0% found this document useful (0 votes)
43 views11 pages

Probability Pravat

Uploaded by

kshigeo102
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
43 views11 pages

Probability Pravat

Uploaded by

kshigeo102
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

IIT JAM MS Probability Cheat Sheet

Statistics and Analytics Department

\ I
Author: Pravat Ku mar Hati
Probability Theory Law of Total Probability
n n
Definitions
p (BJ = ~ p (Bl.A;] p [.A;J fl= LJA.
• Sample space !l i=l t=l
• Outcome (paint or element) w e !l BAYES' T REOREM
• Event A !;; fl n
p (B !.A;J p (A;J
• u -algebra. A
p IA, IB( = Ej=l p (BI A;Jp (A;] n = LJA.
0e A
1.

3. A e A
=
2. A,,A,, ... ,eA
= e LJ;:
-.A A
1 .A;eA Incluoion-Exolusion Principle
i= l

• Probability Distribution P
1. P (A[ ~ 0 'v'A
2. P [!l[ =1
3. p [QA;] =t. p ~[
Random Variables
Random Variable (RY)
• Probability space (fl, A, P) X :!l ➔ R

Properties Probability Maas Function (PMF)

• PIil = 0 fx(x) = P (X = "'J = P ({we !l: X(w) =:r}J


• B=llnB=(AU-.A)nB=(AnB)U(-.AnB) Probability Density Function (PDF)
• P(-.A] = 1 - P (A]


p (Bl= p [An B] +P (-.A nB]
P(!l] = 1 P (0[ =0
P (a 5 X 5 b] = J.• /(z) ,h
• ~ (Un A.)= n. -.An , (nnAn) = Un -.A. DEMORGAN
Cumulative Distribution Function (CDF)
• P IU. A.[ = 1 - P In. -.A.(
• P(AUB]= P (A]+P(B]-P(AnB] Fx : R ➔ (0, l J Fx(::i:) =PIX 5 :r(
= P(AUB] :, P (A] +P(B]
• P(AUB] = P (An~J +P(-.AnBJ + P (AnBJ
1. Nondecreasing: :r1 < :r2 =
F(::c,) 5 F(xo)
2. Normalized: lim.-.- = 0 and lim«-.+- = 1
• p [An ,BJ= p [AJ - P [An BJ 3. Right.Continuous: lim,,~F(11) =F(:r)
Continuity of Probabilitiea

• A, cA2 c ...
• A1:::>A2:::>, ..
=
= lim,,...._P[A.J=P[AJ
lim..-.-P (A.(=P(A]
wbereA=LJ;:,A.
wbereA=n:,A.
P (a 5Y 5 blX = x] = !. /yJX(lll!E)d11 a5b

/(:r, 11)
Independence lL

Conditional Probability
AlLB = P (AnBJ =P[AJ P(BJ
ln<rependence
frix(Y I:r) = /x(::i:)

P (AnB[ =
1. P (X 5 x, Y 5 yJ P (X 5 z] P [Y 5 11]
P(AIBJ = P(B( P (Bl > 0 2. fx,y(x,11) = /x(:r)fy(y)
Distribution Overview
Discrete Distribut ions
Notation1 Fx(z) Jx (x) 1B [X] V[X] Mx(• )

Uniform Uni!{o, . . . , b} {~::'°'


1
::::Sb
x> b
I (a < "' < b)
b - a +I
a+b
2
(b - o +J) 2 - l
12
eru _ e - (b+l)•

s(b - a)

Bemoulli B,.-n(p) (I - p)' - • ,,. (1 - p)'- • p p( l - p)

Binomw (:)p' (l - p)•-• np np(l - p)

Multioomw Mult(n,p)
nl St SJ,

L x, = n np, np,(1 - p,)
:rd ... :tA:1
1 .. 'Pitt
,_,
x - np )
(';)(;:':;) nm nm(N - n )(N - m)
Hypergeomclric Byp (N, m, n)
"'<I> ( Jnp(l - p) (~) N N2(N - 1)
1- p 1- p
Negative Binominl NBin (r ,p) (•+r - l)p'(l - p)" r- r-
r- 1 p p•
1 1- p
Geometric Ceo(p) 1 - (1-p)' •EN+ p(l - p)•-t :c EN+-
p ,;;- 1 - (1 - p)..
>..ll!e- "'
PoiBSOlll Po(>.) -.- ,- >. >.

