% Coulomb's Law of Electrostatics? CIn Vector aay
lonsides 4uo charges +9 ond -4, separated by distance “w',
mee foc dnd onrted mgr ae
Fi, = fore exerted om qa by de ti
fe Fa = kate (Rm)
hI
we
= Kote |(%-G) | + AR t
maselEeR) (AE) meg
ne) “athe Hi xeason
fenaat |
Cr eeN)
posto
a
Simla, Fovee applied by Fu, Fav =Rbits (R27)
twi®
= kude i 7”) |
vit
Here, we can clearly observe tet > fare Fa re: 3rd law of newton & valid
dectrostatics also.
a Electiic Field due to dipole on axis:
We have two opposite charges separated by
a distance of 242 which takes it a dipole .
A is a yandom point on axis at a distance
‘y' -from centre of dipole .
Now, Feld dueio “4! ab A —> Ey=-ky
Similarly FPeld due to +9 ot A — ym
onhere -ve stan denotes the dizection lich fs axti-prol
Hence, [E=KE] ys hctod of dpe tite
oh Jos!
we
& Toxque on dipale in external ffeld>
wre showt un electrtc dipsle with charges ap 4-1,
2 a feta. of 34 pti. uniter eectyic
Held. CE’
Dipole enakes an avgle © oath electate field. Ey
Fr =-46 — force on charge 2,
a
R- ge oo on charge
which means dre ke aes or dipole. fs equal & i magnitude and opposite %
Avec o e,f0.erf. Iaene a velo Weg B coupes [PTT
AS couple 15 acting on dipole , soit pmducee ongue
tude
Ree Meee Gib creer alerts: aki)
= F x(t)
= 4€ xQtsing)
T= Pesta] (“ Pegen)
Px vi
cae
Gse 1: when O=0"— 2. str0=0 ; which meas [T=0
this condition % called Stable eiltbiam because when the. dipole is
Aiplced fram tic afentation, Te always comes back te same. configuration
Gases when O=Ig0" >. staleo"=0 5 which mean: |
see BE gonltion fs cated roll eg ee erage ont, dilaced
ole never comes batl Rentation trated tt altgrs: Tuelt
pes to the field.
a
OeB: hen O-88 9. sinfote; whh ntans Ts wmsiown, 5 ane
1 oe
tt
(ee tto oe Saree4 Gniss law Verification using Coulomb's Law’
We know, the net electate feld an a closed surface (ap) $5 1 Hmes
He pet ‘chavge enclosed by the svxfkce- A
Fact” aay geal
Veriffeatfon s
" Acording to electric flux,
fe= §, E& - Edscose
e kro, trtensily of speiie pat id Fl at same distance from ds
charge q will ymain Cons
abe for spherfcal sviface O=0°
so dectefc flux gy = EGjds cose”
G = Ef ds
(ns fds wears area = Una?)
ges Eur? — O
Now, dueording to qulowb’s fad, €- 1 &
Unk o*
Gam TH@, we get
Hye hy
fear
oy | 4 La(enclesed chooge)
eo" est% Electric freld due to a seaight fong charged conductor
Electric Held che toa shaight urifoumly changed Tn eta, density.
(oncid erat ‘A on this ent
crs oe a part of Aerath ‘fon ts Untform
Se Anusstam surface will be eylindyical th i
thts case.
Lat dA be the smal) ates on tg snfte
As conductor fs, positfvely ch
Sec tea esdtaity
cea trea oe eae
Now, bi-fedawso [0-90] i 4é
O.-fedheso [0-90] ep
Gy-Sedn ese — Co-o!] Coma gd
Hence, Net fox + Hees Br g.tp,
= Jedn cosdo + fedn as do's fede coor
° * 0 + feda
d= €A
* [debra fi7otal cowed avea of surface -2nxl]
We, Acc. 4e Gauss Lavo +
from,
Here, we. can clearly see
ba 1
7
So, Graphically = Re% Electric Feld due to tnfinfte plane ite of density. 'o-!
i
eae love cha
at tenth sn
density -X-)
ire Sheet
Y
|
Draw a Gaussfam cylindey < axed of yadfus + Take 3 sample small
sucfaces da’ at ©,O£
Total flux, B= Git dards
= Jedm caso! + fed coso! + feda cosa
=feda + [edd +0
= EA+ER
ae)
Kee fo gauss Lavy goon at
from @4Q S 2€A- oA2% Potential ut a point due to pofrt charge?
Let there be a point P at a dictance'r from +§ char:
Electric potential ‘means workdone 40 bring a unft tye
4o the point
oh Wepse) = J Fen dv
e
i
harge from Infinfte
W
{ KAW) de cos@
an
i)
kQ fdr [P0- m0" + estes’ 1)
aes
eee
acon
“KQ fd at
nF
Wip-ray= KO-
on ga
ili int te
"
5 Polentfal due to dipole
@ At a point on axfal (tne?
