0% found this document useful (0 votes)
36 views25 pages

Maths Semester 1

maths 1 semester format

Uploaded by

727824tucs102
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
36 views25 pages

Maths Semester 1

maths 1 semester format

Uploaded by

727824tucs102
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 25
HD} “Uy tptp sq) = PANY LHS Jaws 1 (pq) Conditional ‘T (tev 4) Domorgan!s AMP Any Dotwble negediop PANY beP TWeenadv CPA44) SP Lars LHS Ceaad V CPATY) pigdetbective PAU 199 eo mploment PAT srclantity P Ponce proved iv) (eva) A CPVIM =p tpvy) ACPV 7p) Ofsyibustive PV CAA TP) eamplamence yas PvE eae vale 9) = (ra 74) V (1PAV) Cee V) Bicondittonal a travnnr? a) conditioner a(apyvA cape) ) Hemosigan H\hemorgon 4) vt (It p)) 4 (tty Vy (ren “1P) Double negation ap)A14 _—_ Jima yaa) VLAP (rs (TATIP) powcrnuetatt ue pat) vet ( (1p ne PAV) Hone proved anlotiso2y . gine each ag te pouowtng an dn symbolic form, ano good wu good aya men p)NoO me come NEN ons au hot good. good dy Some RP Solm bt mix)i x ds a mon. & Qcm) ‘oe is good men a) Fox alas & aT a fs a goad a Is gooe yon Emin & oJ b) Foot ab a O) ig oo ds a men dahon oO Ss not good ‘ jgapmed? 4 acs) 5 Some Orot edt OC > de. bs <) fom some a ,guch gheet fs ob men: then Se fe oO Good + Ja Timex auex) ] Aipor bsome = SUE} Pe oe Say net goed + a Jd 4 a CUtx) Kae) ) * Bor ip rr ee Vontabte 3 Rand wat Ww “the vaniatite cls gat cto bmuind ety tt 4 © aioel Comstimed with — cath aurfivensal bot weattens ice Foam tclal dnmedlerteta Scope: my Formula nl QYollow vne quantigion s Vartalye : pay diac ath te Det eonsumed with one querretigten AS Catlral groo Yat Eg * \) oo [pte yd) x3 bound tne GaPiony) Plx.y) 2 Scope (+ KOI ) poe Vartabte 5 y , 2) Ya lee) A atx) a bound Lyn Hoe [T PDA atar] Scope 3 PCa) A Ata) spre Vouluie > No 3) tx) [peo UBy) aloe, J a2? bound &r toc) —__ yo pound 4n(gy) tery) scopt * pioe) (ay)& (x99) of ys QL iho wm > ote pscas ent ina pros Vank clxte ; ° angere nce g athab dy 9 predicate Ce : Dees: eurtvercot spactgtcasion J AEH! 7 Aly) gy Rute ES * Teaftstensial ppc vee) Ate) 2 ACY) mun OG: Tuntversat GopntobzorDns Aty) 5) 2) Ate) h) Rute BG: ocfstential Gunnell Aw)> FAC) , 3) action J ote | + adhe funy aj ingouence fon tho praclicete uo used gollowing gostmutar Pyevalanes., PAWeDtODY « pute Ty Rive aleulus fn! one is ue e 2 . P, Implteatiion , Rule “Tp dinalirect mated $B er ee the find yre solution , fvoTe 2 ¢ do wiminate 44 Seton uw e wan mule 3 ae A c twe the shecigucicon Cus NOTES! ES) fo pois tht corrert quansigiom me can inte < : dnek Sule ef genmols zatron TYG, es] a . eee eee ee: | fy athe Vaticlity ap dhe yoltow ing AAQumarcs map atm his ana ver clangenous anima. "eThonre Q 1 ddions ' 2,9 au ufons adhe an danguious animal Sr