Automotive General Purpose SPI To Isolated SPI Transceiver: Features
Automotive General Purpose SPI To Isolated SPI Transceiver: Features
Datasheet
Features
• AEC-Q100 qualified
• Full ISO26262 compliant, ASIL-D systems ready
• Compatible with both 3.3 V and 5 V logics
• Supports both XFMR and Capacitive isolation
• 10 MHz SPI peripheral for SPI Slave operation. Configurable SPI frequency
(250 kHz to 8 MHz) for SPI Master operation
• 333 kbps and 2.66 Mbps Vertical InterFace (VIF) for isolated SPI communication
• Low standby current
Application
• Automotive: 48 V and high-voltage systems
• Backup energy storage systems and UPS
• Industrial communication networks
• Portable and semi-portable equipment
• Remote sensors
Description
L9963T is a general purpose SPI to isolated SPI transceiver intended to create a
Product status link communication bridge between devices located into different voltage domains.
L9963T L9963T is able to transfer communication data incoming from a classical 4-wire
based SPI interface to a 2-wire isolated interface (and viceversa).
Product summary
The transceiver supports both transformer and capacitive isolation, since the isolated
Order code Package Packing signal generated according to a proprietary protocol is suitable to be transmitted over
both decoupling circuitries.
L9963T Tube
SO16N The device can be configured either as Slave or as Master of the SPI bus and
L9963T-TR Tape&Reel
supports any protocol made of SPI frames 8 to 64 bit long. The transceiver manages
the transfer of the information without performing any protocol check.
Product label
SPI peripheral can work up to 10 MHz when configured as Slave. SPI clock
frequency can be programmed among (250 kHz; 1 MHz; 4 MHz; 8 MHz) when
configured as Master.
Isolated SPI peripheral features two different operating modes: slow @333 kbps and
fast @2.66 Mbps.
The asynchronicity between the two sides is internally managed, allowing all possible
configuration frequencies on both peripherals to be used in application.
L9963T features an internal queue of 3 slots for the frames received on the SPI port
and a queue of 20 slots for the ones received on the isolated SPI side. This allows
buffering and decoupling the two different clock domains.
The device is natively compatible with L9963 isolated SPI, allowing its usage in the
BMS applications.
L9963T is compatible with both 3.3 V and 5 V logics.
4 SDI GND 13
5 NCS NSLAVE 12
6 DIS TXEN/CPHA 11
7 ISOFREQ SPICLKFREQ 10
8 BNE/CPOL TXAMP 9
Local/
Pin # Type Active Description
Global
POWER
VDD Power Local - 5V supply input for internal logic and isolated SPI
Digital Output Buffer Supply.
VIO Power Local -
Connect either to 5 V or to 3.3 V supply.
GND Ground Local - Device Ground
SPI
SPI Serial Data Output.
SDO Digital Output (Push-Pull) Local - Needs external pull up/pull down resistor to define
inactive level.
NSLAVE = 0 →
Digital Input/ Digital Input SPI Serial Clock.
SCK Output Local -
(Push-Pull) NSLAVE = 1 → Internally pulled down with 100 kΩ
Digital Output
SPI Serial Data Input.
SDI Digital Input Local - Internally pulled down with a 100 kΩ resistor for safety
purposes.
NSLAVE = 0 →
Digital Input/ SPI Chip Select.
Digital Input
NCS Output Local - Internally pulled up with a 100 kΩ resistor for safety
(Push-Pull) NSLAVE = 1 →
purposes.
Digital Output
SDO Buffer Not Empty flag.
NSLAVE = 0 → BNE Digital It is set high when at least one frame is in the RX buffer.
Local High It is set low when RX buffer is empty. When L9963T is
Output (Push-Pull)
configured as Slave, connect this pin to MCU GPIO for
interrupt/polling based communication.
SPI Clock Polarity selection input.
BNE/CPOL
Latched during Trimming & Config Latch.
Connect either to VDD (CPOL = 1) or to GND (CPOL =
NSLAVE = 1 → CPOL Digital
Local - 0).
Input
Internally pulled down (active).
Input filtered with RC filter having fCUT_DIG_IN cut
frequency.
SPI Slave/Master selection.
