0 ratings0% found this document useful (0 votes) 56 views59 pagesModule 4-1
every numerical method of mathematics
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
[aumericol methods-~ 1 |
Sduton of Algebraic and Trameend
Equations. ae
Given o equation flaj=o it ix
posrible to find root,
ln) becomes Ze exactly
numerical methods +
root of the
: genecally not
% auch that
we dacus too
find an approximate veal
given equation.
Equations jnvolvia algebraic quantity
fees x,2,x3 ete. are Called a
| polynomial @ algebrate equations.
fa! (i) -4a- 9 =0
di) at +272 Bp
ai ra 43athe=d.
no- algebraic
Equato ns that — involves
Sinz , tan ete.
quantities like ee bog,
ore called aK eee equactions
i) 1&-2=0 Gi) zlog, 1-120 (li) Fanx =24
numerical method, of Finding an)
_appronimate root of the given equation
o. repetitive type of procexd jenoe”
iterodion Proven’,
Ex
4AX ep. there 1 exits, hoo. value, Bey
es #0) hay Op poaite
#@=0, HO>0 then — ther alway, Sone
Boxes one real
ee Feet in the interval (a,4)
Regul elk Pectt ial @ ioe ood ae
falae poxth'on,
the formula ©
approumoation 1
Ags , AOL
tO) Fadi ese first
i OM theese, » tee e
yng 1N COLE) iA - cay Follows.
Bea 26545) eb Rho)
ORE
the = precess 1k continued HII
comuistency IETS. Cannenutive
APPCOxt mation).
foot ee eee Shere
f9x-S26 > Cowect by) +thred Werinal
a fe folai method.
bet Mig) = 2234-5 °°"
BHo)= 5 94-6, ead=+1 <0
HD =16>0 root “Wies in 023)
Pt be observed that the
of ¢@ of az=2 being -) i
asm
Wwe Gee
a realcomparecl 0 £(3) = Ip
Nearer +o Ze
the foot iO the
& we @ expect
neighbourhood one, ee aball have the
ateral (Bb) for applying the Method
wach thot aCe) lisa armal enough
Ov
£(2-D= (2) —2(2.4) <5 = 0061 >0
Shan iteotectiengta 3(2: 2.1)
a= sb pe) = epee
be i £(b) eiCay sto: 66)
Firat approximation , ee ad(b)- b Fla) Bas
$(»)-F(2)
4, «CREST aa
ee
D £(e2.0942) = (2 094 8) i. a
% = -0.003892 20
the ot fiex in (2.0942, 2. 1)
~G= 2.0942, f(a) = - 0.00392
be #1 , #(b) = 0-06/
zsLL
A eustituting Ip viothe. Rue it @
we obtain the . second approximacion,
= (20942) (0.061) — (2.1) 0.0039 2:
ee ¢ 2.09455
9.061 - (-0.0049 2)
% ond % Are Close. enough ; Xe in oe
bette © OP Promotion than %,.
arus the required approximate foot
correct +> 3 decimal places is 2.096
2 compute the teal’ ¢vost © ef ace log x - 1.250
corcect 40 four decimals by applying
Reduta - Fal snefhod .
4 ete eet) = x log 2 = 12
FI) = 2) 02) = 01640, $(a)= 0:23 >0
the feat root ren in G27 3)
F(2-4) = 24 log | 2.¢- h2"= —-Ol0as3.
£(2.8) = 2.8 aks 19, BS
the ‘recta lex in (2.4. 2-8)
Heration:
0029. > #(0.)= -0.0353
b=3.8 f(b) = 0-052
= oO F(b)- bfa)
#(b)-$(a).. aefl) bf la)
er
f(b) - F(a)
| mt, 0.60F
a £(x = § (0.604) = 0.000386 ro
Peg root | exw in =6(( 0-607, 0.4)
fe Ber o> O-c0t += 0.00026
= Ot He) = “043352
ier
aE
eton - Raphson methad
| Tn this method we lecate an
approximate real foot es of the given
| eguecion and improve its Accuracy
| by etn iteratt ve process,
to the roof
The Fiat approximation
/ Xp is given by the opera formula.
