0% found this document useful (0 votes)
47 views5 pages

Solution 1758448

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views5 pages

Solution 1758448

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Solution

TEST SERIES-1 DIFFERENTIATION

Class 12 - Mathematics
Section A
1.
(b) ex cot ex
Explanation:
ex cot ex
y = log (sin ex)
log (sin ex)
dy d
=
dx dx

= 1

sine
x
dx
d
sin ex

my
= 1
cos e
x d ex
x
sine dx

= cot e x
(e )
x

= ex cot ex

e
2. (a) f ‘ (x) = g ‘ (x)

ad
Explanation:
1+x 1 (1−x).1−(1+x).(−1) 1
−1 ′
g(x) = tan ( ) ⇒ g (x) = =
1−x 1+x 2 2 2
(1−x) (1+ x )
1+(
1−x
)
Ac
3. (a) 2x (log 2)
Explanation:
Given that y = 2x
ine

Taking log both sides, we get


loge y = x loge 2 (Since loga bc = c loga b)
Differentiating with respect to x, we get
dy dy
1
or
ash

= log 2 = log 2 × y
y dx e dx e

dy
Hence dx
= 2
x
loge 2

4.
(b) (tan x)cot x . cosec2 x (1 - log tan x)
dy

Explanation:
Given that y = (tan x)cot x
Taking log both sides, we obtain
Vi

loge y = cot x × loge tan x (Since loga bc = cloga b)


Differentiating with respect to x, we obtain
tanx × cosec2x = cosec2x (1 - loge tanx)
1 dy 1 2
= cot x × × sec x − log
y dx tan x e

cosec2x (1 - loge tan × y) = cosec2x (1 - loge tanx) (tanx)cotx


dy
Therefore, dx
=

5.
(b) 1

Explanation:
Given that, x = at2, y = 2at
dy
dx

dt
= 2at and dt
= 2a
dy

dy
Therefore, dx
= dt

dx
= 2a

2at
= 1

dt

1/5
Contact - +91-9999906710
6.
(c) tan θ
Explanation:
x = a(cos θ + θ sin θ) ,we get
dx
∴ = a(− sin θ + sin θ + θ cos θ)

dθ 1
⇒ =
dx aθ cos θ

y = a(sin θ − θ cos θ) ,we get


dy
∴ = a(cos θ − (cos θ + θ(− sin θ))

dy
⇒ = acos θ − acos θ + θ asin θ

dy
⇒ = aθ sin θ

dy dy dθ
⇒ = ×
dx dθ dx
dy 1
⇒ = aθ sin θ ×
dx aθ cos θ
dy
⇒ = tan θ
dx

my
7.
(b) 3 (xy2 + y1) y2
Explanation:

e
ax+b
y =
2

ad
x +c

⇒ y(x2 + c) = ax + b
Differentiating both sides w.r.t. x we get
y1 (x2 + c) + 2xy = a
Ac
Again differentiating w.r.t to x we get
y2 (x2 +c) + 2xy1 + 2y + 2xy1 = 0

⇒ y2 (x2 + c) = -(4xy1 + 2y) ...(i)


ine

Again differentiating w.r.t to x we get


y3 (x2 + c) + 2xy2 + 4xy2 + 4y1 + 2y1 = 0

⇒ y3 (x2 + c) = -(6xy2 + 6y1) ...(ii)


ash

y2 2x y1 +y
=
y 3x y +3y
3 2 1

⇒ y3 (2xy1 + y) = 3y2 (xy2 + y1)


dy

8.
(c) a function of y only
Explanation:
Vi

y = ax2 + bx + c
dy
= 2ax + b
dx
2
d y
= 2a
dx2
2
d y
y
3
2
= 2ay
3
= A function of y only
dx

9. (a) neither continuous nor differentiable at x = 1


Explanation:
2

We know that domain of sin-1 x is |x| < 1 and so sin-1 (


1+x

2x
) defined only for |x| < 1.
Hence, f(x) is neither continuous nor differentiable at x = 1.
10.
√3+1
(b) 2

Explanation:

