Project ML Code
Project ML Code
# Import TensorFlow
import tensorflow as tf
WARNING:tensorflow:From c:\Users\bob19\anaconda3\Lib\site-packages\keras\src\losses.
py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use t
f.compat.v1.losses.sparse_softmax_cross_entropy instead.
In [ ]: # Load the historical daily data of Guizhou Maotai from an Excel file
file_path = 'data/600519.SH.xlsx'
data = pd.read_excel(file_path)
Inspect and preprocess the data, ensuring the date column is in the correct format and the
necessary columns are present.
# Display the first few rows of the data to understand its structure
data.head()
In [ ]: data.describe()
2016-01-06
mean 343.831636 348.447328 344.355735 339.791978 3.950207e+0
06:56:04.935732736
2012-01-04
min 81.967920 83.057607 81.905849 81.388593 0.000000e+0
00:00:00
2014-01-09
25% 133.207590 135.213108 133.670677 131.527994 2.383883e+0
00:00:00
2016-01-06
50% 197.230775 202.281978 198.025872 193.899586 3.345317e+0
00:00:00
2018-01-02
75% 550.677366 561.690913 552.724050 546.088388 4.734770e+0
00:00:00
2019-12-31
max 1146.538136 1156.420158 1149.099451 1143.799856 2.891405e+0
00:00:00
date datetime64[ns]
open float64
high float64
close float64
low float64
volume float64
dtype: object
# Bollinger Bands
for period in time_periods_short + time_periods_medium:
data[f'bb_upper_{period}'], data[f'bb_middle_{period}'], data[f'bb_lower_{perio
# Calculate the slope for each SMA over the past 5 days
for sma in sma_columns:
data[f'{sma}_slope'] = data[sma].diff(periods=5) / 5 # Change in SMA value ove
# Calculate the slope change (rate of change of slope) for each SMA
for sma in sma_columns:
data[f'{sma}_slope_change'] = data[f'{sma}_slope'].diff() # Day-over-day slope
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:4: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'adxr_{period}'] = ta.ADXR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'adx_{period}'] = ta.ADX(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:4: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'adxr_{period}'] = ta.ADXR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'adx_{period}'] = ta.ADX(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:4: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'adxr_{period}'] = ta.ADXR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'apo_{fastperiod}_{slowperiod}'] = ta.APO(data['close'], fastperiod=fastperi
od, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:13: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroon_up_{period}'], data[f'aroon_down_{period}'] = ta.AROON(data['high'],
data['low'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\439499995.py:14: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'aroonosc_{period}'] = ta.AROONOSC(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['bop'] = ta.BOP(data['open'], data['high'], data['low'], data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'cci_{period}'] = ta.CCI(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'cmo_{period}'] = ta.CMO(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:14: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'mom_{period}'] = ta.MOM(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'roc_{period}'] = ta.ROC(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'roc_{period}'] = ta.ROC(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocp_{period}'] = ta.ROCP(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:17: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocr_{period}'] = ta.ROCR(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:18: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocr100_{period}'] = ta.ROCR100(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:14: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'mom_{period}'] = ta.MOM(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'roc_{period}'] = ta.ROC(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocp_{period}'] = ta.ROCP(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:17: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocr_{period}'] = ta.ROCR(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:18: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'rocr100_{period}'] = ta.ROCR100(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4266680648.py:14: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['stoch_slowk'], data['stoch_slowd'] = ta.STOCH(data['high'], data['low'], dat
a['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['stoch_slowk'], data['stoch_slowd'] = ta.STOCH(data['high'], data['low'], dat
a['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['stochf_fastk'], data['stochf_fastd'] = ta.STOCHF(data['high'], data['low'],
data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['stochf_fastk'], data['stochf_fastd'] = ta.STOCHF(data['high'], data['low'],
data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'stochrsi_k_{period}'], data[f'stochrsi_d_{period}'] = ta.STOCHRSI(data['clo
se'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:9: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'trix_{period}'] = ta.TRIX(data['close'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:12: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data['ultosc'] = ta.ULTOSC(data['high'], data['low'], data['close'], timeperiod1=
7, timeperiod2=14, timeperiod3=28)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'willr_{period}'] = ta.WILLR(data['high'], data['low'], data['close'], timep
eriod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:19: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data['ad'] = ta.AD(data['high'], data['low'], data['close'], data['volume'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:22: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'adosc_{fastperiod}_{slowperiod}'] = ta.ADOSC(data['high'], data['low'], dat
a['close'], data['volume'], fastperiod=fastperiod, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:22: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'adosc_{fastperiod}_{slowperiod}'] = ta.ADOSC(data['high'], data['low'], dat
