Maths
Maths
Name: 葉澔謙 ( 24 )
Class: 3C
9 Pythagoras’ Theorem................................................................................................... 28
1.
(a) 7 35 ( / )
5元1張
2 2
(b) 1100 km 6 600 000 ( / km )
⼈
6000 lkni
(c) 1 75 ( / )
顆1分鐘
1 25
(d) 5 540 ( / )
1.8級1秒
2.
1 2
(a) 3 : 12 = (b) 0.4 : 0.6 = (c) : =
14 23 5 3 310
3. x:y:z
(a) x : y = 1 : 2, y : z = 4 : 1 (b) x : y = 2 : 3, x : z = 2 : 5
241 23 5
4. 1:n
(a) 4 cm : 8 cm = (b) 2 cm : 1 m =
1 2 150
5. 3x = 2y x:y=
A. 1 : 2 B. 2 : 1 C. 2 : 3 D. 3 : 2
r
6. a:b:c=2:3:8 c:a=
A. 1 : 4 B. 2 : 3 C. 3 : 8 D. 4 : 1
A. 2 : 5 B. 3 : 2 C. 4 : 3 D. 5 : 6 io
8. 6:5 1.65 m
9. 25 3:2
A. 10
ˇ B. 15 C. 18 D. 20
鷽
3 cm P
A. 3 B. 3.5 C. 4 ˇ D. 4.5
h cm
B C Q R
6 cm 4 cm
11. 16 20 m 25
30 m
(a)
攀百⼆ǒ 獨⽊橋
染
⼆1 25ms ⼆nmls
(b) 攀⽯
傑⼆8⼼筑
志
⼆357
麗珍 816357
⼆459
傑459357
麗珍志 ⼀
102元
2
13. 3:7 45
總數 05 45
步法 150間
3九⼆315
x 105
有⾏為
i雙⼈房
14. 1:2
2:5
ii
5 104
華英法⼆5 104
15. 1 : 16 000 14 cm
(a) ( km )
nooaiǜ
14
器
zitkm
(b) 2 ( km/h )
2.24混
⼆6
下Ikmlh
16. 2 cm : 0.75 m 45 cm
( m )
⺠5⼆步
北上33.75
九⼆16 9m
(1 − 4)
5. 1538
(a) 1450
= (1538 ) - ( 1450 )
=
88
(b) 1600
= (1600 ) - (1538 )
=
62
6. 78 m 2m
( )
(a) = 22 m
= m
1
(b) = m+ 1 m
78
= m
79
(c) = m- m
78
=
In
m
i
_o05kg
(b)
5xl00
3.125
15.
(a) 0.1 kg
1 8
1.8 1.9
1.7 2.0
(b) ( ) kg
台 x100
2.8
16. 288 cm 192 cm 288
1 cm
(a)
in
的上限
長度 ⼆ 垃
288
288 5
(b)
鷳的上限 hi
的
⾯積 2881925
上限
以5
5553
者0.04
x 0.1
(b)
上限⼆2.50.1
⼆2.6
下限⼆2.5 a
⼆2 4
Exercise
1. Determine whether each of the following equality is correct. If it is correct, put a ‘✓’ in the box, otherwise, put a ‘✗’.
a 0 3 4 3× 4
(a) = (b) × =
3a 3 x a b a×b v
5 6 5+6 1 3 1 3
(c) + = (d) + = -
x y x+y x x-2 2- x x-2 x-2
Short Questions
2a b x2 2x
2. × = 3. ÷ =
3b 4a
𨘋6 y y3 型
4 1 3 5
+ = - =
i
4. 5.
2x 2x 是 ab b
ii
In each of the following formulas, find the value of the unknown with the condition given in the bracket. (6 – 7)
V -R
6. A = x2 + 3 [x = 2] 7. P= [V = 4, R = 6]
2
( )-( )
A=( 2 )2 + 3 =
At P= 4 6 =
2 p
Long Questions
2b 4 a2 b3 a+b 15 4a - 2b 2a - b
8. × ÷ 9. × 10. ÷
3a 3
4b 6a 3a - 6b 5a + 5b a + 2b 2a 2 + 4ab
= = =
㵘筋筋 幾叭⽪叔 與
恐
x2day
31
⼭ ⼆
4an
7
1 1 1 3b 2a - b 5 3
11. + - 12. + 13. +
2a 3a 4a a + 2b 2 a + 4b y-3 6- 2y
= = =
iiiáia Ǜiii Ǚyb
⼆
ù 5btza
izy
2a41
In each of the following, make the letter in brackets the subject of the formula. (14 – 15)
Bx
14. x = L(1 + a) [a] 15. P = A - [x]
3
九⼆ Ltd
䛓 AP
器台 Bi 3 AP
公 xi x 3 A.pl
B
16. The cost price $C of producing n CDs is given by the following formula:
C = 250 + 1.75n
(a) A student union plans to produce 1000 CDs for the school open
day. Find the cost of each CD.
Cisotlt5110001
2000
⼀
thecostofeachCD 器
⼆2
(b) If the budget is $1650, how many CDs can be produced?
1650250 1的n
n 800
17. In a bookstore, each comic book costs $25 and each novel costs $40.
(a) If Amy pays $T for x comic books and y novels, express T in
terms of x and y.