Consider o dipole wrth charges +44-2 expavated by a distance of '20',
Nestrt Pittttae ave word nasal '4 atamd: nage te algae
So, Potential at P due to ty, V, = a7
dve to-gy Ver “KE
+
SiMe potential ot Py Wai =i) (V9
(eal irae= Ka Gra) - kG a)
¥ear
+ Gag
Hen, Naia> KET
=
1 short dipole (y>>).
4 ipa ee we] art
the ti
At a point on Sqvatovtal tne eae
Lek feve be a point ‘Plat adistence.‘y' on equatvid fw," | i
Se papa “Eee ener
fotential at Pdvetory, \,= Ke
iors
dye to -y, > bly)
fa*+a*
Ss, Net potential at Py Y= Wy)
= Kh (ok
oa oa
Na Oa ae DO
Hence, elechfc potential due to dipole at any polit on ey. Line wit be O.
(© At ony axbitrosy polit *
Jet A be any avbitaasy point at a distances’ from
Centye of dipole ma ing, an angle © with dipole ants. Pest
bs the ff My = Tf ove.
Lah aeindig fold oy fetter emprere_L 8 -& frie
as. chown. S04 Big
Ther, point A Ber on axial Itne of dipole with dipde moment *pcose’
fo, poterttal at a due to tric Component = Kipcos@)|
=
and potnt A es on equatorial (fae of dipole uifth dipole moment ‘psind’
Wugl disused dese Als ot ef He os ptt ke fot rpm
vill be cexo.Hene, Vy = pss 40
y = Koso q A
¥ ral
Relation between cectric field and Potential ® ae
Consider wo equfpotential te A ard & sepasated
a done often fe petal sae
fa=V stele
uta A be Vas Vedv
Now, Work done fe displace unit positive charge from Bto A:
d= Fae costa”
d= -Fdx
is é= &|
eer
8, dw -Edx—@
al ky duds (a-Ve
ip, fot Ea daa
w= dv -®
fom 0 £@ 4 tua
ties EE] fel
x
3 Potential Energy of System of +00 point ap (in plstpce of E-f-)
Toitialy there were no charge. at A ard 8 _
& te
Fist we'll baing 4, from co
$07 werk clone 949° place aa a A phan th
Pelco rie Sept
Now, we'll tring q. from 2 to & (and tn this case 9, fs alveody aA)
%, potential at 8 dvete 4, at Ay Ve- kK Or a —-®
vy Werk done 4o plae q2 FBI waste
01 place a “29 (Ha) [Fg fond]
We = kageArd as we knots um of work done 7s equal to the potential energy of system
4 Pentel Grergyhe 0 + Kd
Y
He ei wil
5 Rotenftal Energy of System of fu0 charges to an extemal electric fteld>
let potential ot A and B be Vp ard Vo vespectvely. u
Now, Workdone to place q,at A ES.
ally was mot here) |,’
Ua
Wa= Iva —O (6
Work done to place 9, at &
We= bYet k2d2 -®
v
va Net woxk =
camer TEIN Aa Ned kG
=
find as we know, this work done fs eqal to potentfal energy of system.
U= qivat$sVor k4192 frst
ott
H Capacitance of a parallel plate capaciter [without dielectyfe]
lonsides. 9 pavalel plate capacitor of plate aven A, and
RecaeeeeeRe etty s
Let to- be the surface hogs density.
Electyic field outstde capac®y plates “i's zezo,
Now, the electric ffeld Frside the tapactor plate,
Ele (a appltcaton of gauss Lav of charge. plate)
&
FotenHal dfftererve between the plates, V= Ed
awed
3 Ve £4 -@We brow thet, C=
3 Sa (froma)
» | C= Ate
aad
Constdex 0 lel plate capacitor of pte ave
Moecioemtat decree ete ee
let to~ he the surface charge density... The gap
behueen the plate fies! “ttn aidlectat
substance having dfelectete. constart K
The clectrte fidd between plates woftl be:
E=o—
e-& —® (se=8)
A&K
Se Potential difference befween the. phe
Ve Ed
Ve A ing ©)
3 at © [vstay @)
Wow, Gpactance, c= ©
v
.
i
ox, [C= ck] ot [c'= KC
C! = capacttace. with dielectric
C= capacttance wofihout dielectste
K = dielectric constant of the medfum
nt After fnserng dfelectate medium fh between, the plates of a
capactior, THs Eopaditance fncreases by'k' times Eel capaditeme
ahere,% Capadtance fn Poaalel &
Consider two Capacitors conmected fq pevallel combination
as sown ty te fps [
Tn parallel, combinaffon potential difference acess all
re! capacttors yearns (sare but distibvtion of charge | +0. -&
across’ each capacitor will be df ftevent.
ve = Q,+Q.
> ice C3 e=ev) al
oxex' (e4G)
> (are wi oe
The effective capacttance of a combinaiton of ‘n/ capacitors
fin pavalie) combfnation ts algebyfc som of capacitance of
each Capatitoss.