G= x, — TU)
Plt)
he = Second. approu mation
} prpaes Peleg % tin the ens of ths
ik obtained
Ks continued = fill, we
too consec ufive
EEEeval a teal ooh of | cthe Equation 7
a3 ete cig. carmaeueee™ Ahee daecimat
= Raphion,
by. oreiynd newton, ar
places ,
«interval (a, b)jn Again Ste FO = ep - fA)
£'0n,) f'Q\)
ee?) [Cony zn) SIO a sake
[3@.1% 2)
gimilarly
% = 20146 ~ [@.0%46)" pee SO aeales 5]. 2.0946
(3(2.0946)— 4]
Thus the required. approximate foot
CorrecE = “ts B decimal places i, 2.095
2) Find a al ‘root Ber jhe equator
ai+a?+ 3x44 20 by perforin +is0
iteratioms, uslu newton®- Raphston method
sf Let fs 24a sry
flo)=4 | (=! , fC9=-6 <0
“a feal root lies i G,-) and let x=-1
fi) = 3x 7p2x 43,
— $e) gre) = Sete
4'Ge) FC)
2 ed pee
ss e 1 rm 2S
iteration: § %, = %
¢ ation ale) 125 fGise ce i 3224 ~
ga. 25) rl.223#'(6. 8528)
My 20-8526.
Ly = 0-826.
hse):
Fea tre real foot of the equation
a
ye -2 =O corre ct +o three decimal
ees, a. Fpiging: Seeton: 5 eal
method.
¢ fee #0) = 2e™-2
£0) =r 20, #0) = 0.4183 70
Bie. tootiliearins (0,1) % let %oms
pi(a) = re‘te* = et (241)
ie tee £(%) = iipaate |) St 61783
ee pe =0.867
£'(%) £10) e'(2) a
|
| = 0.3679- £(0-864 :
oes LOSERS iro 39-[0-86796 2]
fi(o-8679) Seer aT
e 6 4699 41)
L, = 0.8528
ee 0.38522 — £(0.8523)is . of the equat,
FN Pisa tneverceaiy toate 0 on
OSINA+t CoRR HO
of HCL) = HK SINX + COAX.’
#1) = Neoaxn t+ sinz -Sinx
= XCOAX
tee aem in radians,
X= x, = Pl%) » gam Fin)
¥(%) '(n)
= W-(NSINA +conn)
TcoAn
= aos) = 95a
x a 2.3933
28922 {2 8233 S10 (2.8223) + 04 (2.8233)]
enue ice 8°“
2: 823 3c0s(2. 8243)
Ar = 2.7786.
we get
mn = 2.7994 ;
ae TOUGH “foot of 22
Uatag Newton ~ Raphson method
X= Yoo => vo oo
Coy 220 a5
so/”-, 2,465 4.zz. Affe cory eA,
:
| Conider a function ye fix)
Beet Xe, 2, = XK th 1 y= Xth
ar.
In=Xi.th “be ahet of
oo REE
poin&A ak q
common interval h. Let the Correspondin
| voluew of a Ce) ie, Yo= £(x.), Y= #(x)
40D. --. y= £(%)
we define forward and backward. differences
Forward differences
the eee ae difference of f(x)
peel bert la dehmed ay follows.
ATG) = £ (th)- #0)
AR 1% colled the forward — difference
oO arm
a on hove for the values 1,4, gee
RFs) = $ (44h) 40) @ , Ae
uo io.
BS (0) = Barth) =F) ot Ag= ys-y
Af (a2) = #4 Qath) - £(%) Q BPP Aetna
AiFerence gf thet Fiat! forarel
ore called.y= Ay,- Ay,
ary Stay, - ay, ete
Por wor di Sference | table
pasfiy [oy J La
Xs | do
a dh
ay | Dy n
Xs = Js ; | Ay,
orhet MEIKY arenttien samy. | table
MOI ARAN ARNG ace called
the acon forward ol ferences
Backward, — ditferences
the firat backword difference
of $0) denoted by vf) in defined |
on Follows !Fie £(2)- $(4-h)
called
: ke backia rol Oi ference
operator.
st Za%n VFA) = $x) = $Cancth)
a da- day
BF he%p, ond Fy \0 ye
mete C= FG Fie a)
@ eon dn- SAS?
mh Xn and FOGS) Pda
BR to AT F(R.) = Fin) — 8%, ,)
@ Bei, ye) ae etc
eetst). 2 vy, = Wey,
difference of the Firat = backward
Neer are. Known aS Lecond backward
ences . they are ay Follows
9 Von- Vigie , Wyn rs nena Me4a |
entice, in i fable nornely
the last
TWYn, Vda 0 yy WY, Ole called — the
aera backward
=
bebo grins Construct. OL finite. difgerence
| table for the function fG@)= x%+24!