a['close'], data['volume'], fastperiod=fastperiod, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:22: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'adosc_{fastperiod}_{slowperiod}'] = ta.ADOSC(data['high'], data['low'], dat
a['close'], data['volume'], fastperiod=fastperiod, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:22: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'adosc_{fastperiod}_{slowperiod}'] = ta.ADOSC(data['high'], data['low'], dat
a['close'], data['volume'], fastperiod=fastperiod, slowperiod=slowperiod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3909819040.py:25: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data['obv'] = ta.OBV(data['close'], data['volume'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_dcperiod'] = ta.HT_DCPERIOD(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_dcphase'] = ta.HT_DCPHASE(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:4: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_inphase'], data['ht_quadrature'] = ta.HT_PHASOR(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:4: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_inphase'], data['ht_quadrature'] = ta.HT_PHASOR(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_sine'], data['ht_leadsine'] = ta.HT_SINE(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_sine'], data['ht_leadsine'] = ta.HT_SINE(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['ht_trendmode'] = ta.HT_TRENDMODE(data['close'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_di_{period}'] = ta.MINUS_DI(data['high'], data['low'], data['close'],
timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:11: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_di_{period}'] = ta.PLUS_DI(data['high'], data['low'], data['close'], t
imeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:15: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'minus_dm_{period}'] = ta.MINUS_DM(data['high'], data['low'], timeperiod=per
iod)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\2078805182.py:16: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'plus_dm_{period}'] = ta.PLUS_DM(data['high'], data['low'], timeperiod=perio
d)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:3: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'atr_{period}'] = ta.ATR(data['high'], data['low'], data['close'], timeperio
d=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:7: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'natr_{period}'] = ta.NATR(data['high'], data['low'], data['close'], timeper
iod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\3555839564.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data['trange'] = ta.TRANGE(data['high'], data['low'], data['close'])
# Calculate the daily return as the percentage change in the closing price
data['return'] = data['close'].pct_change()
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4279441582.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['h2l'] = data['high'] / data['low']
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4279441582.py:5: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['o2c'] = data['open'] / data['close']
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4279441582.py:8: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['return'] = data['close'].pct_change()
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:6: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data[f'mfi_{period}'] = ta.MFI(data['high'], data['low'], data['close'], data['vol
ume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\4136467864.py:10: PerformanceWarni
ng: DataFrame is highly fragmented. This is usually the result of calling `frame.in
sert` many times, which has poor performance. Consider joining all columns at once
using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = fram
e.copy()`
data[f'vroc_{period}'] = ta.ROC(data['volume'], timeperiod=period)
In [ ]: # Final check to ensure no NaN values are left after feature generation
data = data.dropna()
# Display the first few rows of the final data with all features
data.head()
2012-
2713 157.575019 158.216029 156.313030 156.146100 1626181.0 167.051730 160
11-08
2012-
2714 156.306352 157.448152 156.787110 156.019233 1167006.0 162.486557 158
11-09
2012-
2715 156.913977 157.434798 154.550251 152.834213 2046433.0 159.423325 156
11-12
2012-
2716 154.243101 154.243101 152.280007 150.704190 2044777.0 159.967128 155
11-13
2012-
2717 152.493677 154.243101 154.009399 151.238365 1223848.0 158.046785 154
11-14
data.head()
2013-
2751 141.556439 141.556439 138.177780 136.882405 5837034.0 142.200099 139
01-04
2013-
2752 137.469998 137.469998 136.408325 135.213108 4127139.0 142.415461 138
01-07
2013-
2753 135.667157 140.788562 140.781885 135.667157 6528698.0 143.124203 139
01-08
2013-
2754 141.222579 145.329051 144.527788 141.222579 5374932.0 145.366993 139
01-09
2013-
2755 143.946873 144.895034 143.225736 142.224158 3052786.0 146.676703 140
01-10
# Drop the last row as it will have NaN value for FUTURE_RETURN
data = data.dropna(subset=['FUTURE_RETURN'])
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\933941594.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['FUTURE_RETURN'] = (data['close'].shift(-1) - data['close']) / data['close']
Out[ ]: date close FUTURE_RETURN
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
count 1701.000000
mean 0.001422
std 0.020056
min -0.100000
25% -0.009021
50% 0.000215
75% 0.011151
max 0.100000
Name: FUTURE_RETURN, dtype: float64
Threshold for positive future return classification: 0.0114
Threshold = μ + 0.5 × σ
display(Math(binary_target_tree_latex))
C:\Users\bob19\AppData\Local\Temp\ipykernel_21596\326017906.py:2: PerformanceWarnin
g: DataFrame is highly fragmented. This is usually the result of calling `frame.ins
ert` many times, which has poor performance. Consider joining all columns at once u
sing pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.