TC 1 DE RK (of Leo) :a fe a tion. , b Dee) \ ow Fas a, dangerous animal oy x [Ltd Dexd} , oc, Face.) s = oc (2 (00?) Ss Poemise 2 VOLE Lted- Disa) , Pollen) Ponculsion S3a (Dees) EP : oe ] Raseson () voc cae Bo - 2) Luo Oty) Eke i seaternent Ruites | Rosen n Me ae Ris P 21 by) 2 pty). Pato VE iy i a Sto) Th (x) J Rute P Hn) sty) P Rehirp « 5) Sty ) Pops Rudo Thy (eq jp) =4 b) Foc Pid Moods bonss Run EG “dhe condition fs oth, ———————— Te wan ntegert dis .atvistons wy 10 dhan eit Ga ay gnisiote ay 2° St db divisibta by Gs Thoregoog the Vntegqo ne ¢ Alto AiViBibia by %. 88 can dntaqor ds adivisiol Log 9 athe aiisite by 1° co Soin: ‘ . Dole) $ ow cds divislo by Jo. Dato: x As divisible by 2 Detar © ds visible by 8. Premises % spor [Ob (2) Dated], Yo Too td) 9 dsl). concleision ¢ ye [Dota)— Dated) vex Symbolic pom 3 Hx (Oe (x) » DIA), Moe (Da (ar) 9 Ds tx) P-¥2 (Diet PDs te) Step ‘ Statement Rurs | Rearon 1) sea (Diotsd > Da) Rute Pp. 2) Dio ly) 3 Datyd Rua Os. 3) MY xls (a) Ds (er)) Rubs P 4) De (yy DDS ty) Rule OS @ Dost. Dsly) ("gmtnettenl b) “ee (Bip (2)—9'Da (ed) one i tee ‘ QR vie tnshy ') $Me that prempyone student fh thir class knows hew — to ‘wate proprame Th Java , AX gueryone who knows how to Lurete Program fn Tava can got a high paying Job. Tnipubs fhe concutston Some ove th Las Gays got a ATghk paying p06 . Soln: Atsc) 1X fs In the elcid Bit) : 90 lenouss Tava poropamming , ctx) : oe can got a high paying Job. . pstemises * Fux) (Ata) A Bex)) ya [Bods ctx) 7 Coneeteion zoe TA (BIA ¢ tee) J: ‘Aip Poomise, Rute /Reason { Fu (Ata) A Bla) ) » Ruto P 2. AWAB LY) Rue ES Sa ep Aly) Rupr) Stmpulbiccerion Ae B (yo TNF afm pl Cassy . B- yoeltt90'7) Rul po aay ee eet ol) Rule US. Rue T4358.) 4 cw ch Pa Yoq ere Confunctlon Rite T A M14) a) sex) CAD A COX) 5 Reto Fa a) Aty) A ecy) Q) Shee dhat § Bax ( peda o (x)= [ (dx) pes)) A a (aerate) Poemise : gar a x pOa ace)) conclusive’ (eax) Pear) A CHre Ca (20) ginp Poromisor Rute » Doc LPeacd a ate) Rule P 2) pey) A @CY) Puts 3) Pty) Pure 71) Stop x) pty) gute TC) 5) Ply) A cy) conjunction method. \foa ail oc appuied gndirect cx) PCO VF & aca) aAP (x) (ptx) V @ (xe) = Aysume “> concasalon 1 [ex peo) V oo acs) J gon Poconiises ule en ) Ate pen V Ix Otc) Qure AP a) 1 (vrpce)) A Th ata) Ruse T Cr) Denorgan 3) Danpom) A A oon tx) Paue T negetion ‘gill (anaes caine. Ce ER NOE Er 4) Dox pen) Rue T (sim pecpiins 5) tro Taw) a " &) “+ Pty) Quire ES 4) t aty) Qu US ?) “IPYDA racy) — Confer tuan 9? 4 (Pcy) v tery) Ye megans ) Ve cre Vac) Bue P nn) pty) v aty) Runes 1) F Roe 1 (4,19) ea conjuction which 1S ¢onsa?dfaton . 