181
CHAPTER FIVE
                     Integration
           and its Economic Applications
     Conceptes of integration:
    In the derivative we known the function Y  f x  and
we calculate the rate of change of function is represent the
                                    dY
first derivative of this function      or f   X  or Y .
                                    dX
     Integration is the reverse of differenatiation (
antiderivative). In many problems , the derivative of a
function is known and the goal is to find the function it self,
      Def. a function F(x) for which f   X   f  X  for every
x in the domain of f is said to be an anti derivative ( or
indefinite integral) of F.
     Integration Notation :
     It is used to write:      f   X . dX  f  X   C
  -   is called the integral sign.
  - The function f(x) that is to be integrated is called the
      integrand.
  - C is called the constant of integration.
  - dx indicates that x is the variable with respect to which
      integration is to be performed.
      The indefinite integral:  f   X . dX  f  X   C
                                  182
If f  X  = F(x) for all x in the domain of f
Integration Rules
     Since the integration is the inverse of differentiation ,
then many rules for integration con be obtain by stating the
corresponding rules for differentiation.
Rule 1:
     -    If the function is:  X n . dX
                                     X n 1
     Then :                X . dX 
                             n
                                            C
                                     n 1
      So : ( C ) is a constaint and n   1
Where ( n ) is any rational number except ( n   1 ) and ( C )
is a constaint
Example : Find  X 4 . dX
Solution
                 X 4 1
      X 4 . dX        C
                 4 1
                 X5
                     C
                  5
The derivative of the function is:
        X5
     Y    C
         5
        1
     Y  X5  C
        5
                                           5 4
     The first deriavative        Y        X  X4
                                           5
                                        183
Rule 2:
    If the function is:  a. dx
    Then :            a. dX  a X  C
    So: a  is a real number constaint.
Example : Find the integral:
    1- 10 . dX
      1-  5. dQ
Solution
       10 . dX  10X  C
       5. dQ  5 Q  C
Rule 3:
    If the function is:  ax n . dx
                                                  X n 1
     Then :                    aX n . dX  a           C
                                                  n 1
     If (a) is real number and ( C ) is a constaint
Example : Find             4X 3 . dX
Solution
                      X4
       4X 3 . dX  4    C
                       4
       4X 3 . dX  X 4  C
Example : Find             6X 2 . dX
                                       184
Solution
                    X3
      6X . dX  6   C
           2
                      3
               2X  C
                    3
Rule 4:
    If the function is:                 af  X   bg  X 
    Or :
      af  X   bg  X   eh  X   ....  mL  X 
     Then :
      af  X   bg  X   a  f  X  dX  b  g  X  dx
     Or:
      af  X   bg  X   eh  X   ....  mL  X 
       a  f  X   b  g  X   e  h X   ....  m  L  X 
      This enables us to integrate an expression “ term by term
“ as the following example demonstrate.
Example : Find                        
                         2X 2  4X 6 dX
Solution
                   
      2X 2  4X 6 dX 
                           2X 3 4X 7
                             3
                               
                                   7
                           2 3 4 7
                           X  X
                           3     7
Example : Find           
                         5X 2  3X  2 dX 
                                       185
Solution
         
      5X  3X  2 dX 
              2
                         3
                            
                              2
                               
                        5X 3 3X 2
                                   2X  C
             5 3 3 2
              X  X  2X  C
             3    2
Example : Find  10X 4  8X 3  3X 2  4X  10 dX
Solution
         
      10 X 4  8 X 3  3 X 2  4 X  10 dX  
                  5        4       3    2
          10 X     8X      3X      4X
                                      10 X  C
             5       4       3       2
          2 X 5  2 X 4  X 3  2 X 2  10 X  C
     -       The derivative of the function is:
     Y  2 X 5  2 X 4  X 3  2 X 2  10 X  C
     The first dervaitive:
     Y  10 X 4  8 X 3  3 X 2  4 X 10
Example : Find  20X 4  16X 3  12X 2  24X  7  dX
Solution
         
      20 X 4  16 X 3  12 X 2  24 X  7 dX    
       20 X 5 16 X 4 12 X 3 24 X 2
                                       7X  C
         5         4        3         2
      4 X 5  4 X 4  4 X 3  12 X 2  7 X  C
                                                      aX  b  . dX
                                                               n
Rule 5:               If the function is:
    So
                                                 186
                                   aX  b n 1
       aX  b  . dX                            C
                   n
                                     a n  1
          1 aX  b 
                            n 1
                                  C
          a    n 1
     So: ( b , a ) are real numbers , n   1 and ( C ) is a
constant.
Example : Find  5 X  7 10 . dX
Solution
       5 X  7  . dX
                       10
       1 5 X  7 
                               11
                  C
       5     11
                             2 X  10 . dX
                                             5
Example : Find
Solution
      2 X  10 . dX
                       5
        1 2 X  10
                              6
                     C
        2        6
      