Latched during Trimming & Config Latch
Connect to GND to select Slave operation. Connect to
NSLAVE Digital Input Local - VDD to select Master operation.
Internally pulled down (active).
Input filtered with RC filter having fCUT_DIG_IN cut
frequency.
Transmitter enable signal.
Set high to enable the TX activity. Pull down to disable
TX. Any data received on the SDI line while TXEN is low
NSLAVE = 0 → TXEN Digital will be discarded and not stored into TX buffer.
TXEN/CPHA Local High
Input
Internally pulled up (active).
Input filtered with RC filter having fCUT_DIG_IN cut
frequency.
Local/
Pin # Type Active Description
Global
SPICLKFREQ Analog Input Local - Leave open to set minimum frequency. Connect a pull
down resistor to set a higher frequency.
Input filtered with RC filter having fCUT_DIG_IN cut
frequency.
ISOLATED SPI
ISOP Analog Input/Output Global - Isolated SPI Positive terminal
ISOM Analog Input/Output Global - Isolated SPI Negative terminal
Isolated SPI TX amplitude selection.
Set low to select low amplitude/low threshold. Set high to
TXAMP Digital Input Local -
select high amplitude/high threshold.
Internally pulled up with a 100 kΩ resistor.
Isolated SPI operating frequency selection.
Pull high to set high frequency.
ISOFREQ Digital Input Local -
Pull down to set low frequency.
Internally pulled down (active).
DISABLE
Transceiver Disable Input.
Pull it up with external resistor connected to VIO. When
DIS is high, L9963 enters in low power mode. When DIS
is low, L9963T is enabled and working in Normal mode.
Digital Input/Output (Open It can be either pulled-down by the MCU to enable the
DIS Local High
Drain) unit, or pulled down internally when a wakeup condition
occurs, in order to interrupt the MCU.
Pin is internally pulled up with 100 kΩ resistor.
Input filtered with RC filter having fCUT_DIG_IN cut
frequency.
Note: all voltages are related to the potential at substrate ground GND.
Note: all voltages are related to the potential at substrate ground GND.
Note: all voltages are related to the potential at substrate ground GND.
To optimize power consumption, the device selectively disables unnecessary peripherals according to FSM state
and NSLAVE pin value latched at first power up.
TRIMMING AND
FSM STATE STAND-BY NORMAL
CONFIG
TRIMMING AND
FSM STATE STAND-BY NORMAL
CONFIG
3 Functional description
In the following paragraphs, the functionalities of the device are listed and described in detail.
3.2.1.2 NSLAVE
NSLAVE pin is latched by the standby logic in the Trimming & Config Latch state, 3TOSC_STBY after POR_MAIN
release. It must be either shorted to VDD or to GND. The internal pull-down is enabled only while in Trimming &
Config Latch state. This allows reducing power consumption. Once Trimming & Config Latch state is left, the
NSLAVE input buffer is permanently disabled, since it is no longer needed.
NSLAVE selects SPI Master (NSLAVE = 1) or Slave (NSLAVE = 0) operation and determines the Digital I/Os
configuration as described in Table 7.
To increase immunity to BCI and guarantee a correct latch of the NSLAVE pin during each power-up, the input is
filtered with an integrated RC filter having fCUT_DIG_IN cut frequency.
3.2.1.3 DIS
DIS is a Digital Input-Output pin featuring an internal pull-up resistor towards V3V3_STBY. Its purpose is to be
driven by open-drain outputs. Its functionality is summarized as follows:
• Input: it is an active high Disable input driven by the MCU:
– When DIS is released by the MCU longer than TRC_DELAY +TDIS_DEGLITCH the device starts the Go To
Sleep sequence that will bring L9963T to Stand-by state (refer to L9963T FSM).
– When DIS is pulled down by the MCU longer than TRC_DELAY + (1/ fSTBY_OSC) the device moves from
Stand-by state to Regulators enabling state and then to Normal state.
• Output: when L9963T is in Stand-by state, and a wakeup event by isolated SPI occurs, it moves to
Regulators enabling state and then to Normal state. Once the latter is reached, DIS is internally pulled-
down by logic for TDIS_PULLDOWN in order to trigger an interrupt in the MCU or a wake up event on a PMIC.