Ull--~1

§
..... .. .•
..._ ..... p.♦l

hl!l. 11•♦.I
-
a .
l •; l
•• ... ••. l•
! I . •
~ ! \ .
!
! . \•,
\ •"
I

!
•.I
................ ................................... . . ~------------~
• • » » ., • • • •
Continuous Distributions
Notation Fx(z) /x(z) EIXI VIX) Afx(•l

Uniform Unif (o,b) {~--


= 1
z <B
0<2:<b
z>b
I(<> < < < b)
b-o
<>+ b
2
(b- <>)'
12
e•b - e 1•
s(b- o)

Normal N (µ,u 2
) ~(z) = [_ ¢(t)dt ¢(,:) = _1_ e,p { µ)'} (z- µ •
CT {
exp µa+-- u•••}
u..ni 2u2 2

Log-No,mal btN(µ ,u') ½+ ~ <rf [bt:ii' l .,J~c,2-{ (lo;,;;µ)'} eP+<i',/'J (e0


>
- l)e'I<+•
>

Multivariate Normal MVN(µ,I:) (2,r)-•1•11::1-1/>,- ! (•-P) ri,-• (•-p) µ I: exp {µ.T•+ ½aTEa}
r ( ~) ( .,• )-<•+1>1•
S~udant's t Studeot(v) (i, i)
I, Jinn'(,) 1 + -;;- 0 0

Chi-square •
X• 1 (k "')
r(k/2) 1 2' 2
1
~t•r(k/2) 2
il/'J-1

-•/'J I;; 2k (1 - 2si-•1• • < 1/2
(4 12)"1";,
(d1 d1) (412+1',)•1+4' do 2d~(d1 + do - 2)
F F(d1,do) J cl1~'i,,1; 2 ~2 ,-B(!IJ, t ) do -2 d1(do - 2)2 (do - 4)
1 -r/p 1
Expooeatial Exp(/1) 1
-•-~//J
-•
II
II 11• l-/1• (s < 1/fJ)
-y(c,, •/II) 1 o-1 -•/fl 2
Gamma Gamma. (a,/1) r(a) /J•"' • o/1 o/1 (1!11.) • C• < 1/11)
r(o)
0
r(o,!) fl _p_ o > 1 p•
lo.veme Gamma lnvGIIDllDA (o, fJ)
r (o) r(o)"'
-a-1 -fl/'z
• o-1 (o - 1)2 (o - 2)2
o> 2 2(1c~)•l'l Ko ( J-4.B•)

Dir;dilet Dir (c,)


r (E'
' •-1 o), IT

s~-1
o, E 1x,J (1- E 1x,))
II:-1 r (o,; c-1 t:'-1 o, t:'-, o,+ 1
r (o + fJ) o-1 (1 _ ),_, 0 o/1 - c-1 + ) •
Beta Beta(o,/1) J,(a,/1) r (o) r(fJ)" r o+/1 (o + /1)2 (o +II+ 1) l+~ }]a:P:r :,
1 k (a=) •-1 - ( •/>.)•
Wmbull WeibuD(A,k) -•-(:1:/>.)• r r • Ar(1+ ~) • ( 1+ :i;2) -µ •
Ar I; ~
"-o nJ
r(1+ ~)
k

Pareto Pareto ( Zm, o) 1- rmr


7 X~:t:m 0
.,::_
x~x'" ~ o>l •• 2 o(-xma) 0 r(-o, -:£:ma) 8 < 0
:ca+l o-1 (o - l)~o - 2) " >
\/11. . . l!IOft-lJ

:
- - •.• o,a>.-.:
...o.,I.. '
··""·'
•••?,.... Ol ' r,
...,_...,
- ..........,
. . .....,
11•?.•' •l

"""""'
11•-.,,,c,°• I
• -· -
..•.....,
h t

:
ll• l t2lG1• 1
.
:
:
t ~ .• I t:
/
~-------
... .
• I

--·J.
' : •
. L_ .
• ., •
:
•• .. .. , •

4 u u u u 4
' '
,.
........, - ...
e.,,en.....
: - ,, ' ...
..,. :.,.....,, = - ,.1 :
..,...u
- . .. 1,11 .. 1
•·· • - :tll• l