% Copacttors in Sewfest
eo 4
Consider two capacitors ave connected fn sestee 3] [fl
combination fn ga Ureult with capacitance | E E
Gand cy vecpectively as shown i Figuee. a SE EISSE
Slee allel
Jn series combination the potential difference acyos 6
each capacitor fs different. but 1s balon of SSE
thexge. ‘vermuins Same-
+ BeBe + Wye eae
aid t pL
Which means the effective capacitance of a combination of ‘n’ cepacitors
In sevfes tsi
eS ee
Gf er) ca 165 on
% Enengy Stored fn Capactox AVD expression for Cnevgy density’
rareeeeierou amovirt of charge tunsferved by the Sovace from ne
ts Then work done ly te source ts dw=vdg [*? ve deo]
4 donkd, [ego]++ Total work done by the source ts trmsferring amount of chirge
wefdw
ane [Edy
a Wel [ody
decaeee.
9 Wet
1 ow
aaa tise
we 1 Gor) [29 rev]
a Wed Cty
z
.
Nowa, te work done fs Tn the form of- potenHal energy , ise: +
U> Lev"
z
ov, UL ay
2
> |U2 iw be!
ENERGY DENSITY >
Te. petental enevgy pe unit volume of a capacitor fs knoion as Eregy
density. 9 = -@
te Enevay densi: =U
nna "4 ji My volume
= tev
ke at
eye
= 2
And
+ ag
= &
=| AK
= 1 EWE Kd
2 Ard BA
Wt
:
i++ Total work done by the source ts trmsferring amount of chirge
wefdw
ane [Edy
a Wel [ody
decaeee.
9 Wet
1 ow
aaa tise
we 1 Gor) [29 rev]
a Wed Cty
z
.
Nowa, te work done fs Tn the form of- potenHal energy , ise: +
U> Lev"
z
ov, UL ay
2
> |U2 iw be!
ENERGY DENSITY >
Te. petental enevgy pe unit volume of a capacitor fs knoion as Eregy
density. 9 = -@
te Enevay densi: =U
nna "4 ji My volume
= tev
ke at
eye
= 2
And
+ ag
= &
=| AK
= 1 EWE Kd
2 Ard BA
Wt
:
i4 &e*
Tf any medium fs there between plates of a capacitor,
MeL GE*& Obtain an expyession for Deift Velocity of electrons
Diift velodty Bs the velocfty with which electwns fr a conductor ave
datfted towards tne posittve terminals of the poterHal source.
We know that fa condictos there axe N number of electrons.
AntHally y without any electric Held the electsms fh the conductor
move randomly with Some velocity (Vi)
Mee | 4
Fey paee @
Now, when Gn electoie Held ts applied across the conductor; the force
applied on a electron by the electric ftald fs =
Fe-eE Cz Frac]
amo = -e6 Ci F-ma)
aL ol fe —@
where, as acceleration of €% twards te tesminal.
ro- mass of tHe election.
Tt we take ‘C’ +0 be the average aelaxatfon Hime (the Hime fnterval
between any two svccesstye colitston)
then by frst equation of molfon,
ils Cis OC) oq
Ve 0 + (-2£) (1)
a
a [We ~eEL cahere a> Wag = dif t velocity
oe
& Relation between Curvent ond drift velocity © ———
aoe]
lanstder 0 tonducton of Length L ond axea of cxoss-secKon ais iE
‘Al and 'n’ be the nee went per unit volume. =
Neon
Total chovge, @=nAle
“+ cusatnt Yn the Conductor,
r= meats) Cv-L)2% Sevies combination of Resistance?
Two resistors of veststance Ri and Re ave Connectel|
fn sevfes.
As ne know, fa. sexes. combination custent: ts
Hise
sane byt’ voltage fs different” acyoss tne components
Ve V+ Va
vtny ohm law,
IR= IR, +LRe
R= Les &)
hee
LR
oe
ae
Liaw
pai
AS PEE EEL
v r
Ss for ‘a! no of vesstane Tn sevfes, Rokr ReR, 1 --- ~~ Ry
x Povalle! combination of Recfsternce?
Two vetisors Ry and Rp awe (0)
witty a bakery of YoHage 'V
As we know, in
ao
&
nected fr parallel ae 1
. EB
pet ie rae te ert a oe
Components of tre cPrcut i;
a jiehth
Bish en
R RR
WAAL 4)
Kine | obo
so for ‘n' veststors fn parallel, 1 =i zt been
Relation between Internal vesistance, devmival potential dif}. avd Emp
Consfdex a cell of emf C wth
faternal vestelamce ‘s"
tonmected fo the external cesistance(@). The cure
in the ctseutt fs?
IE —® |r
Terminal potential dt Fference
ve 1k —®
Ha ee
fetal ecictonceNow, @ can be watten as > leas E ( cots-mo iy)
inde
sage fete )
fos ve [v= E+Iy] which fs the velotton bln €,v end.
% Cells fn sevtes :
Consfder two cells with ey Sars ond Rady +
Gnternal veriatance and ¥, vespecttvely.