After TDIS_PULLDOWN expires, DIS is released, and if not kept low by an external source, L9963T moves
back to Stand-by state.
To protect DIS internal open drain driver in case of external short to VDD, a current limitation circuitry limits the
current to IDIS_LIM.
RIN_PU
DIS R
GND
GND fCUT_DIG_IN
3.2.1.4 ISOFREQ
ISOFREQ pin is a digital input used to switch ISOline bit rate:
• ISOFREQ = 1 selects fast operation: bit time is TBIT_LENGTH_FAST
• ISOFREQ = 0 selects slow operation: bit time is TBIT_LENGTH_SLOW
ISOFREQ sampling depends on device state and configuration:
L9963T L9963T
ISOFREQ sampling Note
state configuration
The new bit rate of L9963T must be compatible with the one of all other units communicating on the same bus.
The internal pull-down guarantees a limp home operation in low frequency in case of pin-loss.
3.2.1.5 BNE/CPOL
BNE/CPOL is a digital input/output pin whose configuration depends on the value of NSLAVE latched during
Trimming & Config Latch:
• When NSLAVE = 0 (Slave configuration), this pin acts as BNE (Buffer Not Empty) digital output and its
purpose is to implement interrupt based communication with the MCU. When asserted high, it means that
the RX queue stores at least one frame.
• When NSLAVE = 1 (Master configuration), this pin acts as digital input for the selection of CPOL (Clock
POLarity):
– CPOL = 0 (shorted to GND) implies that the clock inactive level (when NCS is high) is low.
– CPOL = 1 (shorted to VDD) implies that the clock inactive level (when NCS is high) is high.
The internal pull-down is always enabled during Trimming & Config Latch and in Normal state.
The BNE output buffer is disabled if NSLAVE = 1 has been latched during Trimming & Config Latch. The CPOL
input buffer is permanently enabled.
In case NSLAVE = 0 has been latched during Trimming & Config Latch, BNE output buffer is kept enabled
while in Normal state. A short to GND/VDD detection is implemented to protect the BNE output buffer. If the
value forced on the BNE output buffer differs from the one sampled by the CPOL input buffer for more than
TBNE_SHORT_DET, the BNE output buffer is put into HiZ. Automatic re-engagement of the BNE output buffer occurs
upon next wakeup sequence (MCU needs to toggle DIS pin).
3.2.1.6 TXEN/CPHA
TXEN_CPHA is a digital input pin whose configuration depends on the value of NSLAVE latched during
Trimming & Config Latch:
• When NSLAVE = 0 (Slave Configuration) the pin works as transmitter enable input TXEN:
– MCU should release TXEN (or pull it up actively) prior to NCS assertion in order to enable the
transmission of the data from SDI input buffer to the TX queue (and then to the isolated SPI interface).
◦ In case the communication protocol does not feature any burst read capability, each command
sent by the master unit will generate a single answer from the addressed slave unit. Hence TXEN
pin can be connected to VDD in order to keep the transmitter permanently enabled.
– In case of burst read operations, where user SW has to empty the RX queue without transmitting any
frame on the isolated SPI, the TXEN input must be pulled down before beginning the burst read.
◦ Even if data on the SDI line is discarded while TXEN = 0, it is highly recommended that MCU
sends dummy frames (or intentionally corrupted frames) on the SDI line during the burst read.
In the event of TXEN stuck high, such frames will generate errors according to the implemented
communication protocol.
– To avoid chopping frames currently being transmitted, the TXEN pin is latched upon NCS assertion.
Therefore, it must be stable at least TTXEN_DEGLITCH + TTXEN_SETUP before NCS assertion. Moreover,
TXEN must be kept stable TTXEN_HOLD after NCS assertion in order to fulfil hold time constraints.
• When NSLAVE = 1 (Master configuration), this pin acts as digital input for the selection of CPHA (Clock
PHAse). It is latched during Trimming & Config Latch and should be therefore either shorted to GND or to
VDD:
– CPHA = 0 (shorted to GND) implies that the SDI signal will be sampled upon the first SCK edge after
NCS assertion.