.. ... = .........1
~.. ,111, .... ,
'•'-• ..•......
. .. ,.... 1

\
..... ,...... ,a:,

~· \
~ , •
\ =

\
: :
~ ~~ ~
:
;
.
;
,
-. ;
:
\__
: g : :
, ,
• • •
- • • • u a

,.......... ..............
- ,. ,, ..•....
- ... ,..,, ,., -· "
.......
.....:.,.,..
~ ~ - l•l,••O..S &o•'-""' '
,. ,
• J . toU
•• , , •• 1
:. :
l • 1, 1 •'
lol, lo U
lol, 1 ..s
&o•l.••l
&o•'-••·

~
= -
. = •
t t, t t·

' '

. ~
• , ,
:
:
•• .. •• .. .. u
2

g
.. ., -.. u u u
. _J

~

, ,
Transformations • E (XY] = / :i:11/x,y(x,y) dFx(z) dFy(y)
lx,Y
'Iransfmmation function
o E (<p(Y)] j <p(E (Xl) (cL J ENSEN inequality)
Z = <p(X)
= =
Disc.rete

/z(z) = l' [<p(X) = z] = P [{x: <p(:i:) = z}] = P [X E <p- 1 (z)] = L /(:i:)


• E (X]
-
o P [X ;>: Y[ = 0

= LP (X ;:: z]
E (X] ;>: E (Y[ AP [X = Y] = 1 E (X] = E (Y]

:a:eip-t(•)
Sample mean
Continuous

Fz(z) = P [<p(X) 5 z] = f f(x) dz with A, = {a:: <p(:i:) 5 z}


IA. Conditione.l expec~a.tion

Specie.I case if 'I' strictly mollOtone • E(YIX =x] = J 11/(y lz)dy

/z(z) = /x(<p-l(z)) l!'l'-'(z)I = /x(x) 1:1 = /x(z)l~I


• E(X] = E (E (XIY]l
• E(<p(X,Y)IX =x[ = 1-: <p(,:,y).fy1x(11l:i:)d:i:
The Rule of the Lazy Statistician

E [Z] = j <p(x) dFx(,:) • E(<p(Y,Z)IX = :i:[ = 1-:


• E(Y +z IX] =E(Y IX) +IE (Z IX)
<p(y,z)/(Y,Z)jX(ll,z l:i:)dydz

IE (IA (z)] = f IA(x) dFx(x) = 1. dFx(x) = II' (X t A]


• E [<p(X)Y IX]= <p(X)E (Y IX]
• E(YIX)=c =
Cov(X,Y)=O
Convolution

1- zy~[ /x,Y(x,z-x)dx
• Z :=X+Y Jz(z) = fx,Y(x,z-x)dx =- 5 Variance
Definition IWd properties
• Z :=IX-YI fz(z) = 2 f
- -

/x,y(x,z +z)dx
0

• V(X) =•J = E [(X -E(Xl)'] =E [X']- E (X) 2

• Z :=; /z(z) =L lxlfx,y(x,zz)dx ,M- L xf,(x)fx(x)jy(xz)dx • V [t


i=l
X;] = t
e.=l
V [X;[ + 2 I: Cov (X;, Y;[
i#J

4 Expectation • v[t.x;] =t.V(X;) iffX;lLX;


Definition and properties
Stando.rd deviation
Lxfx(x) X mscrete sd(X) = yV(X] = ux

• EIX)=µx= j xdFx(x)= •
CoV8li&DCe
• Cov (X, Y] = E [(X -E (Xl)(Y -E [Yl)] = E (XY] -E (X]E (Y)
( j xfx(x) X continuous
• Cov (X,a[ = 0
• P[X=c]=l
oE[cX[=cE(X)
=
E[c] =c •