        2 X  10
                  6
                    C
            12
Rule 6:           If the function is:
         1
          . dX
         X
                  1
     Then:         . dX  Ln X  C
                  X
                                        187
                            10
Example : Find                 . dX
                           10 X
Solution
          10          1
             . dX   . dX  Ln X  C
         10 X         X
                            200
Example : Find                  . dX
                           200 X
Solution
          200          1
              . dX   . dX  Ln X  C
         200 X         X
     Result: If the numerator is the first derivative of the
denominator, the integration this function is the logarthame
function of denominator( L n ).
                         3X 2  4 X  15
Example : Find          3                   . dX
                        X  2 X 2  15 X  8
Solution
the numerator is the first derivative of the denominator
           3X 2  4 X  15
                               . dX
         X 3  2 X 2  15 X  8
            
      Ln X 3  2 X 2 15 X  8  C
                            8X  12
Example : Find                         . dX
                           X 2  3X  5
                                                   188
Solution
          4 2 X  3 
        2            . dX
           X   3X  5  
            2 X  3 
      4   2           . dX  4 Ln X 2  3 X  5  C   
             X  3X  5 
Rule 7:                If the function is:
     e . dX  e X  C
       X
                 1
     e mX . dX  e mX  C
                 m
Example : Find  e X  5 . dX
Solution
      e X5 . dX  e X5  C
Example : Find                    e 5 X 7 . dX
Solution
                               1 5 X 7
      e5 X7 . dX              e      C
                               5
                                  e3X 8 . dX
                                       2
Example : Find
Solution
                 8             1 3X 2 8
      e3X            . dX               C
             2
                                  e
                               6X
                            e3X  8
                                  2
                                   C
                             6X
                                     189
Exmples on rules of integration.
- Find the indefinite integrals:
     1.  4 X 3 . dX
     2.  15 X 3  3 X 2  6 X  8 dX
     3.  4 X  37 dX
     4.  2 X 2 15 3 X  8dX
               6
     5.           dX
               X3
     6.  X  dX
                                
     7.   36 X 28 X  5  dX
                        2
            2X  4X  5X  10 
            20 X  15 X  10
                    3        2
                                 
     8.                     dX
            X  X  2X 
                 4    3
     9.   7 e  X   dX
                      2
                       X
     10.  5 4 X 3  dX
                5 
     11.          dX
                X
Solution
                         4X 4
     1.      4 X 3 . dX       C  X4  C
                           4
     2.  15 X 3  3 X 2  6 X  8 dX
       15 X 4   3X3   6X2
                        8X  C
          4      3     2
       15 4
          X  X3  3X2  8X  C
        4
                                        190
                          1 4 X  3
                                              8
     3.  4 X  3 dX              C
                     7
                          4       8
                    
                      4 X  3
                               8
                                 C
                          32
      4.  2 X 2 15 3 X  8dX
      The multiple:
2 X 2 15 3 X  4  6 X3  8 X 2  45 X  60
                                   
           6 X 3  8 X 2  45 X  60 dX
            6 X 4 8 X 3 45 X 2
                                 60 X  C
              4       3        2
            6        8        45 2
           X 4  X3            X  60 X  C
            4        3        2
          1.5 X 4  2.76 X 3  22.5 X 2  60 X  C
             6
     5.      3
                  dX   6 X 3 . dX
            X
                              X 31
           6  X 3 dX  6           C
                              3 1
                X 2
          6           3 X 2  C
                2
             3
           2 C
             X
     6.          X  dX
                                     191
                      1
     1                  1
                      2
                     X
 X dX 
     2
                          C
                     1
                       1
                     2
         3
                             3
  X2    2
    C X2 C
  3     3
  2
             3
             2
  2X
      C
    3
  2
     X3 C
  3
           6 X2  8 X  5      
7.   3                        dX
       2 X   4 X 2
                      5 X  10  
the numerator is the first derivative of the denominator
     Ln 2X 3  4X 2  5X  10  C
            20 X 3  15 X 2  10 
8.                              dX
                                  
              X 4
                     X 3
                           2 X   
        4 X 3 3 X 2  2
  5  4                 dX
        X  X  2X 
                  3
       4 X 3 3 X 2  2
 5   4                dX
        X  X  2X 
                 3
the numerator is the first derivative of the denominator
                 