Connected Tn sevfes.
ee (for vse)
We we, f a turwent fs same but potential across component 1s
ae Vs
(ET s) + (6-15)
= (€+€2)- (14,+1%)
* Greeters a)
Noo, we know Vey = xg [¥q —®
Comparing © 4@,
% Cells fm Pavallel
loneidex tie cals of emf E.ard Es with fnteand
resishance 4 andr, sespectyely conmected th
parallel
we a fo parallel combinatton polenta) .
te-samel bik lcanert wth be sberae e
ig components -
. Es *)) Ve €-2
eee eae fs |
—viheL
a v(Bpty< Stern oy
We eea Viel Caer Ohta x)
at 1
Comparing 4nis ust Ve bey - Ley,
= Get bh
eter
ord | Vey = Ba pert
atte
x Wheatstone Qridge »
Wheatstone ba? pie fs an anangement. of for
vesistance. used “fo determine © resistance
one tesistors in terms of ofhex tmee reststs.
For « balanced betdge,
Ve= Vo (0s H figve)
Now, appliig. Kivehoffs we an loop ADBAS
L-R-1,P=0
> 1?-2e —®
Now, ara Kérchoffts wle on loop Bede
Q-1,5=0
4 at =~ @)
dividirgey ® ABs we get > e ¥ ae at
Ri
s
fou! get
:
aaa %& fhe condttion for bala
ae a* Frading unknown ‘setistarce. sing Slide wie bridges
Principle of teterbvidge and nding unknown reilstance
Pafnefple wheat stone bovfdge
As shotan fn fegurey
Ic
Ke unknown vesistance
S> known resistance
Move, the Jockey G) on whe AC of Dngth 2 4o obtain the null point (i-e- ze
Teng Pant aRtnoreter)" Le pt: 8 We ml ptt an ae Nes
As the bridge is balanced therefore, by Wheatsone bsfdge principle +
LES & Is
= cc -
Rap gar
5
(00-2) pul
fame te% Magnetic ffeld a} the centye of q chevlay loop cary ing comer +
Consides lax curxent ca loop co:
oe Sethe See a atu
centvo of this loop.
L
tone ap Realy dle loc ond te
Applying Biod Savas law, we get
dB= -e (tLe)
> Tas mvc ue
Integeorg, both de, oe ge
{de =f be Lae
bn
Med fae
5 B= ri ‘ x27 ("Eat means tot crcumfomny
ot
G= MeL |
p oe yo
% Magnetfe Field |on the axts of a cieculax covsent Soop
Confdex q ctreular loop of vadius ‘x’ the axts of tre ctreulae Loop ot which
Illes eal avert eee oe the ciresliy Soop ond
the distance between the Loop and the point
Neording fy Biot Savarts law,
AB= Mo Tdd sind
4n woSo, the magnete ffeld at P due 4o cuavert element: dt :
ole = He Idk sin 90° in Jo"
a abe tne gate dt"
ar Tata)
Magnet field ot P dve to (yrsent element 1d
(3 wLdt)
de! ae aL sene
adel = ae aut
Gn (aan)
we can see —> Hexe, AB =-dB!
Resolvin
d& %n two Components we find Hnat cos® component for tuo
Fane sca opposite. Termeni ts zich he, ae
, thot mg ne te
field Sntensity at P wil be only die to stn® component
Frese fone tobal magnetic. fleld due othe. cole «sl
B = Sde stro
Be Lt sh
fig, gn
B= Metso (Yo
“Glan fg
ier
Gn ate) [ae i
B= _belo
OR (a2) (atexe)* ae
J
= re ss
B= Been | yt
Ht «>a , thin a es neglegi ibe
Be Mot
2G)
oe
"
Ele
2%x Ampere's Ctreuttal Law’
Te states that the fine fh al of magnelie field Intensity o closed |
Fa eA eee ream me OE
Gre feet =Uet
Petr tonsider a stealeht comluctor cmnsying as shown tn the.
sat ge gh eae hs
ound the conductor .
ty Band dt axe tn some direction so. angle bebiten them i0.
a jeu
= fedl cso’
= feat
= Bfad
* MeL ant — (Jud means dremferena 27)
fail] te
a
WS
Solent
MF: due to ce long stradght ceseent
casrying. covduetor
Application of Ampere's CErecital Law fF
Tovotd
% Magette Feld due to an fntinttely Jeong steatght cvavent casnying. Conducta:
Wee given a sholght woive of « Cross-seckonal yadus ‘a’ coxtying. steade
See er ae cee eae et er teases
Now, we have 49 calculate magneHe Held at a distance + from centre.
