Fluid 3
Fluid 3
→
− →
−
Note that both F and I are vector quantities and can be represented via the
components in a suitable coordinate system. For example, in two dimensions
for the x and y directions we have
d Ix d Iy
Fx = ; Fy = .
dt dt
1
2
P (pressure)
Control volume
D (drag force)
R (reaction on fluid)
τ (shear stresses)
Fig. 1: Fig. 2:
The net force acting on the system is equal to the sum of all external forces
acting on the individual particles of the system. Internal forces, that is the
forces acting between different particles of the system, do not contribute to
the change of the momentum of the system because by Newton’s third
law for each such a force there is an equal opposite reaction (figure 1). For a
fluid it is convenient to apply physical principles to a system of fluid particles
occupying a certain suitable volume called a control volume. The force on
fluid particles within the control volume include the net force acting on the
bounding surface of the control volume, forces on solid surfaces of immersed
bodies and gravity or inertial forces.
Main applications of the momentum principle include evaluation of forces
on immersed objects produced by a flowing stream. By Newton’s third
law there must be an equal and opposite reaction on the fluid. We wish to
apply the law to a flowing fluid in order to deduce the magnitude of the force
→
−
F which must have acted on the fluid within the control volume in order to
→
−
produce the observed rate of change of momentum. The force F will then be
the total force on the fluid inside the control volume arising from all sources
→
−
which will include not only the reaction from the body drag D , but also due
to any pressure or shear forces over the bounding surface of of the control
volume (figure 2) plus any weight components.
Let us consider a stream tube of a small cross section such that the fluid
velocity can be assumed constant across the tube. It is convenient to chose
a part of the stream tube between two cross section 1 and 2 as a control
volume (region abcd on figure 3). The areas of the cross section 1 and 2 are
→
−
A1,2 and the corresponding fluid velocity vectors are V 1,2 . During a small
time interval ∆t the fluid in the region a 0 add 0 enters the control volume, and
the corresponding mass gain is
∆m1 = ρ A1 V1 ∆t.
3
b V2
1111111111111111111111111111111
0000000000000000000000000000000
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111 A2
0000000000000000000000000000000
1111111111111111111111111111111
b’1111111111111111111111111111111
0000000000000000000000000000000
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
2
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
∆ I2
0000000000000000000000000000000
1111111111111111111111111111111
a
a’11111111 0000000000000000000000000000000
1111111111111111111111111111111
00000000
00000000
11111111 0000000000000000000000000000000 c
1111111111111111111111111111111
11111111
00000000
00000000
11111111
00000000
11111111
00000000
11111111
0000000000000000000000000000000
1111111111111111111111111111111
0000000000000000000000000000000
1111111111111111111111111111111
00000000
11111111
00000000
11111111
00000000
11111111
V1 0000000000000000000000000000000
1111111111111111111111111111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
c’ V2 ∆ t
00000000
11111111
∆ I1 00000000
11111111
00000000
11111111
00000000
11111111
1 A1
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
d’ d
V1 ∆ t
Fig. 3:
Similarly, the fluid in the region bcc 0 b 0 exits the control volume, and the mass
loss is
∆m2 = ρ A2 V2 ∆t.
According to the continuity principle, the mass flow rates across the surfaces
1 and 2 are equal to each other, and we can write
where Q is the volumetric flow rate through the stream tube. Note that V1,2
are the velocity components normal to the surfaces 1, 2, and for the case when
the velocity vectors are perpendicular to that surfaces (as on figure 3) V1,2
→
−
are the absolute values of the corresponding velocity vectors: V1,2 = | V 1,2 |.
The momenta associated with masses ∆ m1,2 are
→
− →
−
∆ I 1,2 = ρ Q V 1,2 ∆ t.
Note the vector values in both sides of the equation. Therefore, during the
→
− →
−
time period ∆ t the control volume gains the momentum ∆ I 1 = ρ Q V 1 ∆ t
due to the fluid flow into the control volume trough the cross section 1, and
the corresponding loss of the momentum due to the flow out of the control
→
− →
−
volume trough the cross section 2 is ∆ I 2 = ρ Q V 2 ∆ t. For a steady flow the
→
−
momentum of the fluid inside the control volume does not change: ∆ I = 0.
This implies that certain force should act on the fluid inside the control
volume to compensate the change of momentum due to the fluid flow in and
out of the control volume. According to Newton’s second law (1) the change
of momentum caused by an action of such a force during the time period ∆t
4
→
− →
−
is: ∆ I F = F ∆ t, and the overall balance of the change of momentum in
the control volume is
→
− →
− →
− →
−
∆ I = ρ Q ∆ V 1 ∆ t − ρ Q ∆ V 2 ∆ t + F ∆ t = 0.