Cov(X,X[ =V[X[
Cov (X, Y) = Cov [Y.X]
• E IX +Y) =E(X) +E(Y] • Cov (aX,bY) = abCov (X, Y]
• Cov[X+a,Y+b]=Cov[X,YJ • Jim.,....-Bin(n,p) = Po(np) (n la.rge, p sme.11)
• Jim.,..._ Bin (n,p) = N (np, np(l - p)) (n large, p far from O and 1)
• Cov [t, x; ,t.Y;] = t.t.Cov[X,,Y;I Negative Bioomie.J
• X ~NBin(l,p)=Geo(p)
Correlation • X ~NBin(r,p) = I:;~1 Geo(p)
x YI= Oov [X,YJ • X, ~NBin(r,,p) ==> I;X, ~NBin(Er.,p)
I
P ' Jv [XIV JY] • X ~NBin(r,p). Y ~ Bin(s+ r,p) ==> P[X 5 •I= P[Y;,: rJ
Independence
Poisson
XlLY ==> p[X,YJ=O-=- Cov[X,YJ=O -=- E JXYJ =EJX] E[Y]
Sample variance
.x, ~ Po(A,) II X, lLX; ==> t,x, ~ Po (t. A;)
1 ~
S
2
n- 1 i:=l
- 2
= -L...J(X;-Xn) • x,~Po(A,)11X,1LX; ==> x, I:x;
n
j= l
~Bin
• (I:x;,E~
" A·
j=l
A;)
J=l J

Conditional varia.oce Exponentie.J


n
• v 1Y JX] = E [(Y -E 1Y 1xn• IX]= E [Y• IX] -E JY 1x1• • X, ~Exp(P) IIX, lLX; ==> I:x, ~Gamma(n,P)
• V[YJ =E[V[YJX]I +V JE[Y JX]l i=l
• Memoryless property: PIX > x + 11 IX > yJ = P JX > z]
6 Inequalities Norme.J
• X ~N(µ,u") ==> (x,7 ) ~/1/(0, 1)
CAUCHY-SCHWARZ
2
E [XYJ 5 E [X ] E [Y 2 2
] • X~N(p,u')11Z=aX+b ==> Z~N(aµ+b ,a2u2)
MARKOV
• X ~N (p, , crf) II Y ~N (J,2,u~) ==> X + Y ~N (}', +µ2,uf + ~)
p [cp(X) ;,: ti 5 E [cpiX)I • x, ~N (µ;,un ==> E,X, ~N (E,µ;, I;; ul)
• P[a<X 5b[=~(~)-~(7)
CBEBYSHEV
P IIX - E [XII f
;:: ti 5 v 1 • ~(-z) = 1 - ~(z) ,/1(:i:) = - z,/>(z)
• Upper quantile of N (0, 1): z 0 = ~-1(1 -
,/1'(:i:) = (z' - 1),/>(z)
o)
CHERNOFF Garruna
• X ~Garruna(at,P) -=- X/P~ Gamm&(o,l)
JENSEN
• Gamma ("'•P) ~ I:~=• Exp (P)
• X; ~ Gamma (o.,P) II X, lLX; ==> I:;,X, ~ Gamma(E,o.,P)
E [cp(X)J ;,: cp(E [XI) cp convex
r(at)
• --
Aa
-1- :t
o
a-1 - l , ,_
e u.:i;

7 D istribution Relationships Beta


Bioomie.J • 1 a-•(i - )fl- 1 = r(o+ P) a-•(i - )P- •
n
B( "'· p)"' "' r( at)rtp)"' "'
• X; ~ Bem(p) ==> LX; ~ Bin (n,p) • E[x•] = B(o+k,P) o+k-1 E[x•- •1
i=l
B(at, P) o+P+k - 1
• X ~ Bin (n,p),Y ~Bin(m,p) ==> X +Y ~Bin(n+m,p) • Beta(l, 1) ~ Unif(O,l)
Som e special transformatio ns :
• If;'( ~ B cta l (,n , 11 ) then ( 1 - X ) ~ B cta l (n , 111.)
~
I JX Bcta2(·,n . 11 ) itlwn l ~X ~
13ctal (u1,11)
• If X Bctu .1 (111.11) then 1 :._'\ , rv Beh12(1n,11)
rv

• If X ~ ~
Garn1na(n., 8) and Y Ga1111na (rn, 8)
and are iuclcpendcnt then
U = ;~ ~Befo2 (11. 111 }. V = x '~ 1, ~Befa l (11, ·11i) and U,V are a lso indcpc11dent

• S11,ving X ~ Chi square ( n) is eq11ivtdent to 1-1Hy ing X ~ Gan1111a. ( " I)