But heve we'll have 3casess-
G Wa, Re point lies outside wine
GW) 1= 05 ie point Lies on the wie R
Gib v
jeu = hl
» $Odl cos0"= Mot
9B ddd =
a B(2nw
hel
baa
*
(for ¥70)
Err x=a__ at pot Pa
1d he He
Pe epee ee
sh Stintlenly Mike Ost weil get —
(ase tts
To Hind the hi
fo dee alee of Me
ei wing ney a Grevlar Soop
: cs
Fadh= vee
a Bg date sue
4 B(2np)= we_Ly? “ef
4 B2n “ule =~ [B= Ute
noe
werB Magnetic Freld due 4o Solenoid
ren,
see
Ne. of urns =
Magnetic. {veld Tnstde. tre solenoid Ps uniform ard sha
mF. outside the golenotd ts weak (almost zed)
Consider a close loop ABCD.
ffs - [eu [ea [ee + (edt
&
Here, — [Bedl-0 [B ovkside 0]
cb
[Pate feai-o [81 at]
Let a solenotd consists of ‘n’ no. of tus. unit Lrath and carry Cnvent I.
of ht tt ee
Hence,
fEdl - $50 -0 0-0
Aeording to Ampere’ law +
peat - uot
Herel pled es ave. present
4 * O(L) = WeNI —fom ©
Be Vent iiB-wnl
where, = no. of urns per unit Length te,
Graph
Using Ampere’s deco
Case) Inside
ol Law, obtained tre magnetic fell thee 4 Tosoid
lots eh
fiom Ampere's uw >
x)
PBdt - uel, Ge 6)
nee, [Teo
¢ Bato >
B-0
(ase D) Behween fre forvs
trom Ampere’ lnwi- $B AL =e In fat hr)
$Bdt sO = be ly
B ft - MeN I
Bre) = MoT
= Hen a Sey
= Hew] ev [Beuund] [acy 2
se 0) outside + (at fa)
$@dt = us Te
BO
% Foxce acting on a corvent. covnying, conductor placed to MP -
(ontider a condoctor of Lenath & and area of section A
taasying, ete T pl
*
sy
in a mogneHe field ot an
gs shown. If number densfty of elections th the <—>/*
ductor Ps n, then total no. of eectvore in the conducty fs 2 AnAs the force acting one. cecton tt $=CW® sinO whee Vu fs the datft velocity of
electrons
So the fotal fore acting on the conductor = Alnf
= Afn(evs sine)
= Ane Va)£b sin Lal
= Ib stn0] wt
GRretion ca be Helene by Senn
eft and le
2 Fone between oo parallel strafght conductors Grvwying wrtent
se
(
Confer wo tottatte long. sfatyht condoctrsncovsying consents I, ard Za. tn the
Same divecton «
“hey oe held parallel 40 each other at a distance 'x',
Stnge magnate Hell te produce de coment fiaigh eth onducler eset
‘each condd tor exberfences. a foace
and, the force will be IAB sirO
New, magnedie Feld ot P due to vent I,
8\- Mol, —@®
“ane r
TTS
As the coment casryfr
ing conductor Y. fs fh the magnetic
Hdd 21, therefore the funit length of Y wil expettens
a forte given by—
. a
9 = GB: stngo" [12 Ld nit Joye)
G= Ble«l (+ shee)
Fe = Wht
e
Magnetic Field due to curate Ip at point @
B= Nol: —®
ant
Streflaly conductor X_ sil alco experience afore
F dete I, cunsent,
roy
|
FiBL, Stoo [ted (omit lep)]
Fy= Ba Lisinto”
F= MIL
antWe can obsewe thal F, act perpendfeular to X and diverted towards Y.
Hence, nich tract each
ne. X and Y att he gery J
Bs By
bit en cuevtnt sill be Sn opposite divections,
the conductors will tepel each offer and ma gritvds
will be same as derived — abo e. 5)
Bs. By
Same cumtnt divection —> attraction Th Ee
Spaite uoent dix —+ vepuléfon
% ToRdvé acting on a cuveent coveying Soopbetl fn unfferm mF. (xectang lax)
+ yng Soop bo fo m4
Hence
When a rectangular cuvaert Careying (ofl & placed fra uni el
Hall Soen te ee tagalog oe dns nat ekptatene ane ae
Fy Magnelic Force on a currerrt carsying. conductor
E= Lib stra ——on avms ADL CD only
bot field enerts no forte on the fwo aims Adand BL of oop hecavse
Bis onttpavaliel to I |
SPP The, mag etic Held is peperialey fo He em AS mete
AB of "the Loop and exerts a force F on ity
Which fs Arrected fato fhe plane of the loop: a Gffert.)
0
Fiz E0Bsingo" 9 LAB
Steflavly, the magnetic feld exerts a force & on vm CD,which is directed oot
Ree ene ats a force fy which i a te
fas I0B- 6
Ts, the net fore on the foop ts 2e00 (os sald caslien)Bot ad we can see there will a toaqve on the Loop due the pale of forces F, ard fe
ork
fee Now, Consides the case when the plare f the Leop, i net
akong the magnetic ffeld and makes on omgle wlth tt:
Let the angle between the field and the normal to the
Goth ke ahple 8.