From this equation the total force on the fluid in the control volume is given
by
→
− →
− →
− →
− →
−
F = ρ Q V 2 − ρ Q V 1 = ρ Q ( V 2 − V 1) . (2)
Verbally, equation (2) says:
Momentum principle: For a steady flow the total force on the fluid in the
control volume is equal to the momentum flow rate out of the control
volume minus the momentum flow rate into the control volume.
Equation (2) is written in a vector form. Equation for any specific direction
can be obtained from (2) by taking the projection on this direction. For
example, in the case of 3 dimensions we have 3 coordinate axis (x, y, z). The
corresponding components of force and velocity vectors are (Fx , Fy , Fz ) and
(u, v, w) respectively. The vector equation (2) is then equivalent to three
equations in each of three coordinate directions:
For a collection of stream tubes forming a larger control volume with perhaps
non-uniform velocity distributions across the inlet and outlet boundaries we
may integrate equation (2) to obtain the general steady flow momentum
equation
→
− →
− →
−
Z Z
F = ρ V Vn dA − ρ V Vn dA,
S2 S1
where the integrals are taken over the inlet and outlet surfaces S1 and S2 ,
and Vn is the component of velocity normal to an area element dA of the
corresponding integration surface.
General approach
1. Draw the flow system.
5. Define and label forces on bodies, ducts, etc. and their reactions to the
fluid.
7. Assess momentum flows into and out control volume and apply the
momentum principle in chosen directions.
Assumptions
The following assumptions are used in this section, if not stated otherwise:
1. Flow is two-dimensional.
2. Flow is frictionless.
4. Flow in ducts and jets are assumed parallel and uniform with a constant
velocity over the cross section.
Nomenclature
Selected notations used in this section:
x, y Coordinates.
→
−
V Velocity vector.
V Absolute value of velocity.
u, v Velocity components along axes x and y respectively.
Fx , F y Components of the net force acting along axes x and y on
fluid inside a control volume.
X, Y Force components acting along axes x and y on solid surfaces
(bodies, ducts, etc.)
6
y
V2
11
00
00
11
00
11
00
11
00
11
00
11 U
00
11 x
00
11
00
11
A 00
11
00
11
00
11
00
11
V1 00
11
00
11 Fx
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
V3
Fig. 4:
y
V2
U
11
00
00
11
x
Fy 11
00
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11 Fx
00
11
00
11
00
11
00
11
A 00
11
00
11
θ V1 00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
00
11
V3
Fig. 5:
x-direction: u1 = V1 − U ; u2 = u3 = 0
y-direction: v1 = 0; v2 = −v3
Momentum principle:
x-direction: Fx = ρ Q2 u2 + ρ Q3 u3 − ρ Q u1 = −ρ Q (V1 − U )
y-direction: Fy = ρ Q2 v2 + ρ Q3 v3 − ρ Q v1 = 0
The walue of X is positive, which means that the force acts in the positive
x-direction (from left to right).
8
y
Fy
1111111111111111111111111111111111
0000000000000000000000000000000000
A
0000000000000000000000000000000000
1111111111111111111111111111111111
Fx
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111 x
V1 U
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
0000000000000000000000000000000000
1111111111111111111111111111111111
θ
V2
Fig. 6:
Inclined plate
Formulation:
The jet has an angle θ to the plate normal. The plane is moving with velocity
U < V1 in the jet direction (figure 5). Find the force applied by the jet to
the plate.
Solution:
It is convenient to consider axes oriented as shown. Assuming no friction, no
forces can be applied to the fluid by the plane in the y-direction: Fy = 0.
Flow rate: Q = A (V1 − U )
Velocity components in the x-direction: u1 = (V1 − U ) cos(θ); u2 = u3 = 0
Momentum principle in the x-direction:
Fx = ρ Q2 u2 + ρ Q3 u3 − ρ Q u1 = −ρ Q (V1 − U ) cos(θ)
Curved vane
Formulation:
A curved vane deflects a jet of water of diameter A through angle θ. (figure 6).
The mean velocity of water across the jet is V1 . The vane is moving in the
jet direction Assuming that on inlet the jet is tangential to the vane surface
9
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
A1
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
Fx A2
P2 V2
V1
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
P1
y 00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
00000000000000000000000000000000000000000000000000000
11111111111111111111111111111111111111111111111111111
x
Fig. 7:
Momentum principle:
X = −Fx = ρ A (1 − cos(θ))(V1 − U )2 ;
Y = −Fy = ρ A sin(θ)(V1 − U )2 .