where %~ tokes the value& 0,1.2.5,
S. 6. _ and Volertify the leading
£0 nage and backwatd alifferences,S|... Se eee a
Fo Beye CERT by data
prom thin we obtain
Blo 1, PCS Se Kee ses)
fl > 69 Ps) 213) (6) #223
the fintte difference toble iA a
follows
Me Oar O8O 2 70.8
h 0.05
from the table
Vy, = 0.0540, VY, = 0.001% %, Vy, =0-000n
vy, = 0.0002
on substitution in the — formula.
| we get
B(0-26) = ©. 26602.”
fr aya? a ¥
“ha inle26 = Basa)
S| Given Sin 4S* = 0.7071, sin SO= 0.7660
|
Sin $5°=0-8192, Sin 60+ 0.8660, find Sin St
using an appoumabioate interpolation
formula
cape have do find the value of *
ae ‘ ° : : Aine
Bae sinn at %=52° which is ea
po ee 60° and hente Nexston4
interpolation fomula i é
table “
(orear.
Oppropriate. The diterence
as Follorat.eS a et
. | ns | 0.4041 | i
| | 0.0539 | |
on eres | -0-0057) |
| 00532 poeue
| O.oh6S | |
~ & 0. 8660) |
Inz Co 9, © | | ) }
| |
Here De eae oe = Sees — One
| i s
| Substituting in the formula a in
(S49) 2 0.8387 2 sing?
6, Find ‘the interpola tig polynomial F(a)
Aotigghed Flo)=0 , f2)=4 (hk) = 56, f(6)= 204
£(8)2446, #(10)2980 and hence find f@),
#(5) and £G)
a the inte rpolati ng polynomiad can be
found from either of the two
interpolation Pain we shall use Newtons
; forooth interpolation — formula.
' the differnce toble is aw follows.
||
3| From the follavoing table efind the
é i
number of students who have obtained
(@ lew than bS marks (b) between ho Ausmarcy
r 2 ae
Marks | | 30=Ko | 40-90 | 50-60 | eo-F0 mae
N'
o.0F Students) 31 | go | 5; 35 BI
|
Ee we = ahall recontitute the given table
with #2) representing the number of
Students ley than xa marks. That 4,
les than 4o marks 31 Students,
less = than 5 markKh 31t425 43° Students
los than 60 Marks F3+51= 124 Students
les than 46 mons Mbrse.169 Students
les than 80 marks, 1644317 Ito Student
we have the new table ei with
a forward differences.
ej oy AY BY as|
ee eek POR EG OPP ying ¥
Neroton'a forioata interpol ation — formu,
HS-HO - 0.8
rere ee oe
; 10
on substitution ia +he
4 (45) = 44.86 2 4B
shus the
los than 4S Marks
\
forrnu! &
data
1 Cig & ;
Buk £40) ==! by
Hence: 74S) FCS) = es Blais
sthus the number of Students Scoring
between 4o and ks th IA,
Exercise problems,
UAE on appro priate
interpol ation
formula 40 est mote g Berta) for
ahe given value of 2. :
aT — a
a 1.3 | a) Bef eet 2, 2 |
6,050|6. 686 | 4.389 | 8.166 | 4.029
(185) =)
number of students obtaint,,
iq AB ‘
need toh toe (45 )-F (4c) 5
24Interpol ation formulae -for uneégual
intervals
Divided — differences
Let # Oe), FOU), #02) ,.., # (xn) be
the values of an unknow ry
funchion ye fx) correspon oo te
THE valused Grice Tee ee. My GE
UNnegual tatervalk the fimé divided
differences ace defined as follows
# (4%) = £O)- #0) # G,,2)= $GD-#H)
X= %e BGeX,
eke
the second order divided difference
are defined ar follow’.