copy()`
data['y'] = np.where(data['FUTURE_RETURN'] > threshold, 1, 0)
Out[ ]: date close FUTURE_RETURN y
Out[ ]: y
0 0.753674
1 0.246326
Name: proportion, dtype: float64
In [ ]: # Explain StandardScaler
display(Math(r'\text{StandardScaler: } z = \frac{x - \mu}{\sigma}'))
# Explain MinMaxScaler
display(Math(r'\text{MinMaxScaler: } x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{m
x−μ
StandardScaler: z =
σ
x − xmin
MinMaxScaler: xscaled =
xmax − xmin
In [ ]: data_processed_df.describe()
All features have been scaled and included in the processed data.
plt.figure(figsize=(14, 8))
# Subplot 2: Volume
plt.subplot(2, 1, 2)
plt.plot(data['date'], data['volume'], label='Volume', color='orange')
plt.title('Volume Over Time')
plt.xlabel('Date')
plt.ylabel('Volume')
plt.grid(True)
plt.tight_layout()
plt.show()
plot_price_volume_trends(data)
plot_pairwise_relationships_numerical(data, pairplot_numerical_features)
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plot_pairwise_relationships_volatility(data, pairplot_volatility_features)
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plot_pairwise_relationships_volume(data, pairplot_volume_features)
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plot_pairwise_relationships_momentum(data, pairplot_momentum_features)
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plot_pairwise_relationships_ratio(data, pairplot_ratio_features)
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
plt.title(f'Distribution of {feature}')
plt.legend()
plt.tight_layout()
plt.show()
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
c:\Users\bob19\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning:
use_inf_as_na option is deprecated and will be removed in a future version. Convert
inf values to NaN before operating instead.
with pd.option_context('mode.use_inf_as_na', True):
In [ ]: # Calculate the correlation of all features with the target variable `y`
correlation_with_y = data.corr()['y'].sort_values(ascending=False)
plot_top_correlation_heatmap(data, top_features)
Feature Selection
1. Random Forest Feature Selection
In [ ]: # Explain feature importance
display(Math(r'\text{Feature Importance: } I(f_j) = \frac{1}{T} \sum_{t=1}^{T} I_t(
display(Markdown("""
**Explanation:**
1 T
Feature Importance: I(fj ) = ∑ I (f )
T t=1 t j
Explanation:
In [ ]: X = data_processed_df.drop(columns=['y'])
y = data_processed_df['y']
importance_scores = model.feature_importances_
feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importanc
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascendin
display(Markdown("""
**Explanation:**
- **SOM Weight Update**: This formula describes how the weights \( w_{ij} \) of the
Explanation:
SOM Weight Update: This formula describes how the weights ( w_{ij} ) of the nodes in a
Self-Organizing Map (SOM) are updated during training.