2' 2 .
• If X ~ U11ifon11 (0, 1) lhc11 - 2l11 (X ) ~ C hi Sq11n.rc· (2) .
• If)( ~ Dctn l(n, 1) then - 211/11 (X ) ~ C h i square (2)
• If X ~ Exponeul'ial (111can = ,\) tbcn \I: ~ C hi Sq1111re (2)
~
• If X I ,. t.hcu )( ~
2
F1.,.
• If X ~ F,,, ·" then IU +"r,t.,x ~ Beta 1( •.-~•. '2' }
• If X ~ ~
F.,,., , ,, then ...r1x Bctit2(!!.!.
2 . !.!.)
i
• If )(, Y a rc iid U nifonn (0, 1) ra n<lu1n variables ,
Let U = J - 2lH( ..Y).'li11 (21rY) nn<l \/ = J - 2l11 (X )cu.. (21rY ).
Then U, \I fo llows Non11al(O, l ) aud 1-1rc indcpcndc11t .
Probability a nd ~Ion1ent Generating Functions
• Gx(t) == B [tX] j,J < l

u., rt)= Gx(c' ) = E [· Xf] = B


•A [
(~t)']= E~ E (X•]
00

ET &!
-
•e
,=O •=0
• P (X = 0) == Gx (O)
• P (X == 1) = Gx (
0)
~ . c~1(o)
• P (.X = 1] = .,
=
• E ~\: ] C~'C(l-)
••
=
• E [-\ •) J1f) (0)
XI ] (t) _
• E [ (X _ k)! = G:c (1 )
• V(X) = G~-H•-) +G~1C11- ) -(G'x(1-))2
O
• Gx (t) = Gy lt) ==- X Y

Convergence
Let { X 1, X2 , •.• } be r~sequence of R\r's and let X be nnotber RV . Let F',. dBtote
the CDP of X n and let F dmote the CDF of X .

Types of oom-ergeuce

1. In distribution (wenkJ1~, in law): X,. ~ X

-~ lim F.,. (t) = F (t)

!.. In probability: X .. ~ X
Vt where F continuous

3. Alrrust surely (strongly): Xn ➔ X

P [ ~ X .. =X] =P (w E fJ : ~ Xn (w) =X(<..~)] = l


4. In quadratic mean (Lo): Xn ~ X CLT notations

Relationships
.....
•Xn ➔ X = p
Xfl ➔ X = Xn ➔ X
0

eX0 ~X = Xfl ➔ X
eX0 ~X11 (3ceR)P (X=c]= l X 0 4X =
•X0 4XII Y. ➔ Y
•Xn ➔ XAYn ~Y ~ Xn+Yn~X+Y
=Xn+Y0 ➔ X+Y

•Xn2+XAYn4Y ~ X,,Yn.!+XY
• Xn-.!+ X
• Xn Ei X
=
= \O(Xn)-.!+ \O(X)
\O(Xn) Ei \O(X)
Continuity correction

• Xn ~ b ~ lim......-E (Xn] = b II l ~ - V (Xn( = 0


• X1, ... ,X0 UDII E(X] =µ /IV (X] < 00 ~ Xn :!;µ
SLOTZKY'S THEOREM

• X 0 EiX andY0 4 c =
= X 0 +Yn EiX +c
Delta method

• X 0 Ei X and Y 0 4 c X 0 Y 0 Ei cX
• In general: X • .E; X !Llld Yn .E, Y =,!> Xn + Yn ~ X +Y
Yft =N (µ. :) = IO(Yft) =N (\0(11).(,p'(µ))' : )

10.1 Law of Large Numbers (LLN)


Let {X1 , ..• ,X.} l>e o. sequeaoe of IID RV's, E (X1] = µ , and V (X1] < oo.
Weak(WLLN)
- p
Xn ➔ µ, n ➔ oo

Stroag (WLLN)

10.2 Central Limit Theorem (CLT)


Let {X1, ••. ,X.} l>e a sequeaoe of IID RV's, E (X1] = µ , and V (X1] = o-2.
-.•. 0
I .:
i.

"
"ff"


f

.
8

l '·-.
, I .,
'
'
I

·~
0 •
II I

.~ I
•• •
0 •
~

I j 11i
f
. ..
0

• I

I •
8~
C
,
I i
z

You might also like