1 SET THEORY : ~ Sot 1 a. epttection . held dad obpet and Its deneted by. ane kiss taal, at) Rpnnentasion of act ; set builder efoom xe Roasts fost zVenn diagram. © Set Opoiatons © yup ctaiees ov e288 ee - poe ANA OE ne ee e ee ao® i. 4 gx /saea § Te YAS peas fa /x gVant wo ¥ A} A~B © ALS farmer § agay Symmetttc genre (a @w, Aas, Ate) ADB Carsyuts -A) Jauy 2 CSet Sarnuitipy Dtaennrty awry AVA AS AnUsA . a) porminant tee AUuTD © UW) ands - §)daarpoteree (cud 9 ADA ® AJ ANASA , &) Comptement, | two AVAL SU ) Andled B)Deminant = taro ATA &) commutative din “Aug = BUA 4) AesoStatiive larva AU Cbue) (Avs) be 8) Absorption taro 2 AUCUB) = A 9 Angndte A 4) Demorgan's uno 2 AUB = AnBs Anbe A UB DPxove tat by uslng set bubtelers pornxction AnB=B0A LHS s- ( anpe {2 /sc e (ANGIE > {x Joos A and 2 € BP = fm/X 8B and @ SAS e fr /BnAsZ « RHS ee CO ——————— hh Det: Ane = Avs 4S: 4 ANB = f cele g cane} @ falrga cord BF = tale ex co) eebs = fa/set VBP = fa/se AvBt = AuB = Rus 3) p.tilA-c) n(e-Bv= > craggy A,B, C-sets vediey graphy Quse membership dterbte Show “that Pe enc ANgoC)= tang)u CAnc) -930 & ee ~~~ —-99o.0°9 > Buc AncCeuc) (ans) cane) 2 eo 0 ° ! o ° ! © a 2 { a 8 ° 0 ° } « { t ° : t t \ o | | pS = RNS Hence proved o- 8-9-2 3, tang) utane) = -—700006 yea care) OC cn + dh anayticattyy Ay te went yom vee: al! jus Jn (eb) * (mo and ove cand) area fovsoe CA and xq B43 s cb and x 4 BY efm/a eA and le © {aloo EA Nh and og BY tx lo eg ands 2 BF © ‘ papxe FrBS igieedh: PFE yenn dfagram: 6 Ff . (Are) e ae aa (A-e) nce-B)= 4 Hence proved . Qt A,BiC be athe acts ST AUBnc) = COR)NA using aet Sdentitio : Spins LHS, = AuCBnc) » © Bn (8nG) (de Horgan’s ) eAn (Bue) u = (BUCINA Ccommustontive ) « CeuB)NA " Ins eRHS. Hene Moved + AN) us ims loqival | Dust Membewnin rable, Venn diagrams |g “PPV0A op Mant ancauc) + (AN B)U Chine) Agtn, Venn d hag» 1AM , f / Wy Uy) \ aby ) 4 “+ PNCBUC) ¢ tans)u tanec) fHS > RHS Hence paoved. pnts! PN! PROHUCT ig: ee A & B anc any Jwo cdot cthe ecurtes Zin q depfnod a3 2h aut Of Ordered oe Ag 8 fs prodcict (a)b) evhew a €&A and b eb pat q Hee OTM AXS< Pra) fa eA and beng en? Ae £1) 235 gett 2g Ay8 eft) Cha) (a y1)p02 12) 081081205 DAgBic oe 3 Ant Ax Canc) = CAXB) n CAXC) 1s , pxctend= {tarB)/aea g be enc = Xasb) /ashand beB % bec) = Ttarb)/aer and beBand ath s pecs Coxe eptas [a2 (A x8) andtee AX = 7 (avs) nae) 3 a)gind He uct AGB, Sp AB = F1,3,78, j > pers $2rb, 83 ANB = T4193 4 / i) AcBe WUi2AS > Bowe GAS, AvuBe $1,2) 4151123 1) th) zh) i) : ame Aes ADS SORE Mp Spd. We UF Br fark, bey Bee Be) (B-"), lez) ASP reap yeas B= $5,119, 93 Relations T= {tare /aen bes 3 1 dratn ge R a Wb EB b) | 8 wand ae = f (bla Ty pss: Properties 9 Rebalon TF Ris elation” 4h 1 Regueatve % lajay eR Hae ‘N) Symmeir® tard) eR 2 tha) eR Tian symmed 2p tare) ER (badFR wes ash piansiasive “Cai CR whenever carb) and (br 6) SE TH R NS Sepntve go AKA s4aen V) Tnoepentve *

You might also like