3 Trip Distribution
3 Trip Distribution
Transportation Engineering
Trip Distribution
Transportation system
economic projections specification
Trip generation
Trip distribution
Trip Distribution
4 8
7
6
Zone 1 ? Zone 1
?
Input ? ? Input
Zone 2 Zone 2
TAZ Productions TAZ Attractions
?
1 12 ? 1 9
2 19 2 12
3 35 3 4
4 4 4 38
5 5 ? 5 45
6 10 ? 6 6
7 13
8 22
? 7 4
Zone 8 Zone 8 8 2
TAZ 1 2 3 4 5 6 7 8
1
2
? ? ? ? ?
Output 3
Zone 1
4
5
Trip Matrix
6
7 2
8
A general form of a trip matrix
interzonal trip volume or
Trip production
constraint
Trip attraction T
j
ij = Pi
constraint
T
i
ij = Aj
3
The gravity model – simplest
form Higher trip production/attraction, higher
interzonal volume?
F, Tij
M1 , Pi M2, Aj
Higher impedance, higher interzonal
r, Wij volume?
Pi A j M1 M 2
Tij = k F=k
Wijc r2
Tij = interzonal volume F = gravitational force of attraction
k, c = parameters k = proportionality constant
Pi = trip production of zone i M1 = mass of body 1
Aj = trip attraction of zone j M2 = mass of body 2
Wij = interzonal impedance r = distance between two bodies
Gravity model Newton’s law of gravitation
2 2
T21 W21− c
T21
=? =
T31 W31− c
T31
P2 W21− c
T21 = A1 T21 = A1
P2 + P3 W21− c + W31− c 6
Production constrained
gravity model
attraction attractiveness
Zone 1 2
Pi A ' j
Tij = k ' Commercial floor 10000 20000
Wijc area (arces)
Tij = interzonal volume Relative 1 2
Wij = interzonal impedance attractiveness
k’, c = parameters
Pi = trip production of zone i
Will the interzonal
A’j = attractiveness or relative attractiveness of zone j
volume be changed
if 10 and 20 are
used?
Use page 5 to
explain the
shopping centre
example. 7
Production constrained
gravity model
Pi Aj
Tij = k ' −1
Wijc Ax
k ' = c
Pi = Tix x Wix Tix
x Zone X
Zone i
Aj / Wij
c
the proportion of zone i trips
Tij = Pi
( A
x / W ix )
c
that will be allocated to
zone j
x
1
friction factor Fij =
Wijc
Aj Fij
Tij = Pi
A F
x ix
x 8
Production constrained gravity
model
◼ A set of socioeconomic adjustment factors Kij are
introduced to incorporate effects that are not captured by
the limited number of explanatory variables:
Aj Fij K ij
Tij = Pi = Pp
Ax Fix K ix i ij
x
pij = the proportion of production zone i trips
associated with zone j.
Sum of the proportion equals 1?
The trip attraction constraint is satisfied?
0.5
0.3
Table b: base year trip distribution 0.2
W QT ijIJ
f, frequency = (5)
column 2/sum (5) 4
5 300+600=900 600/1500=0.60
900
(10)
(15)
10 150+180=330 330/1500=0.22
15 50+220=270 270/1500=0.18 1 (15) 5
0.5
0.3
0
iI\J
\j 3 4 5 5 10 15
W
1 303 114 83
2 123 741 136 Step 4: adjust F
2 / 52
where 303 = 500 2 and so on Observed f
2 / 5 + 3 / 102 + 5 / 152 F* = F
calculated f
W TQIJ f 0.6 1 0.6
F5 = F5 = 2 = 0.034
ij *
5 1044 1044/1500=0.70 0.7 5 0.7
10 237 237/1500=0.16
F10* = 2
1 0.22
15 219 219/1500=0.14 = 0.01375
sum = 1500 1.00 10 0.16
F15* = 2
where 1044=303+741 and so on 1 0.18
= 0.00571
15 0.14 18
Calibration of the gravity
model - Example
Step 2: determine calculated frequency f Step 3: compare the observed and
calculated frequency distributions
Using the adjusted F’s, the following results are
obtained: f
0.7
0.6
iI\J
\j 3 4 5 0.5
2 0.0343
=
0.2
where 251 500 ,
2 0.0343 + 3 0.01375 + 5 0.00571 0.1
etc. 0
5 10 15
W QTijIJ f W
the trip length distributions
5 905 905/1500=0.60 are similar between observed
10 321 321/1500=0.21 and calculated values, so stop
15 274 274/1500=0.19 adjusting F
sum = 1500 1.00
19
where 905=251+654 and so on
Calibration of the gravity
model - Example
Step 5: determine c
W 5 10 15
F 0.0343 0.01375 0.00571
X=Ln W 1.6094 2.3026 2.7081
Y=Ln F -3.3814 -4.2867 -5.1655
0
0 1 2 3
-1
Y
-2
Ln F
Predicted Y
-3
-4 Linear (Predicted
ln F = −1.9245ln W Y)
-5 c = 1.9245
-6
Ln W 20
Singly constrained gravity
model: other forms
How to incorporate
Pi A j socioeconomic factor?
Tij = k c = kPi Aj Fij
W ij
◼ Exponential: ij
F = e
− bW
,b 0
ij
◼ Gamma: ij F = aW − c − bW
ij e , a , b, c 0
ij
23
Travel impedance: Generalized
travel cost - example
5 min waiting time
W=
10/60*100+5/60*100+6.9+45
24
/60*50+5/60*100=HK$77.73
Limitations of gravity model
◼ Simplistic nature of impedance - not flow
dependent Travel
time
◼ Lack of a behavioral basis
Traffic
flow
25