– CPHA = 1 (shorted to VDD) implies that the SDI signal will be sampled upon the second SCK edge
after NCS assertion.
The internal pull-up is enabled when L9963T is in Trimming & Config Latch and is kept enabled in Normal state
in order to allow a correct driving of the pin by the open-drain output of the MCU. Moreover, in case of pin loss,
the pull-up guarantees a limp home operation where the transmitter is always enabled. To guarantee standby
consumption requirements, the pull-up is disabled while in Stand-by state.
3.2.1.7 TXAMP
TXAMP pin can be used to switch between the two possible ISOline TX amplitude configurations:
• TXAMP = 0 selects low TX amplitude (RDIFF_ISO_OUTL)
• TXAMP = 1 selects high TX amplitude (RDIFF_ISO_OUTH)
TXAMP sampling depends on the device state and configuration:
L9963T L9963T
TXAMP sampling Note
state configuration
L9963T L9963T
TXAMP sampling Note
state configuration
In case several SPI
The TXAMP setting is simply resynchronized (TTXAMP_SETUP frames are being
and TTXAMP_HOLD requirements still apply) and deglitched pushed into the TX
Normal Master (NSLAVE = (TTXAMP_DEGLITCH filter still present), but it is not latched upon NCS queue, the setting
state 1) assertion. The new amplitude setting is applied to the TX interface applied depends
as soon as the transmission of the SPI frame over the isolated SPI on the last one
interface begins. latched (no pipelining
supported).
The new TXAMP setting is latched during the wakeup sequence.
Stand-by Slave/Master Hence, the TXAMP pin shall be stable TTXAMP_SETUP before the
-
state (NSLAVE = X) DIS high → low transition is applied and shall not change during
TWAKEUP.
It is recommended to apply the same TXAMP setting to all the devices communicating on the bus, in order to
keep a constant SNR in every communication phase.
In order to meet standby consumption requirements, MCU must release the open drain output connected to
TXAMP while L9963T is in Stand-by state.
V3V3_STBY
VIO
RIN_PU
TXAMP
TXAMP
3.2.1.8 Electrical parameters - Digital I/O
Calculation
VIN_HYS Input hysteresis. 0.15 - 0.4 V
VIN_H-VIN_L
RIN_PD Input pull down resistor. Applies to SCK, SDI. - 70 100 130 kΩ
RIN_PU Input pull up resistor. Applies to NCS, TXAMP, DIS. - 70 100 130 kΩ
3.2.2.1 SPICLKFREQ
SPICLKFREQ pin is an analog input, compared to four thresholds by a set of analog comparators.
An external resistor RCLKPD must be connected between SPICLKFREQ and GND, in order to generate a voltage
VSPICLKFREQ = RCLKPD * ISPICLKFREQPU.
The code obtained from these 4 comparators outputs (as indicated in the following table) is latched in the
Trimming & Config Latch to determine the SPI Clock frequency when L9963T works in Master mode (NSLAVE
= 1).
Refer to Table 15 for the recommended selection of the external pull down resistor.
Table 15. Recommended components for SPI clock frequency selection in master mode
The 4 analog comparators are BISTed during Trimming & Config Latch and, in case the BIST fails, the slowest
SCLK configuration is chosen (250 kHz).
MCU is supposed to implement a communication timeout mechanism able to detect slower than normal
communication bit rate.
The biasing current ISPICLKFREQPU, the comparators and voltage divider are disabled once Trimming &
Config Latch is left, in order to avoid unnecessary power consumption.
Different state transition sequences occur according to the following different scenarios:
• First power up: Reset state → Stand-by state → Regulators enabling state → Trimming & Config
Latch → Normal state (see Figure 13). The first power up sequence lasts TFIRST_POWERUP.
• Wake up: Stand-by state → Regulators enabling state → Normal state. See Figure 14 for an example of
the wake up sequence triggered by a frame received on the vertical interface. In case of wake up triggered
by DIS release, the state transition is the same. The wake up sequence lasts TWAKEUP.
• Go To Sleep: Normal state → Regulators disabling state → Stand-by state. The go to sleep sequence
lasts TGO2SLP.