# Compute feature importance based on SOM weights variance and select top 80%
som_feature_importance = np.var(som.get_weights(), axis=0).sum(axis=1)
sorted_som_indices = np.argsort(som_feature_importance)[::-1]
top_50_60_percent_indices = sorted_som_indices[:int(len(sorted_som_indices) * 0.8)]
top_som_features = data_top_80_percent_df.columns[top_50_60_percent_indices]
data_top_som_features_df = data_top_80_percent_df[top_som_features]
train_shape = X_train.shape
val_shape = X_val.shape
test_shape = X_test.shape
shape_df
In [ ]: # Display the first few rows of each set to ensure data integrity
print("First few rows of the training set:")
print(X_train.head())
print(y_train.head())
print('----------------------------------')
print('----------------------------------')
[5 rows x 22 columns]
0 0
1 1
2 1
3 0
4 0
Name: y, dtype: int32
----------------------------------
First few rows of the validation set:
vroc_50 vroc_50 sma_5_slope sma_5_slope volume mfi_14 \
1020 0.066409 0.066409 0.256744 0.256744 -0.366256 0.880916
1021 0.177007 0.177007 0.507654 0.507654 0.303612 0.898204
1022 0.049973 0.049973 0.647739 0.647739 0.187647 0.834521
1023 0.060037 0.060037 0.762405 0.762405 -0.249079 0.749484
1024 0.033754 0.033754 0.759129 0.759129 -0.297278 0.667080
sma_20_slope_change
1020 0.106389
1021 0.510416
1022 0.205960
1023 0.045434
1024 -0.118283
[5 rows x 22 columns]
1020 1
1021 0
1022 0
1023 0
1024 0
Name: y, dtype: int32
----------------------------------
First few rows of the test set:
vroc_50 vroc_50 sma_5_slope sma_5_slope volume mfi_14 \
1360 0.066694 0.066694 -2.707663 -2.707663 -0.067671 0.154347
1361 0.052262 0.052262 -2.822225 -2.822225 -0.439935 0.221686
1362 0.067878 0.067878 -2.405615 -2.405615 -0.249834 0.305615
1363 0.021536 0.021536 -1.617521 -1.617521 -0.672310 0.378990
1364 0.069992 0.069992 -0.930498 -0.930498 -0.246481 0.273434
sma_20_slope_change
1360 -2.332326
1361 -2.213717
1362 -1.284555
1363 -0.810445
1364 -0.587683
[5 rows x 22 columns]
1360 0
1361 1
1362 0
1363 0
1364 0
Name: y, dtype: int32
display(Markdown("""
**Explanation:**
1
Logistic Regression: P (y = 1|x) = −(β0 +β1 x1 +⋯+βn xn )
1+e
Explanation:
Logistic Regression Function: This formula represents the probability that the dependent
variable ( y ) equals 1, given the input features ( x ).
- **SVM Decision Function**: This formula represents the decision boundary used by
"""))
Explanation:
SVM Decision Function: This formula represents the decision boundary used by a Support
Vector Machine (SVM) to classify data points.
rf_params = {
'n_estimators': [100, 200, 500],
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
svm_params = {
'C': [1, 10, 100],
'kernel': ['linear', 'rbf'],
'gamma': ['scale']
}
Best Logistic Regression Params: {'C': 30, 'penalty': 'l2', 'solver': 'liblinear'}
Best Random Forest Params: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_s
plit': 2, 'n_estimators': 500}
Best SVM Params: {'C': 100, 'gamma': 'scale', 'kernel': 'linear'}
Evaluate the performance of tuned models on the validation set using accuracy, F1 score,
and AUC-ROC.