F (oj othy Ma = ees
ale
#n, 25, %) = OAI= £00.88)
X32;
similarly the ef@ other higher order
divided differences are defined . the
tolular arrangement of these — values
ip called the divided difference |
table and Ww an follovo.s. i2 [Se60[ Foo Te sd LU] po]
Xo | £(%.)| i |
| | #(%e,%)
ce | ect) |
# (2,42)
Xr) FO)
+#(%r, 4%)
ee =] $06,
%i-2} #0n-2) 2 Cys ,Xa-s) Fh =3, Ans 4ng) 1, Xpy-ota)
tea? £n-) | #0ta 3.400, %n)
| | | 00) ae
=: |
| SPMD A= aoe ee!
| pacton's 29 difference Bhi ;
| newton’, general interpolation formula,
oe Gp FC), FA), £03). FOr) be a
er er vers ot a unknown function
40) Corresponding fo the values of %
tt, ioe a OE unequal intervals, then
Xs, Xa, --
fi $0) = # Go) + (1-%.) $ (%,%)) + (X-%o) (x-21) Fo, %, Xa)
. bet) Ct) Rag) F (ort, 22%)ahd D.D | 3d D.D
[a x | 4 | ip.p
|
Loe 2 | F(%e) #0)
£22) |
Sein |
pe $ (oi, 22
ioo-43 ,14|
ye N= eres eal |
ee ee ed (0, %, 23,25)
$(%y, %2) pea ob
| 198-96. 109, } fer?
SEER Og (06; 2, X3)
‘ | isy-too 224
po |For, \7 6h 2 (My 12,%3,%4)
| [Os a gaa se 2? aie
| as0-i96. eu B-4
| | | 7 4es ae Xu)
; q -15!
PaaS, “tan oa oy
| $(%3,24) A412, 43 74,45)
1 B68-3Sp = 254 ' bs -35 25
; | B-6 wee
| £3, %4 Xs) es
Wy 8 | Flay)2868 4349-254. us
lo-é
| £(Ay As)
| | 136-8684 4 |
| | lo-@
110 #1Z)AFracy eer ee
formed Firat
Lx [osteo] st o.p is p.0o| tp. o
||%=0 |f{xe)=-5) (te, X1)
|| |
| | -lk- Gs) =-9 |
| 1-0 P(%, 21 ,X2)
X21 | POR)=y| FE 2 (00,208.25)
j # (2%), 22) Be-F)_ .
| j-12S-CW) = eo
eer |
i $ (0% 4)
|) = | Ga) 25) 26-C39,.g) ~
| (4, %D eA F337, 1,)|
Bigtieie op a4 oq /
| + en a2
| j | ~ || $a, Zs, %y) lo-]
| %,=8) tlxs)--21 ' oe.
| + (4s, 4) oe
io-
| 255 -(Daoh
? ’ | . x p10. = 3 ‘
| xe10 | Fax)-355|
£
| : Hes TN f
the — fourth order differences are zero
since the third = order differences
or AamMe.
on AUbAT HHO in Newton's ee
in-ter polation formulQ .
a ie eye) (+)?
S fp = oxiaattex—s
#()= 2 (2-12 (o)* 460) —5 = ~hee- Had GA a polynomiar in x
for the followin data wring Vests
divided difference formula.
1
#
| ey i = | Ca eerae s
| ‘ (248 Poll 6 | 9.1335 |
sf The divided Odfierence tate cts
formed frat.
bc
y =£) i p.p ao = ad Ae ] “ugh a |
F+te)=1248 tte, 24) | oe =
B3A2uS | |
rt tals |
i
£(u)233 Oa | elt tat) |
(4%) | (02 Sete) |
oe ork © £ Gea 10%)
aT oe | 134% 23]
2428 =I peese
#2) 25 al (4%, 3%)
#04, %5) | BB+lo =13) |
sa Ko SH
Lo
H%)24 ae
4 (Xs, %4) |
4G) | |Miertumeieak Sies eae
Steg f a mn
let ar fia
the intervals Ta, iy divided into n
equal parts of width = h_ where,
h= bra.
n
VE OF TS th aS th a) = zh as
belt ther polats lief -the division
Alo , let Yo? Fle), Ye FO) =2 Yo = FG) be
the Cores ponding values of y= #00.
Now we have a xzet of values of
Ye tO,.ot _ equidistant pointy of %
Pitta. woleeie Oe) ae. obuleted.
pia t= a.| %, x2 | ig EE | ae8 |
Pp ge . eee he. eS
+
orking “procedure or obi
rep 1) \ aG@iven re definite - iotegrad
ee Si da for evaluation fiat divide
interval [a,b] ioto appropri adeeS
Trape 20id |
as [(Y4u 4) +
eS
R
evaluate e t(
i
rule. given
2.81
Here
Pate Alko
4, = 2-105
Hence sae
3
[ 4) dx=
1
hs
Evaluate
yale.