  5 Ln X 4  X 3  2 X  C      
9.   7 e  X   dX
                 2
                      X
                                    192
                        2
             7 e  X   dX
                        X
                                    2
            7 e  X . dX           dX
                                    X
                                    1
           7  e  X dX  2          dX
                                    X
                  e X
           7X          2Ln X  C
                  1
            7e  X  2 Ln X  C
                                3
10.  5 4 X 3  dX   5 X 4 dX
                         3                   7
                           1
                         4                   4
                    5X         5X
                         C       C
                     3           7
                       1
                     4           4
                          7
                       4         20 4 7
                   5 X 4  C      X C
                       7          7
       5 
11.      dX
       X
                                                   193
                                        1
         5                          
            1
                  dX   5 X           2
                                             dX
             2
         X
                                             1
                     1                       1
                                   X        2
     5 X            2
                          dX  5        C
                                     1
                                     1
                                     2
                     1
       5X 2
           C
         1
         2
            1         1
         2 2
     5  X  C  10 X 2  C
         1
      10 X  C
Calculate the constant of integration
We known the first derivative of a constant is equale zero.
For example :
     - if function : Y  X 4
the first derivative : Y  4 X 3
     - if function : Y  X 4  10
the first derivative : Y  4 X 3
     - if function : Y  X 4  20
the first derivative : Y  4 X 3
     - if function : Y  X 4  C   where : C is constant
the first derivative : Y  4 X 3
We known :
                                      194
             4X 4
 4 X . dX 
    3
                  C
              4
           X4 C
the integration of  4 X 3 . dX equal :
X4  1   or     X 4  5 or      X 4  10           or    X4  C
when C is constant
      if we known the first derivative f  X 
     So:       f  X  . dX  f X   C         when C is
constant
     We con calculate the value of c
Example : Y   6 X 2  20 X  600 dX
     When y  20000 , and x  10 Find the value of C
Solution
     Y   6 X 2  20 X  600 dX 
                                             6 X 3 20X 2
                                                         600 X  C
                                               3     2
        y  2  3 10  2 600  C
     Substutite the value of 20000  Y  and 10  X 
     20000  2 10   10 10   600 10   C
                       3          2
     20000  2000  1000  6000  C
     2000  7000  C
     C  20000  7000  13000
     Y  2 X 3  10 X 2  600 X  13000
                                  195
Definite integration
     if the function a , b and the two points are Y  f X  , in
                                   b
general , the definite integral    f  X  . dX
                                   a
                                                   .
           denote the erea under the graph of f(x) between
 x  a and x  b as shown in figure (1) the number a and b
are called the limit integration and it is assumed throughout
this section that a < b and that f(x) ≥ 0 as indicated in
figure (1) .
      the technique of evaluating definite integrals is as
follows. A function F(x) is found which differentiates to f(x)
. the new function , F(x) , is then evaluated at the limits x = a
and x = b to get F(a) and F(b) . finally , the second numbers
is subtracted from the first to get the answer , F(b) – F(a)
                            Figure (1)
                                                196
                                                            b
In terms of this new notation. to calculate                  f  X  . dX
                                                            a
                                                                             ,
first replace (x) by the upper limit (b) to obtain f(b), and
from this subtract f(a), obtained by letting x = a
      b
       f  X  . dX  f b   f a 
      a
     -        f b    f  X  .dX                  xb
     - f a    f  X  . dX   xa
     - the constaint C  drops out , this is always be the case.
Example : find  4X 3  . dX
                      4
solution
                                        4
                   4X 4 
                                             
      4                                           4
       4X . dX           X4
              3
                                                 3
      3
                   4 3
                                4   3
                                    4       4
                                256  81 175
Example : find  6 X  4 . dX
                          4
                          1
solution
                                         197
                                                   4
                           6 X2      
       6 X  4  . dX  
      4
                                  4X 
      1
                           2          1
                              
                             3 X 2  4 X 1   
                                               4
                              3 4                             
                                          4 4   3  1  4  1
                                     2                     2
                             48  16  3  4
                             64   1  65
Example : find  X 2  X  1 . dX
                  4
solution
                                                       4
                            X3 X 2    
                    
      4
          X  X  1 . dX  
           2
                                    X
      1                     3   2     1
                                                       4
                            1    1       
                            X3  X 2  X
                            3    2       1
                            1 3 1 2            1 3 1 2                
                            4   4   4   1  1           1
                            3        2         3       2              
                            1                1            
                            64   8  4    0.50  1
                                     1
                            3       2        3            
                           21.33  0.83  20.5
                                    198
                2
Example : find  X  1 . dX
                0
solution
                                2
                        X2   
                                                      2
                                  1 2     
      2
     0 X  1 . dX   2  X   2 X  X
                             0          0
                      1 2               1 2        
                      2  2          2 2  0
                      2        
                    404
                                          199
                       Exercises
 1- Find the indefinite integrals:
               3 X                  
                              2 X  5 . dX
                         2
        1.
                1          
        2.      X      1
                            
                        4X 5 
        3.      2 X   2           dX
                            5X  3
 2- Find the indefinite integrals:
                    2 
         1)      X
                  5 X   dX
                       
               4X  8 
         2)   2              dX
               X  4 X  3
3- Find the integration of these functions:
              1) Y    6 x 2  20 x  600 dx
             2) y   5 x  7 10 . dx
                               5 
             3) y               dx
                               x
           4) y   5 4 x3  dx
   5 - Find the integration of these functions:
          1.  2 X  35 dX
                     20 X 3  15 X 2 10 
             2.   4            dX
                    X  X 10 X 
                          3
             3.  5 5 X 4  dX
                     3 
             4.        dX
                     X