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
A1
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111 A2
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
1111111111111111111111111111111111111111
F x
V1 V2
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
P1 P2 = 0
y 00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
00000000000000000000000000000000000000000
11111111111111111111111111111111111111111
x
Fig. 8:
Fx = −X + (P1 A1 − P2 A2 ) = ρ Q (V2 − V1 ).
X = −ρ Q (V2 − V1 ) + (P1 A1 − P2 A2 ).
Nozzle
Formulation:
A pipe with cross section area A1 terminates in a conical nozzle from which
a jet of water is discharged to atmosphere. The cross section of the jet is A2
and the gauge pressure before the nozzle is P1 . Find the total force acting
11
on the nozzle.
Solution:
Pressure across the jet is constant and equal to the atmospheric pressure
(gauge pressure is 0). Therefore, the gauge pressure on the right boundary
of the control volume is constant and equal to the atmospheric pressure:
P2 = 0.
Continuity:
A1 V1 = A2 V2 = Q (3)
Bernoulli:
1 1
ρ V12 = P2 + ρ V22 .
P1 + (4)
2 2
With known P1 and P2 = 0 simultaneous solution of (3) and (4) gives values
of V1 and V2 .
The total force on the control volume includes the pressure component and
the reaction from the nozzle.
Momentum principle:
Fx = −X + P1 A1 = ρ Q (V2 − V1 ).
X = −ρ Q (V2 − V1 ) + P1 A1 .
Pipe bend
Formulation:
A pipe with a flowing water bends through an angle θ and reduces cross
section from A1 to A2 . The pressure and velocity before the bend are P1 and
A1 respectively. Find the magnitude and direction of the force exerted on
the bend by the water.
Solution:
Continuity: Q = A1 V1 = A2 V2 ⇒ V2 = A1 V1 /A2 .
1 1
Bernoulli: P2 = P1 + ρ V12 − ρ V22 .
2 2
Velocity components:
x-direction: u1 = V1 ; u2 = V2 cos(θ)
y-direction: v1 = 0; v2 = V2 sin(θ)
12
A2
V2
θ
Fy
P2
Fx
A1 V1
y P1
Fig. 9:
Body drag
Formulation:
A cylindrical model is placed across a working section of a wind tunnel of
height 4d (figure 10). Air flow at the inlet of the working section can be
assumed parallel and uniform with velocity V1 . At the outlet of the working
section, where the flow is also parallel, the velocity profile is measured. It
consists of a viscous wake of thickness 2d with profile
Vw = V2 ( 1 + 2 (y/d)2 − (y/d)4 )/2,
13
y=2d
y
V1 V2
y=d
P1
D x Vwake =V(y)
y=−d
1
2
y=−2d
Fig. 10:
and a uniform flow outside of the wake with velocity V2 . Assuming the flow
to be two-dimensional, find the drag per one meter of span of the model.
Solution:
Continuity:
Flow rates through inlet and outlet are the same:
Zd
Q = 4 d V1 = 2 d V2 + V2 ( 1 + 2 (y/d)2 − (y/d)4 )/2 dy.
−d
15
After taking the integral we find the value of V2 : V2 = 13
V1 .
Bernoulli:
We can apply Bernoulli equation in the inviscid region outside of the viscous
wake to specify the pressures at the outlet. The flow here is parallel, and the
pressure will be the same across the whole section. For the stream line 1–2
we have:
ρ V12 ρ V22
P1 + = P2 + ,
2 2
and substituting the known values of velocities we have the following pressure
28
difference: P1 − P2 = 169 ρ V12 .
Momentum:
We neglect friction on the walls of the wind tunnel. Then the total force on
the fluid inside the control volume includes the pressure forces at the inlet
and outlet of the control volume and the reaction due to drag of the model
R = −D. The flow at the outlet is not uniform, therefore, we have to apply
14
the momentum principle in the general integral form. Momentum flow rate
at inlet:
Z2d
I1 = ρ V12 dy = 4d ρ V12 .
−2d
At the outlet the integral for momentum flow rate consists of tree parts:
Z−d Zd Z2d
I2 = ρ V22 dy + ρ V22 ( 1 + 2 (y/d)2 − (y/d)4 )2 /4 dy + ρ V22 dy,
−2d −d d
After taking the integrals and substituting the value for V2 this gives gives:
380
I2 = d ρ V12 .
91
Now we can apply the momentum principle:
Fx = 4 d (P1 − P2 ) − D = I2 − I1 ,