£-818, Theforee on epee ae ard
MIA
M= KIA (Hee k-\)
9 [o=TA) for mach borne, OT NIR
¥ Conversion of Galvanometes fate Ammeter®
Galvanometes. can he. converted fnto ammeter by
Connecting @ smal] Resistance S(shunt) fn
parallel “wth the galvarometer
Be s (shunt)
= rox tuwert shrough gahanometer
T= ammetes vonge
& = falvaromeler ” Resstonce
As $ and G ave connected th. pmallel, s(I-1y) - LR
3% Conversion of Galvanomeses fnto Voltmeter =
Galvanometer con be converted nto voltmeter by
Connecting high cesfstance fh Series.
= urtvent tena gahenoretor
R= hh vesistontee
Y= €tenal potential
Rye Galvanometes vesistante
total vesistone = Re Re
Nw, ace to chris lato, Vo 1y (yt)
Yam
R=L-
5 && Moffonal emf ot Induced Eme :
Consider a vectangulars conducting Loop Pars =i a
fn re ple of Fe paper tn fonth we |[® * * ge ath =»
conductor PQ fs free to more EE * pt a ay
let the vod F % moved towards aly ht Gis eld ett
with & Constont yeloute'y’ assume —— ta
there is no loss of enesly due 4 fricHon & am Q
let PQ is moved ‘x distance towards waht , the avea erelosed by Loop
PQRS fncreases. > Axed (A)= Lx [
Therefore, the Omount of ete flue Linked vith tre Roop hereases.
the Toa
Ain-emf % tndoced fn
flux Hersough aelals ep ase
= BAX (oso"
ee
4 Induced Eme fn the (il Ps >
e- dB
at ]
t- betx [fom ©,
= BA (de)
==BLV| yg |e Hof chang. dtplacemtnt
Bes [ae os
Forte on the usive (external)
f= BLL sinao" L
Fens —
fe gy
z
ale
% Induced emf due +e rotation of Rod fn Magnelfe Rede et
Consider a metallic. vod of ferath't! fs placecl
ito ‘magnetic fats sl tn ‘te fy af
Aven Covered by re vod or xotating by atm. aryl I
c by sted var by dn age : 1os for 1 unt rotation (axea)= 4 zi £ | ete pad spt)
Ss for 0 argle rotaton = 42
ax Axea will be, AlkO -@©
Now, flux tnsough oven A, Pe
BA
es
ate)
Tnduced €MP frthe red, &= ‘i
3 Gelf- Induction of dolenwid +
Consider o solenofd hav we anes witn dengtn Lard cross-section grea A,
I isthe cursent ae Tt. So, these ree rragnetic field at a
girtn paint tn sGreptaent it by
Nove, The, magneHe Hox pex tun “a be equell to ae 4 Band grea ef each
ten.
= HN EA
+ Total sack wil be given by product of fiw eel in cia and
$= WNI,N mf
d- mer —O
£
And, wt ako know, d= Lr —O
t fom@ 1M Lf ~ Montz”
Yl
This Ps ae -Prdvetane of a solenaid.2% Mutual frductance of two Solenoidss ome
tereder oo on org golenaide 5 ard So each of Lent
ALN), ond re a fc me tums Pndhe solensi
$) and a aspect!
fs wound closely over Sy, so both tne solenoids
a cons ideved hee ae oreta of Cross
Section
T fe the covrent flowing rough S).
ee, ibe reagnetic. field & prduced at omy point frside solensid S due to cunt
1 Is
B= Mut —@
Xn tums
—
And, the. magnetic fluc Gnked with each tum of S ie equal to B,A
Tota! fragme Hc fx Ainked with saleneid So having Nl, tums ts
d= BAN
» 9. (Vout) anh a
+6 CRE)
bt p= mt, —® Le te ett of mel lc
2 fom © 49 > M1,- “(umn)a
* [m= MeN.NAA v
Pa ae
And, HE the Coxe {6 filed witha vragnttte malaial of permeability M-3% AC Voltage applfed toa Resistance:
Griider a Vesistor of-yesistor, of xasistance R fe
connected fn sérfes with a drtult containing
Altemating EMF — fasinwt —O)
“current, Hrrough the dheutt,,
TG 5 1 Gsout
q
Te 1, sin ot TH aed
te
ye
conpariny D2) we can say that , there & no phase difference Peheen wget
ond Emp
Wave foam singly fsinvt | ------ --
———
ee Melgaen
2% AC weltoye applied 40 an Inductos? n
Goncider an fdyctor of Pnductance ‘L’
comnected fn sexes with a drcuit contatoing.
Altemating EMF — Easinwt —O € by streat
An eme ay frduce fn the frductor due to the cunent I,
ee
re
fewording 42 Lenz lav, the tndued emf will oppose the alternating emer.
we ah “aoe
=-e
a ee az)
E= Lat
a Lag
a dI= Edt
9 dI= fo sinwt dt
£fos fotal coment Rrtegrating both side ,
fare [ig tnae dt
4 te Ee (as)
a If ee coswt Sin(-0)=tose
Tage Sl (stn(g 4) sin Ge) = -sin8
OL
+i Ge sin(wt-3) —®
when ain (WEB) eH be Ly Hoe Lule pak valve eB
© [i- Lo stn (wot-g ieee
Pees D) ae
on Comparing @L@ , we see that Land & hwe diferent phase
fe phase difference behueen Lard €
d= ot-A +a
9B B wblage Leod> wrrent.