Here
Step [ ength
tere
a
ule
209) +454 Ie Le
csi) yl
1) de ite the tapeasida
ch eet,
fee boul & £.859| F481) 4.464]
=I
h
eel Ne Diy
De 2 seer = 4,464.
Yo
trape soi deal cule dvs
oe a ad
ee [Rest 4, 46a) + 2%(2-808+ 3.614)
RCO 8S 4.57) ]
waiing the trape.svidal
6
ae
I+a >
oO
c
en
f(x) =a
kK) iEmploying 4cthe drapedoidal mie,
| “Evaluate ( setmotde oy avi clin a
| she interval (05, 2a) to fen eq
a parts ¥
Et Here the interval » [0, 2 | = [0,40']
t best to divided info §=6 ten equal
Cub -iatervals. Accordingly, we take
he (Yo) CR cme eee ete
Ev aluake P(x SINX,
the values ef are xzhown in the
table.
I
teller sy
i ——
| [o [4 [Is [2a] 36 | est S62 | 2} 81"! | 90")
0.9571 |0.284 9 |-000
ae
| Y| © |o.se o.209]ousy 0-5876|0-70n1 | 0-864] 0-891
the trapegcidal ule now gives.
Pet Oe
| ‘ : b
| f Sind Ave 2 [Wor 4.) + 2 (44.444 ey,
| é 444 495+4,]
|
2 [o+ (
+ 20 1000) 4 20.1564, + 01304 + 0-454
4 0.58484 040741 + 0.869 4 0.841
Foss + 0.4994 |[V008 4 OC xs.863)]
= (0-219 655) x
| = Ones (takin Roe ie
| d a
| wotet the , Stack value of the given
integ cod 1A CORO =.
|
| = as : poe wees a
bo
5 uAerg sthe Arde dal rule
Evaluate ¢ ae by uous
| the ‘ene [o, | tato io equal
parts . Compare with the exact
yesult.
s we devide ae
interval Co, J
ite ten equal = parts by aki “9
ho. 1 We compute the Toh as
ot ye fas et for %.=0 = 1
© [o1 ]o2/[o3 [oy] Oe) og o-7 0.8 0.4 |bbe
FoUd 0-3 0-24.08 | 0.6 F054 0-0 0. [cea Bite once)
Se de- Fh [iy.4 40) TAG a4 ast y+ Ye + Y,
, + 4x44, t4e)
= 0. 632635
The exact Value ee. [ee eB (= 0.3649
= O63212, _d
now, we have the air
oO
ase d
Peta
Si Mpaon'a yo e
‘a | We | Che ay
| Ay Lo | A
| |
Uri ete z
|
rule for ney in gin Py
i)
fae by
of dx = BL (Yetyy) +4 (94 9s) + 24a]
+ Stee = Ae [eingy rs (He) 2G]
Ap deduce She ‘wolue of 7
=f ban a per BARD: Pe)
aS
we must have, eg @ 124 (0.7854)
—
Evaluate SR taking seven dvtdinates
by ‘applying simpsons ug rule.
Hence deduce an appropriate
yolue ot § log, 2. :Sa era % cule 1 evaluate
( ax
: 5
{ To apply _simpson'y ee rule,
4 1 must be 'a multiple of 3 and
we Ahall take nes itael f
poe wenn
bee .
2uNE ie
| 22 hy dee Sh (ey) datos
{ o
Paton! | tlt ail Sie ania!
yee ™| 27183 |. 6484 | 3956 1-28 40
Be a a lave thn
He er |e oe
substituting these values in the
with het,
tule
3
De 3 [6.4133 +1.2840) + 3 6u87+ 12958)!
5 :
=e 70023 + 4,132
ewe? i
[E= 4.9259|| eee
a =a obtain
&\ use Rrepacns “gh pole AS ;
| the Gpprouimake value of firs yds
| by seat 3 equal parts Ierterva la,
gat Here he 6-2 = 0-3-0 =0.)
AI. Se =
| WHS
oe Slee ees
Lae =(i- 3874 4 i 0.9645, 0.8854
| ;
L 3 ge [ake |
‘ . . \ 3th rule
substihing in simoeaons ¥%
for n=3. G.4al> |
“Vu-sy* 2 3 = D[ (I+. 3) ¢3(0-996+0.96%0)
“= +2fer38s4)|
oa [! 3.43 (1.4635)]+ rlo-80%4)]
iW
use — Simpaon’a Peele to find
es z al
fat Ab: by taking é eb: inte”!
0