0% found this document useful (0 votes)
182 views5 pages

2002 - Pure

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
182 views5 pages

2002 - Pure

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

COMBINED MATHEMATICS

2002 A/l Pure Maths

ksfrdaIa pdñkao
B.Sc(Engineering) University of Moratuwa
[ish¨u ysñlï weúßKs.]
[ KOg; gjpg;GhpikAilaJ ]
[ All Rights Reserved ]

YS% ,xld úNd. fomd¾;fïka;=j /,yq;ifg; ghPl;irj; jpizf;fk ;/Department of Examinations,Sri L anka

wOHhk fmdÿ iy;sl m;% ^ Wiia fm< & úNd.h , 2002 wfm%a,a
fy;tpg; nghJj; juhjug;gj;jpu ( cah; ju )g; ghPl;ir> 2002 Vg;gpuy;
General Certificate of Education ( Adv . Level ) Examination , April 2002
ixhqla; .Ks;h I
10
,ize;j fzpjk I
Combined Mathematics I S I

A
mE ;=khs / ;%d;W kzpj;jpahyk; / Three hours

D
m%Yak yhlg muKla ms<s;=re imhkak.

IN
01. f ( x ) = x2 + 2x + 9 ; x  R hehs .ksuq.
(i)

( ii )
iólrKh ,nd .kak.
AM
 ,  hkq f ( x ) = 0 ys uQ, kï, 2 - 1iy 2 - 1 uQ, jYfhka we;s j¾.c

f ( x ) = k iólrKhg, x i|yd yßhg u tla ;d;a;aúl uQ,hla mj;sk fia


CH
jQ k ;d;a;aúl ksh;hl w.h fidhkak.
1
( iii ) ys jeä;u w.h fidhd, th ,efnkakd jQ x ys w.h o fokak.
f(x)
SH

( iv ) f ( x ) = x iólrKhg x i|yd ;d;a;aúl úi÷ula fkdue;s jk fia jQ 


;d;a;aúl ksh;fha w.h l=,lh ks¾Kh lrkak.
RO

02.( a ) yßhg u YsIHhka y;r fofkl=f.ka iukaú; mdi,a újdo lKavdhula , iqÿiqlï
,enQ YsIHhka fodf<dia fofkl= w;frka f;dard .ekSug kshñ;h. tu lKavdhu
NI

f;dard .; yels wdldr .Kk fidhkak. wkqr iy Njka iqÿiqlï ,enQ YsIHhka
fodf<dia fokd w;r fõ.
©

(i) wkqr iy Njka fofokdu lKavdhfï isà ,


( ii ) tlaflda wkqr ke;fyd;a Njka lKavdhfï isà ,
( iii ) wkqrj;a Njkaj;a lKavdhfï fkdisà,
hk tla tla wjia:dj i|yd újdo lKavdhu f;dard .; yels wdldr
.Kk fidhkak.

( 7 - 6x
)
13
(b) ys m%idrKh i,lkak.
6x 7
1
(i) x ys brÜfÜ n, fyda ys brÜfÜ n, fyda tu m%idrKfha fkdue;s nj,
1 x
( ii ) x ys ix.=Klh 2002 nj fmkajkak.
02
03.( a ) .Ks; wNHqykh ms<sn| uQ,O¾uh fhdod .ksñka, iEu n Ok ksÅ,hla i|yd,
n!  2 n - 1 nj idOkh lrkak.
n 1
1
 k!  2 - 2 n-1
k=1
nj wfmdaykh lrkak.
takhska, e  3 nj fmkajkak; fuys e hkq m%lD;s ,>q .Klj, mdoh fõ.

( b ) y = | 3x - a | iy y = | bx - 2 | ys m%ia:dr tlu o< rEm igykl w¢kak; fuys a yd


b Ok ixLHd fõ. | 3x - a | < | bx - 2 | wiudk;dj imqrd,kakd jQ x ys ish¨u w.h

{
l=,lh x : x >
4
} kï, m%ia:dr Wmfhda.S lr .ekSfuka fyda wka l%uhlska fyda

A
3
a iy b fidhkak.

D
IN
04. z ixlS¾K ixLHdj, z = x + iy, x > 0, y > 0 uÕska fokq ,efí. wd.ka igyfkys
z , 2iz , z + 2iz g wkqrEm ,CIH ms<sfj,ska A , B , C fõ. A , B , C ,CIH i,l=Kq lr,
^ iy tan AOC ^

AM
AOB ks¾Kh lrkak.

(i) C w;d;a;aúl wCIfha msysghs kï, x iy y w;r iïnkaO;djla ,nd .kak.