Have diageam for Tard €
ek ie. 6 I aval ۩ AC Vollage applied fo 0 Capacitor > eialain
Consider a capacttos of tapacttane ‘C' ts owed nes
fn series Cortalrg AC of me af Epsineat ©.
&& shat -@ sees
The maximum voliage of he capacttos wit be equal to €mF of the AC.
fig eon Capacitor, Vv
es ee f esinwt fs vee)
Instantaneous current tthe cireit
I= ot
at
I> d (cE sinat)
dt
ai- Ce drat)
a T= C&W cosh
ate cla (ctor + et) —»)
feo, L fll be mox(peak) when (Sr ewe) wii) become 4
nh I,=¢&w
0+ [amin] ys 2
Ue
Compass d that there Ys a phase difference betwen Londé
Le eee ee erate eter ie kau ree 4
Ss Phase dtfference between Tad e, B= wh rg wh
oe&
Here, voltage drop across aes al ed ard elle
fr
uctor Pe-
Ver IR uw
Ver 1X tO sca
WA1X wd E
Phaser Fa gram for LCR chreutt >
Consider, 86 1s the total voltage supplied $n the,
cheuth, Nt ARS
In the above phasor dfagsam , et ¥, > \e
oo M=(y-u) —®
Now, wHaze acvoss all the Component, V= [1M FVa
Ve (R= De + GY
Ve IPT RT
Vr L [LOK Ry
vet baste
tz= EE !
zh ee ot ort7% Resonating frequency fn sevfes Lek efycuit +
Resonnnce occuxs when inductive veactance becomes eyval 4o apacttfve.
‘reac tance.
t= Xe
ol = 1
we
we
Le
we
we
2ny=
te
we Er we
2nJEC \\te
ae , Xp will become equal to Xe ond wesonarnce wil)
coca, ayid the Pence fs Known as
yesonating reg) ty.
% Average fower fn LCR Circutt +
We know that a voltage €-&stniot applied to a sextes RLC dreutt drives «
Covrent in the chruit given by.
f= K8n(wt-f) 5 whee =u g
ch Trnstontaneout power by the soune is B= ton (reas
p= El > Snot xf sin(wt-O
(3 fob [asd cas (aut A] =o.
a ie ae ae is given by the overage of the two tens tn
But we can See that only the second term fs dine dependent. TH ayerage fil
be zexo("s positive half Gof the Cosine camels the negative seuond half)
A P= frie wos
t =(&) (E) oA [<4-d-a]
Ps vis Time COS. abex fneagy Stored th an Inductor 3 an
Constdes an frductor of inductance L comnected to a
voltage source E ak shown fr Fie. peed
fs we krowy Pe aa [° ea)
it de,
ae aw a fete 42)
dw= [Idi —@
z
Integrating both cfées, fdw= [urd ( = trax cent Inthe creat)
We L fis
Pye
“fe
me
LL?
q Tis work % stored th the chrouit as magreHic poker fad)
‘ 7 ao eat:
é [U=tun pe:% Relation between CitHfeal angle and refractive fadex of @ medium’
lonsider ‘
sos a vay travelling from denser medium (1)
5&
3H"
Mending fo snellS loao> sinc = (L) sin 90"
M Sine = 1
ai
ti sinc
Ree
+ Refeaction at a spherical Suaface?
wn
ae hows xefraction by convex. ee Ke AC
let o£, and be the omle made by © $ TE
Me CiBoad F e te e <—
way with, the prindple Onis
The novmal drawn from the Conver vefracting Sustace passes through the.
Contre of dein co: AN dines te Matha rom pole. Mind Se
rection of tncident veay Bs taken te
Now, In Aomc, 3° In Acmi,
8,=44p °.
Now, By snellis lao’
My $108) = Ha Sin O.,
4% 0,8 axe - small, = Sin®,2 8, and sin@, =O,
Mi, =
Pla) = ie ia MESO!
Here, eee 8 gre eu small
jm B= Des b
fon be a
209 Mh bk) = Me-(B-h)*& Lens Makes formula +
Constdes. 0 convex Lens (thick) , Leh arn objet
fs placed on the patnciple axis at ‘0
Te rage formed’ by the convex ihtek “hey,
Ps at
1) Be eatiee trough fPrst surface (AOC)=
Tf sysface ADC fs mot present then Image will
te formed at I, os aon fn the Tie
a According 49 xefraction formula:
MW-N - me _ mM —O
PR vo
2) Further, sefracton trough setond svefare (Apc)
tne STA ie is not Pattee
eT, will behave Like object He the
trate Ep tend iat vill be formed at
wn on fF
Now, According to ao formula,
mom 2 _ We _@
Re a he
Adding © 4© + Mone. Mane. n,
TR “Rae
> Yom, Mom - mn
ee LL
a fesm — (men). (1-2)
Re a vi
u+
os (z,-&)-4¢
ty!