In [ ]: # Logistic Regression
y_pred_log_reg = log_reg_best.predict(X_val)
y_pred_log_reg_proba = log_reg_best.predict_proba(X_val)[:, 1]
log_reg_accuracy = accuracy_score(y_val, y_pred_log_reg)
log_reg_f1 = f1_score(y_val, y_pred_log_reg)
log_reg_auc = roc_auc_score(y_val, y_pred_log_reg_proba)
# Random Forest
y_pred_rf = rf_best.predict(X_val)
y_pred_rf_proba = rf_best.predict_proba(X_val)[:, 1]
rf_accuracy = accuracy_score(y_val, y_pred_rf)
rf_f1 = f1_score(y_val, y_pred_rf)
rf_auc = roc_auc_score(y_val, y_pred_rf_proba)
# SVM
y_pred_svm = svm_best.predict(X_val)
y_pred_svm_proba = svm_best.predict_proba(X_val)[:, 1]
svm_accuracy = accuracy_score(y_val, y_pred_svm)
svm_f1 = f1_score(y_val, y_pred_svm)
svm_auc = roc_auc_score(y_val, y_pred_svm_proba)
metrics_dict = {
'Model': ['Logistic Regression', 'Random Forest', 'SVM'],
'Validation Set Accuracy': [log_reg_accuracy, rf_accuracy, svm_accuracy],
'Validation Set F1 Score': [log_reg_f1, rf_f1, svm_f1],
'Validation Set AUC-ROC': [log_reg_auc, rf_auc, svm_auc]
}
metrics_df = pd.DataFrame(metrics_dict)
display(Markdown("""
**Explanation:**
display(Markdown("""
**Explanation:**
- **F1 Score**: The F1 Score is a metric that balances precision and recall, provid
"""))
# AUC
display(Math(r'\text{AUC: Area Under the ROC Curve}'))
display(Markdown("""
**Explanation:**
- **AUC (Area Under the ROC Curve)**: AUC measures the area under the Receiver Oper
"""))
TP + TN
Accuracy:
TP + TN + FP + FN
Explanation:
Accuracy: This metric represents the proportion of correctly classified instances (both true
positives and true negatives) out of the total number of instances.
Precision × Recall
F1 Score: 2 ×
Precision + Recall
Explanation:
F1 Score: The F1 Score is a metric that balances precision and recall, providing a single
measure that accounts for both false positives and false negatives.
AUC (Area Under the ROC Curve): AUC measures the area under the Receiver Operating
Characteristic (ROC) curve, which plots the true positive rate (sensitivity) against the false
positive rate (1-specificity).
svm_val_pred = svm_best.predict_proba(X_val)[:, 1]
Out[ ]: ▾ LogisticRegression i ?
LogisticRegression(class_weight='balanced', random_state=88)
# Create a new dataset for the test set using these predictions
blending_X_test = np.column_stack((log_reg_test_pred, rf_test_pred, svm_test_pred))
blending_y_test = y_test # The true labels remain the same
# Step 9.3: Predict and evaluate the blending model on the test set
metrics_dict = {
'Blending Model - Test Set Accuracy': [blending_accuracy],
'Blending Model - Test Set F1 Score': [blending_f1],
'Blending Model - Test Set AUC-ROC': [blending_auc]
metrics_df = pd.DataFrame(metrics_dict)
Out[ ]: Blending Model - Test Set Blending Model - Test Set Blending Model - Test Set
Accuracy F1 Score AUC-ROC
# Confusion Matrix
conf_matrix = confusion_matrix(blending_y_test, blending_test_pred)
ConfusionMatrixDisplay(conf_matrix).plot()
plt.title("Confusion Matrix of Blending Model")
plt.show()
# Create a new dataset for the test set using these predictions
blending_X_test = np.column_stack((log_reg_test_pred, rf_test_pred, svm_test_pred))
blending_y_test = y_test # The true labels remain the same
In [ ]: # Step 1: Extract 'date' and 'FUTURE_RETURN' columns from the original data and add
data_processed_df['date'] = data['date'].values
data_processed_df['FUTURE_RETURN'] = data['FUTURE_RETURN'].values
# Step 2: Create prediction signal (use the best model to generate predictions)
backtest_df = data_processed_df.iloc[-len(X_test):].copy()
backtest_df['signal'] = blending_test_pred
# Step 5: Create the final 'backtest_df' with all columns needed for backtesting
backtest_df = backtest_df[['date', 'close', 'signal', 'shifted_signal', 'y', 'FUTUR
"""
display(Math(decision_tree_latex))
Start
↓
Is shifted\_signal = 1?
Yes No
↓ ↓
Buy Stock Sell Stock
252
Annualized Return: Rannual = (1 + Rcumulative ) n −1
performance_metrics = {
"Metric": ["Cumulative Return", "Max Drawdown", "Annualized Return", "Annualize
"Value": [cumulative_return, max_drawdown, annualized_return, annualized_volati
}
performance_df = pd.DataFrame(performance_metrics)