CH
( ii ) y = 2x kï, z2 ixlS¾K ixLHdj ksrEmKh lrk ,CIHh OC f¾Ldj u;
msysgk nj fmkajkak.

( iii ) | z |  4 iy tan-1
( )
1
2
 arg z  tan -1 ( 2 ) jk mßÈ jQ z ixlS¾K ixLHdj
SH

ksrEmKh lrk ,CIHhkaf.ka iukaú; fmfoi fjk;a rEm igykl


w÷re lrkak. w÷re l< fldgfia j¾.M,h fidhkak.
RO

d2y dy
05.( a ) y = e4x sin 3x kï, -8 + 25 y = 0 nj fmkajkak.
dx
NI

dx 2

[ ]
dy
[ ]
, d y
2
iy
d3y
dx3 [ ]
fidhkak.
©

dx dx2
x=0 x=0 x=0

( b ) >k f.da,hlska, f.da,fha flaJøh yryd hkakd jQ wCIHhla iys; Rcq jD;a;dldr

is,skavrhla lmkq ,efí. is,skavrfha mßudj, f.da,fha mßudj fuka 1 g jvd


jeä úh fkdyels nj idOkh lrkak. 3

2 x3
06.( a ) iqÿiq wdfoaYhla fh§fuka,  x2 - 1
dx wkql,h w.hkak.
1
03
1
(b) fldgia jYfhka wkql,k l%uh Ndú;fhka,  x tan-1 x dx wkql,h w.hkak.
2 0

(c)  5x - 4
( 1 - x + x2 ) ( 2 + x )
dx fidhkak.
1

07. u1  a1x + b1y + c1 = 0 iy u2  a2x + b2y + c2 = 0 hkq § we;s iudka;r fkdjk


ir, f¾Ld folls.  ys iEu w.hla i|yd u u1 + u2 = 0 ir, f¾Ldj wp,
,CIhhla yryd hk nj fmkajkak.

ABC ;%sfldaKhl iïuqL mdoj,g B, C, yryd w¢kq ,enQ ,ïnj, iólrK ms<fs j,ska

A
x - 4y + 5 = 0 iy 2x - y + 3 = 0 fõ. A ys LKavdxl ( k , -k ) f,i .kq ,enqfõ kï,
AB iy AC f¾Ldj, iólrK o B ys iy C ys LKavdxl o k weiqfrka fidhkak.

D
IN
k úp,kh jk úg, ABC ;%sfldaKfha flaJølh x + 5y - 4 = 0 f¾Ldj u; msysgk nj
idOkh lrkak.

08.
AM
x2 + y2 + 2g1x + 2f1y + c1 = 0 iy x2 + y2 + 2g2x + 2f2y + c2 = 0 jD;a; iam¾Y ùu i|yd
CH
wjYH;djla fidhkak.

tajd iam¾Y fõ kï, iam¾Y ,CIHh 2 ( g1 - g2 ) x + 2 ( f1 - f2 ) y + c1 - c2 = 0 iy


SH

( f1 - f2 ) x- ( g1 - g2 ) y + f1g2 - f2g1 = 0 f¾Ld tl tlla u; msysgk nj idOkh


lrkak.
RO

x2 + y2 - 2x + 4y = 0 iy x2 + y2 - 10x + 20 = 0 jD;a;, tlsfkl ndysr j iam¾Y lrk


nj fmkajd, jD;a; foflys A iam¾Y ,CIHfha LKavdxl fidhkak.
NI

P hkq, P ys isg m%:u jD;a;hg we¢ iam¾Ylfha È., P ys isg fojeks jD;a;hg we¢
iam¾Yl;fha È. fuka k ^ ksh;hla & jdrhla jk fia jQ ,CIHhls. k2  1 kï P
©

ys m:h A yryd jQ jD;a;hla nj idOkh lr k weiqfrka tys iólrKh fidhkak.

09. ABC hkq, b > c mßÈ jQ ;%sfldaKhls. D iy E hkq, A yryd uOHia:h AD jk mßÈ o,
AD , AE uÕska A fldaKh ;%sõfþo lrk mßÈ o BC u; msysá ,CIh fõ. iqÿiq f,i
f;dard .kq ,enQ ;%sfldaK follg ihska kshuh fh§fuka,
A b
cos = nj idOkh lrkak.
3 2c

A (2+k)c
DE : EB = 1 : k kï cos rdYsh g o iudk nj fmkajkak.
3 2kb
04

k = 1 kï A = 900 nj o k = 2 kï A = 1350 nj o wfmdaykh lrkak.

tla tla wjia:dfõ §, a weiqfrka b iy c ks¾Kh lrkak.

D A
IN
AM
CH
SH
RO
NI
©

You might also like