TDIS_PULLDOWN
The Regulators enabling state is left upon POR_MAIN release. Next state depends on FirstPowerupDone
latch:
• In case FirstPowerupDone = 0, the first power up has never been accomplished. Hence, the device moves
toTrimming & Config Latch.
• In case FirstPowerupDone = 1, the first power up has already been accomplished. Hence, the device
moves to Normal state.
In case the device is configured as SPI Master (NSLAVE = 1), L9963T directly manages the start/end of frame by
driving NCS and SCK according to the SPI parameters in Table 21.
Between the start and end of frame events, the incoming synchronous bit on SDI pin are accepted and, if
their number is in the allowed NBIT_PER_FRAME_RANGE range, the frame is stored into TX queue, provided
that the TXEN pin is high. In case of FIFO full and TXEN pin high the incoming frame replaces the last
received frame. In case the TXEN pin is latched low at the start of frame, the data incoming on SDI pin
is discarded and not stored into the TX queue. This typically happens when the MCU is performing a burst
read on the RX queue (e.g. after having issued a burst command to an L9963 device). The TX queue can
contain up to MAX_TX_QUEUE_FRAME_NUMBER frames. Such frames can have different length (within the
NBIT_PER_FRAME_RANGE). Frames with different length can be stored at the same time in the TX queue.
Such an inter-frame delay is needed in order to guarantee a correct split between the different frames by the
ISOline receiver on the other communication side.
Parameter Description
Parameter Description
The transmission line on the isolated SPI exploits a single twisted pair. Communication data is transmitted/
received over a pulse-shaped signal, in a half-duplex protocol.
Line bit rate can be selected by programming the ISOFREQ device pin.
A single bit is made of a pulse time (TPULSE) followed by two pause slices (2TPULSE):
• TPULSE = 2TBIT_HIGH_LOW_FAST for the high speed configuration (ISOFREQ = 1)
• TPULSE = 2TBIT_HIGH_LOW_SLOW for the low speed configuration (ISOFREQ = 0)
4 Application information
Max.
Components Value Unit Rating Comments
Tolerance
Filter common mode noise in the kHz range (inverter and other power
converters). Pole introduced is:
fcut_kℎz = nC RISO 1
DIFF + R
CCM_KHZ 6.8 nF 10% 10 V CM_KHZ × TERM + 7.2 kΩ
2
Do not exceed 10 nF, otherwise common mode settling time upon ISO port
enable will last too long.
Filter common mode noise in the MHz range for improved BCI immunity.
Pole introduced is:
1
CCM_MHZ 22 pF 10% 16 V fcut_kℎz = 2πC
CM_MHZ × RTERM
Do not exceed 47 pF, otherwise differential output signal in high frequency
mode might be strongly distorted.
Deviate energy clamped by DESD directly to GND, preventing any
ESD strike from affecting other PCB components. Total capacity on the
VCOM pin must be equal to 2.2 µF. Hence, in BMS configuration, the
CESD_VCOM 1 μF 10% 16 V
recommended capacity distribution is: 1 µF as CESD_VCOM on the ISOH
clamp, 1 µF as CESD_VCOM on the ISOL clamp, 200 nF as CVCOM
directly on the VCOM pin.
Max.
Components Value Unit Rating Comments
Tolerance
Max.
Components Value Unit Rating Comments
Tolerance
Do not exceed 10 nF, otherwise common mode settling time upon ISO port
enable will last too long. Connect to AGND.
Filters the common mode, while letting the differential mode pass. It acts
as a high-pass filter with a cutoff frequency of:
CISOP 47 nF 10% 100 V 1
fcut = RDIF_ISO_OUT
2π ∥ RTERMO + RTERM × CISOP
2
Filters the common mode, while letting the differential mode pass. It acts
as a high-pass filter with a cutoff frequency of:
CISOM 47 nF 10% 100 V 1
fcut = RDIF_ISO_OUT
2π ∥ RTERMO + RTERM × CISOP
2
4.4 Managing ISOFREQ and TXAMP pin for communicating with L9963T
Both L9963T and L9963 feature the capability of communicating with different bit rate and amplitude settings. In
order to avoid losing frames upon bit rate/amplitude switching, the following indications must be followed:
• To switch both devices from low to high frequency:
1. Set ISOFREQ = 1
2. Send the command programming L9963 iso_freq_sel bit to 0b11. L9963T will send the frame in low
frequency, but L9963 will answer back in high frequency. L9963T is already configured to receive
answers in high frequency and no data will be lost.