= FEB) lal
% Refraction Aevough Perce’
Consider, 0 tefangulor point, a a vay of Hirt
charkes on tHe face At ert oe a
ism and then refracted by
HS ’
Mace AG jowards the fast of the, al
prism fe cot ae in OR ts refracted ¢
ty the fase AC dway the novi
3
i ae a
4, and per yefracton be
AC wes pect
= om
oF st of ee
Tn AQNR, Ly + £4, +ZONR = ign" —@
In 4uadvilateral AONR , eee +90" = 360
LA +LONR = 3¢0"-180"
A +LONR = 120" ——©
fom O£@ 9 lx+ Qa + Lake =A + Lhe,
Lorin = LA
Az ¥j+ %|-@)
a
or
Allo, f= Si
a $= G-a)+ (e-8)
a §= (Pre) -— Gas)paEtte ek Gomi)
w [re=tra] —@
when , §= $e ster fe
Btn
J G@ bevomes, rer=A
Tauak
~ A} -®
And, 0, @ bewmes 9 its bra
= eh [ole
t dash ®
flow, Aucnding fo. srels Law,
vuhere. kn 8s -wefanaie Padex ot )
ae uw (ied present fn tne prisin
a (SecA)
tal tt (fn O10)
A)26 fosFHon ond width of the Fringe fr Tnterfesence®
The distance feween any fut consecutive, bright
7 40 doak fri
Theat ee eae
desk Fringe Ts equal tothe width of a bagel fenge.
Consider Ihe faom two slit Siard S apni
‘at point P ‘
a
ot
on the scaten bgt ard dk Finger |
ad
ne
be the distance between two shits Sj mds ©
D be the distance between cit ome screen.
2
oo aa
Now, at point P the path difference of fwo waves is +
Ax= 3 P-SP —@
wie MSPs a sitene? In. D528",
a iPS, in DSBP, 1
= D+(y-dP_O P= SB BP
ae “Eraye
Now, ef) - 4
SPS P= D% (Yd De +(y-d)*
GP-S) (Ses SP) = by ed
(60-5) (SP45P) = 2yd
Assorring Pvay clue 49.0, such drat SP &S2P=D
2 Dev)bx = 2h
Aoon-Byd
axe yd
brenda
ya nA
nad
(ose L) fox Maxton,
Wea ;
shen neo ,y=0 (Central bight fringe)
n=l) grab (ist BF)
pan > ye DAR Oh OF)Coed) fix miniena: act 4
ye (2n-l
ir eb
hen, n=) grab Cist De)
med 5 yr aap. [2r4 oF]
fami 1 47 Gnade (o™ 9)
se Alternate Dark & Bright fringes appear.
ee fox _fainge width’
Te fifo beeen ee Datgnt fringes gives the ringe width
Pate = ds
= (ne) Ap nA
oe
Snilaaly, for bathe. ->
MeCHAPTER HLL? Dual Nature of Radickion and Mattes
a de- Broglie tquattons
i ee f Frepeenty) 4 wavelength A) propagates tr vaccum,
= hy] —®
Awording to Gnstein mass-enerey equivalence ,
E= me?] —O
Congariry OLD , wa ie
Now, momentum of each photon fs 5
eo
v
Le Mc of a8
p
2
(2
P
Pe (t 4-5]
7 — tits 18 de-brogite.es”,
Let us fake on Samples e accelerated Fh a polentfal dif}. ‘v' , then its
KE can be written as:
Keev'
The Lineat momentum ¢ Ke of © moving. with velocity * ove
\p= mv |
4 k= Lm
omolfplyi ing ‘en! both sides: mk= ia
2mk= re
Square x00 both side? (2m = [mer
my = [2mk
Now, frm de-bvegle ers Ae +
Ae b,
invSubditobing
he 6:68x107""Js
m= 41X 107%
= 16X10
5* aa sce pane e rN jen atoms, devive
ine ¢ expression for total
Se nce ne merece
mel
a on au of, mass m and chavge @ - EL
yevelving. vgith velocity Y around 4 bles 4
"ern
omic number °z. Then the Centatpetal \
xtoviced oy the. election fs provid Bt @
en He -fo er atorsiae laters nud leur r
and elechon oral ng to equation: N
Au to Bohee fostulates mvt = yh -©
=) ontreS tht,
oO mie ne” “kzet
my = welt x 4m
eet 2
= rhs po
eta wok —®
Gadtus of n™ orbit
Now, Yeloutty of e” fn stalfonary oxbits
mvt = yh
21
mvhf = oh
mn ze~ an
ye zee gy
tants | wre
GYdloity oF 2 tan energy letNow, Energy of € in Stationary oxbits
& ke. = Lave ) Pe= bY de
¥v
a ihm (get HF = kke) (ze)
2 2nh fo: 7 Ge
te 24 a ae
Sth & Pe = earn ee
G) TE= Ke + PE
Te = —mzet
gone