4 Qo 27 att Hie humbas will
be doueuatd to 2.
jes (s4atistical Parteages doe Cotiel Sezncy)
The gaphel ply] 2c. eh
ietngeam, ek shave beer
= to input dedaset
ypu Peaul! wll appear
pele
keywords + lommandey f vey aes) 99, Qe, 20)
\o
ign 2d tad2zed te.
Bae
é
= welt
‘ polasd
Bie
‘ a
a ete
Uetsiae, FLA 20, 2% 2}
ge © tian (0494-55)
Ba Mpa
Wo Hes,
2, 37S) oJ—Number
a yyartanes. = : “i Spee Aumrony
‘ BP pi |
ait fouwen Gant! Cas)? josie
5 epost peeete
& (Qs)
.- & re _— Ns oi
bt, Qa.
wrmputlons /. ven & toomen
FBC=
40) Aransderey
Stating ad cin L aoa We Bhowd ence absolildly -Jree
Sealing & dransjormiy dled ead Fete He Mimbo! fa Panty ¥ mation do gain tea
within a Apuifie, Sales, {teeroma ce coe ct tated staidek goaker
9 sate data hen Ueny , By te vende inh rote, rtaratse to onalys
| On mead ol how ee faints, mk, poortcle odorata sity
Hite svM, R-rN. a . te pus attention on deftermees
ith fees algertiras change af!1
bslraud 4 shaw
any nunele Soxtiee te giver Ate Zame sé wads oe eS ss Li =
addr oF | (gubsteachirg. o, fensiont tou
Irpoctance. oM - ae (ea Be A mean
uh la or dlvoluy by a Constant
(GP _procliane Cost 1 dotlow Zs equal to l00 Yen. aS Wnawned “Normalizabion
Data az produs| het given : a tae eo (a)
i ml
he word dds should be Foenbd orth A Bs gehen nah P heto rio le).
CauHon - penal Arransldtd , 1h, means Ftoxt Rte deen! eee cia err Aa
. a i ade vie P a PIs 88 ¢
ap yi i
1 psGolumas > bo)
‘iinge Heat ase. ve %
; ; Be nis ae Netald date, ax > ay
Pethalnti y +
Axi) Raab! ab |p
ao iE: iey OAD
Sab cong i cinlled
Deri ATVe CAN Ragers wht drengheridaddosead veBebbars ae, BOHR ac! ————
tha Fawssion dibaution also: troon a4 1
Banaaraeuy” % a datauk lovoles
ae a desta ation ar proba fy disamjoution
sestaliy fix darciiouiton o/ Veda , 20 toad Keyare ts dapendant 0 tals eean acti), Shardaad of
4 se f \ aim i) ‘ i "
0G Wen cs obseyed, yratuns,!S 0. | asagen gyi Pobabihitg auansity Je
toa standddodedation Shoat ot < ; ; Bees
$ Pog. — = t Ui = mtn
Ae i J ole o> Stand ue
29 Re Rca Hralis cussets eh He \ :
| 4o)> probabil
the Gauusion detiArowtion, > Ata. bee >} C4
g
tee ¥ ma
ae Feuene vib Se ie tent atecito™ dus ty
hy
See 1. Conical Timit rover Cour)
Sunde nisin han aeo ns tee cereal,
+ nuraber of prance) voroleln, Se
+ wit Gord Pts follow gyauation datntatios
© 9, Maks wadul pepehe®
Re a
a ad oi “ghandaxd dasa hon
milan
a ; ‘ > tnkeg ‘Jab
Gmssian dtteibulion: (ata) n Nie
-((0) sien Guest ath cchistert budtors OB Rie HR oz
(abacrind | esa aeaot
4 ons q Hix shapes an 2 rarsrsiel) bet!
‘ : Shoprd comes
? edlibay Wadena tani/57™ PLY 4 Ibeh'eg
of vata eae Sit go prsvaton
Po Splusiqulig in netstat otial pharomena =
Won nscauaanenS
dry diruar rrede| RMS ct
5 Hralyreal Conrenienter =
b) Hstrcal preeedance: -
Sarps of am Hick Quasian dition
>
goltow Neel tise Auta bubbn Meany Veluis a
move ditty asnund AN OVER grbremos
| | |
3) tatdur niaa di-phbuttons The NAMA * he!
pid ho 0 Aloowre of al
ys aD ~e qirbabulton hose Alene;
Hire Ateontss: —
0) lems Bors 220
> Up trails fe se ‘
glen nors = Addrestion ome“
ian
PMS sees) _— ee
re an
ah
* an
* Poshtne
ES Right co oe
Gee se
ca ‘urnste)
ety
hormal kustosu AaptoKusl j]
|S ee swt
ae
F Gusuaisn AL }aoubion wowaleer oo oH most
Sop astanc ipoobabill tye olisimbulon to )Zdah ce
igmaeaek Fits, moans aba prenoneca like
oge chest pot. Stores , 1@ Sores, Luro of 4
pts of hoo Aiers cud So on.
bots Bir a,
6
Bunasion n Alelaution tan be “defined othe
| Ba it we ee eee claxeabon.
hanbradd
tmp muna a+ OP
Vrnpoot auipy aa 3p
| rons copy imped Mali | Fi Pan Aim 93 a
Jenga saeee Feo Ve
een |
i a pli oro. >
I ot 3
1 data ar
Ydala = phy ait As ee ee
wf pled (3. eater 1 Y colada) Uilavapss
Th Tar 6 Piss bebush menses of ol
ti Ete SEA ARNO sng} ai
‘Sig. doviokon = 2
roa * e818 in0D nt:
“ye *fenasaetsn lO ons
py Bete! prota platen
tere ape Amatuer Usdib: br protiad oc
Fatima i, 1 thiaed age
Skips Jo ease oot (s Sea,
yleclnOriucsta Aatg ad whod Mees
£ eA and oi oe a sae igo
let i 8 hi
3) Define te date cSe o
A) Normale tue day
acti
+ teat he
Rich got richer nity bare ye eee
ae behoun, Jee reheat ae
eS trogmi
In Aotiety & Aviftiy. over dime a ay
t inequality
a
3 we ase Sea ox
es 6 Tne Ando
Poospenty ad Proqualty : ~
syle dort, Bsiktsh Social Ptitader ah
(fit shen Hock win 1982, Rie of peopt
card Hoy, wore ee Eobiysebhy “aoe,
nn do Cope) Whe to l990, aor.
cat oie Jstomnfortable (hile 1b- afl
souks ic
Whraipalel DAP 900
2° Sy 8s, agaad, soe acupl Ahat
patra income has a meres on inte
the happiness poor than Ra 10h + tS ran
hale Some money ey docars) exe pore ie,
seivh to Poor
Yeates kesh nea ea erry
hata