2/5
Contact - +91-9999906710
Given, f(x) = |cos x - sin x|,
We know that, < x < , sin x > cos x π

4
π

∴ cos x - sin x < 0


i.e. f(x) = -(cos x - sin x)
f'(x) = -[-sin x - cos x]
π − √3 1 √3+1
∴ f'( 3
) = -( 2

2
) =( 2
)

11. Let y = log(tan-1x)


differentiating both sides with respect x, we get,
dy d −1
= log(tan x)
dx dx
d
=
1

−1
×
dx
(tan
−1
x) [Using chain rule]
tan x
1
=
2 −1
(1+ x ) tan x

So, dx
d
{log(tan
−1
x)} =
2
1

−1
(1+ x ) tan x

my
12. We have, f(x) = loge(logex)
differentiating both sides with respect x, we get,
1 d

f (x) =
loge x dx
(loge x) [using chain rule]

e
′ 1 1
⇒ f (x) = ( )
loge x x

1 1

ad

⇒ f (e) = ( ) [∵ x = e]
loge e e

′ 1
⇒ f (e) = [∵ loge e = 1]
e

13. Let y = sin3 x + cos6 x


Ac
Differentiating both sides with respect to x
dy d d
3 6
= (sin x) + (cos x)
dx dx dx

= 3 sin 2
x ×
d

dx
(sin x) + 6 cos
5
x ×
dx
d
(cos x)

= 3 sin 2
x × cos x + 6 cos
5
x × (− sin x) [∵
d
(sin x) = cos x &
d
(cos x) = − sin x]
ine

dx dx

= 3 sin x cos x (sin x − 2 cos 4


x)

dy
4
∴ = 3 sin x cos x (sin x − 2 cos x)
dx

Section B
ash

2
14. Let y = e + 3 cos
sec
x
x −1

This is defined at every real number in [-1,1]. Therefore


dy 2 d 1
sec x 2
= e ⋅ (sec x) + 3 (− )
dx dx √1−x2
dy

2 d 1
=e sec x
⋅ 2 sec x (sec x) + 3 (− )
dx √1−x2

2 1
= 2sec x (secxtanx) e sec x
+ 3 (− )
√1−x2
Vi

2 1
= 2sec 2
x tan x e
sec x
+ 3 (− )
√1−x2

Observe that the derivative of the given function is valid only in (– 1, 1) as the derivative of cos–1 x exists only in
(– 1, 1).
15. Let y = log (xx + cosec2x). Then,
dy

dx
=
x
1

2
×
d

dx
(x
x
+ cosec x)
2
[using chain rule]
x +cose c x

dy 1 d d
x 2
⇒ = { (x ) + (cosec x)}
dx x 2 dx dx
x +cose c x

[ ab = ebloga]
dy 1 d d
x log x 2
⇒ = { (e )+ (cosec x)}
dx x 2 dx dx
x +cose c x

dy 1 d d
x log x
⇒ = {e (x log x) + 2cosecx (cosecx)}
dx x 2 dx dx
x +cose c x

dy 1 x 2
⇒ = {x (1 + log x) − 2cosec x cot x}
dx x 2
x +cose c x

16. Let u = log x


Differentiating both sides with respect to x, we obtain
du

dx
= 1

3/5
Contact - +91-9999906710
Let v = cot x
Differentiating both sides with respect to x, we obtain
dv

dx
= -cosec2 x
Now, du

dv
= du

dx
×
dx

dv
= 1

x
× (−
1

2
)
cose c x
2


du

dv
=− sin

x
x

17. Given, y = sec x - tan x .....(i)


Differentiating both sides of (i) w.r.t. x,
= sec x tan x - sec2 x ⇒
dy dy

dx dx
= sec x (tan x - sec x)
dy dy

dx
= cos x
1
{-(sec x - tan x)} ⇒ cos x dx
= -y [From (i)] ....(ii)
Again Differentiating both sides of (ii) w.r.t. x,
2
d y dy dy
cos x ⋅
2
+
dx
(− sin x) =- dx
dx
2
d y dy dy
⇒ cos x ⋅ =− + sin x
dx2 dx dx
2
d y dy