• To switch both devices from high to low frequency:
1. Set ISOFREQ = 0
2. Send the command programming L9963 iso_freq_sel bit to 0b00. L9963T will send the frame in high
frequency, but L9963 will answer back in low frequency. L9963T is already configured to receive the
answers in low frequency and no data will be lost.
Switching the amplitude alters the communication SNR. In principle, L9963 and L9963T could correctly
communicate even if their amplitude settings are different. However, it is recommended to configure both devices
with the same amplitude in order to reach a robust SNR.
• To switch both devices from low to high amplitude:
1. Set TXAMP = 1
2. Send the command programming L9963 out_res_tx_iso bit to 0b11. L9963T will send the frame with
low amplitude, but L9963 will answer back with high amplitude. L9963T is now configured to send
frames with high amplitude.
• To switch both devices from high to low amplitude:
1. Set TXAMP = 0
2. Send the command programming L9963 out_res_tx_iso bit to 0b00. L9963T will send the frame with
high amplitude, but L9963 will answer back with low amplitude. L9963T is now configured to send
frames with low amplitude.
5 Mission profile
The following section contains the ECU mission profile considered for the L9963T.
Device is Grade 2 qualified.
Application
-40 1 80
10 1.5 120
45 3.2 256
60 4.5 360
70 6.2 496
80 8.1 648
85 8.8 704
90 9.3 744
95 9.6 768
100 9.8 784
105 9.9 792
110 9.6 768
115 8.4 672
120 6.1 488
125 4 320
Sum 100 8000
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
Dimensions in mm
Symbol
Min. Typ. Max.
A - - 1.75
A1 0.10 - 0.25
A2 1.25 - -
b 0.31 - 0.51
c 0.17 - 0.25
e - 1.27 -
h 0.25 - 0.50
L 0.40 - 1.27
k 0 - 8
ccc - - 0.10
1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm in total (both side).
2. Dimensions referred to the bottom side of the package.
3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash, or protrusions or shall not exceed 0.25 mm
per side.
Parts marked as ES are not yet qualified and therefore not approved for use in production. ST is not responsible
for any consequences resulting from such use. In no event will ST be liable for the customer using any of these
engineering samples in production. ST’s Quality department must be contacted to run a qualification activity prior
to any decision to use these engineering samples.
Revision history
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Internal oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Digital I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Managing ISOFREQ and TXAMP pin for communicating with L9963T . . . . . . . . . . . . . . . . . 36
List of tables
Table 1. Pin list description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 2. Pin operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 5. Temperature ranges and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 6. Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 7. Device configuration according to NSLAVE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 8. Device oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 9. ISOFREQ sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10. TXAMP sampling strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 11. Digital input electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 12. Output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 13. Open drain electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 14. SPICLKFREQ thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 15. Recommended components for SPI clock frequency selection in master mode . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 16. Analog input electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 17. FSM electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 18. Communication parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 19. L9963T Pin used as SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 20. SPI interface quick look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 21. SPI electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 22. L9963T pins used as isolated SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 23. Isolated SPI quick look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 24. Isolated receiver electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. Isolated transmitter electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 26. Main oscillator electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. Transformer-Based ISO lines BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. Capacitive-Based ISO lines BOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 29. Ambient temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 30. SO16N (10x4x1.25 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 31. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. Pin connection diagram (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 3. Supply ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. NSLAVE pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. DIS pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. ISOFREQ pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. BNE/CPOL pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. TXEN/CPHA pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. TXAMP pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. SPICLKFREQ thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11. SPICLKFREQ pin structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12. L9963T FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13. First power up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Wake up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 15. Isolated SPI pulse shape and logical meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16. Transformer-Based ISO lines circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 17. Capacitive-Based ISO lines circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 18. Distributed BMS in dual access ring topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 19. Centralized BMS in dual access ring topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 20. Generic application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 21. SO16N (10x4x1.25 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 22. Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39