my
⇒ cos x ⋅
2
= dx
(-1 + sin x)
dx
2
d y (sec x−tan x)
⇒ cos x ⋅
2
= {-(1 - sin x)} {− cos x
}
dx
2
d y 1−sin x
⇒ cos x ⋅
2
=( cos x
) (sec x - tan x)
dx

e
2
d y
⇒ cos x ⋅
2
= (sec x - tan x) (sec x - tan x)
dx

ad
2

= y2
d y
∴ cos x ⋅
dx2

Section C
18. According to the question, x y x−y
= e
Ac
Taking log both sides ,
⇒ ylo ge x = (x − y)lo ge e

⇒ ylo ge x = (x − y)

⇒ y(1 + logx) = x
ine

x
⇒ y =
1+log x

Differentiating both sides w.r.t x,


d d
(1+log x) (x)−x (1+log x)
dy
[ Using quotient rule of derivative]
dx dx
⇒ =
2
ash

dx (1+log x)

1
1+log x−x⋅ 1+log x−1
=
2
x
= 2
(1+log x) (1+log x)

dy log x
∴ =
dx 2
(1+log x)

Hence Proved
dy

19. According to the question,we are given that x = 2 cosθ - cos 2θ


and y = 2 sin θ - sin 2θ
dy
then we have to prove that 3θ
.
Vi

= tan( )
dx 2

Therefore, differentiating both sides w.r.t θ, we get,


dx
= −2 sin θ + 2 sin 2θ

dy
and = 2 cos θ − 2 cos 2θ

dy dy/dθ 2(cos θ−cos 2θ)
∴ = =
dx dx/dθ 2(− sin θ+sin 2θ)

C+D D−C
θ+2θ 2θ−θ
2 sin( ) sin( ) ⎡ ∵ cos C − cos D = 2 sin( ) sin( ) ⎤
2 2
2 2
= ⎢ ⎥
2θ+θ 2θ−θ
C+D C−D
2[cos(
2
) sin(
2
)]
⎣ and sin C − sin D = 2 cos(
2
) sin(
2
) ⎦

3θ θ
sin( ) sin( )
2 2
=
3θ θ
cos( ) sin( )
2 2


= tan( )
2

20. We have,
y2 = a2 cos2 x + b2 sin2 x
⇒ 2y2 = a2 (2 cos2 x) + b2 (2 sin2 x)

4/5
Contact - +91-9999906710
⇒ 2y2 = a2 (1 + cos 2x) + b2 (1 - cos 2x)
⇒ 2y2 = (a2 + b2) + (a2 - b2) cos 2x ....(i)
Differentiating with respect to x, we get
= -2 (a2 - b2) sin 2x
dy
4y dx

= -(a2 - b2) sin 2x ....(ii)


dy
⇒ 2y dx

From (i), we obtain


2y2 - (a2 + b2) = (a2 - b2) cos 2x ...(iii)
Squaring (ii) and (iii) and adding, we get
2

= (a2 - b2)2 {sin2 2x + cos2 2x}


dy 2
2 2 2 2
4y ( ) + {2y − (a + b )}
dx

+ 4y4 - 4y2 (a2 + b2) + (a2 + b2)2 = (a2 - b2)2


dy
2
⇒ 4y ( )
dx

= (a2 - b2)2 - (a2 + b2)2


dy
2 2 2 2
⇒ 4y {( ) + y − (a + b )}
dx

= -4a2b2

my
dy
2 2 2 2
⇒ 4y {( ) + y − (a + b )}
dx

2 2 2
dy a b
2 2 2
⇒ ( ) + y − (a + b )= −
dx y2

Differentiating both sides with respect to x, we get

e
2 2 2
dy d y dy 2a b dy
2( ) + 2y =
dx 2 dx 3 dx
dx y

ad
2 2 2
d y dy

2
+ y =
a b

3
..[Dividing both side by 2 dx
]
dx y
Ac
ine
ash
dy
Vi

5/5
Contact - +91-9999906710

You might also like