F25x40y
(b) Tony has $250. After buying 4 novels, at most how many comic
books can he buy?
250 25x41401
3.6
8
ihecanbuy3comic
books
atmost
01 E B 02HK 410 03.i 2011/5/24 3 35 03
4 Identities and Factorization
Exercise
1. Determine whether each of the following equations is an identity. If it is an identity, put a ‘✓’ in the box,
otherwise, put a ‘✗’.
(a) 3x = x + 2 x (b) 2( x - 1) = 2 x - 1 x
2 2 2
(c) (2 x + 1) = 4 x + 1 (d) ( x - 5)( x + 5) = x - 25
x
Short Questions
4. 5q + 10 = 5. 3z2 - 6z =
51 多的21
6. a2b - ab2 = abla.by 7. 2c - 4d + 8e =
unite
Expand the following expressions. (8 – 11)
8. (2 x - y )(2 x + y ) 9. 3( x - 3)( x + 3)
= =
4ij 3 in
3x
=
Itfcill5ann.li
10. (5a + 2)2
25⼼20a 4
11. (2b - 7c )2
=
必212117c i
4528bct49c
A. P = 1, Q = 1 B. P = 1, Q = 5 C. P = 2, Q = 1 D. P = 2, Q = 5
ˇ
A. (2 x 2 - y 2 )(4 x + 2 xy + y ) B. (2 x - y )(4 x 2 + 2 xy + y 2 )
ˇ
C. (4 x 2 + y 2 )(4 x - 2 xy + y ) D. (2 x + y )(4 x 2 - 2 xy + y 2 )
Long Questions
LHS⼆死 8 L.H.si 2 x 1 12
⼼⼀ itzxtl
3 8
R.H.si 2 x 14x
x2 ti 4x
Yes xizx 1
18. Factorize the following expressions by using grouping terms method.x2 2x 1
(a) m + n + am + an (b) 3 + 3x - 4b - 4bx
i Yes
=mtntalmtnl = 3 1 x 4blltx
⼆lmtn at1
10
19. Factorize the following expressions by using the identity of difference of two squares.
(a) 16a 2 - 1 (b) 4 - 25b 2
= =221512
Mai.i
⼆14at1 14a n 1251 251
= 3nlciz.la
20. Factorize the following expressions by using the identities of perfect squares.
(a) a 2 + 6a + 9
a 32
5
(b) 4h 2 - 4h + 1
=
12以2灬灬
⼼
2
i
(c) 2 x 2 - 5 x - 12 (d) 3x 2 - 10 x + 8
=
1比 31 x 41YX 4 =
九州⼼
13 名怡
8九 3x_x 比 比⼆ 10九
⼀ ⼀
11
tf
(a) 36h 2 - 64 k 2 (b) 2a 2 + 12ab + 18b 2
= =
lbhi18ki 21àtbab95
⼆lbhtilbhtk 2Icinlapi13啊
213htntkizlzn.tk ⼆21a 3必
413ht4knitki
NF 23. Factorize the following expressions by using the identities of sum and difference of cubes.
12
Exercise
Short Questions
In each of the following, complete the table for the given equation. (1 - 2)
1. y = 2x - 6 2. 2x + 5y = -6
x -3 0 1 4 x -4 -3 3
2
y y 0
-12 - 6 -
4 2 ⾔ -2 ⼀
号
Solve the following simultaneous linear equations by graphical method. (3 − 4)
x + 2 y = 1 y
3.
3 x - y = 3 2
3x y 3
x 2y 1
x
1 0 1 2
The solution is x = ( ), y = ( ).
1 0
5 x - 3 y = -10 y
4.
4 x + 6 y = 13 4x 6y 13
x
2 1 0 1
5x 3y 10
The solution is x = ( -0
5 ), y = ( 2.5 ).
13
5. Solve the following simultaneous equations by the 6. Solve the following simultaneous equations by the
method of substitution. method of elimination.
x = 5 y ...... (1) x - 2 y = 9 ...... (1)
x - y = 4 ...... (2) x + y = 3 ...... (2)
7. Which of the following points does not lie on the straight line y - 2x = 2?
y
A. (0, 2) B. (-1, 0) 5
y 2x = 2
4
C. (1, 4) D. (2, -2)
ˇ 3
2
1
x
0
1 1 2 3
1
A. -10 B. -2 C. 2 D. 10
ˇ
3x + 9 y = -8 y
9. According to the graph on the right, solve ,
5 x - 7 y = 4 2
correct to 1 decimal place. 5x 7y 4
1
A. (-0.3, -0.8) B. (-0.2, -0.7)
ˇ
C. (-0.3, -0.7) D. No solutions 0
x
1 1 2 3 4
3x 9y 8
14
10. In a show, each Class I ticket and Class II ticket cost $12 and $5 respectively. The total number of tickets sold is
90 and the total income from the tickets is $870. If x Class I tickets and y Class II tickets are sold, which of the
following pairs of simultaneous equations can solve for the values of x and y?
x + y = 870 x + y = 90 x + y = 870 x + y = 90
A. B. C. D.
12 x + 5 y = 90 ˇ 12 x + 5 y = 870 5 x + 12 y = 90 5 x + 12 y = 870
Long Questions
2 x + 3 y = 4
11. Solve the simultaneous linear equations by graphical method.
x - 2 y = -5
2x + 3y = 4 y
x
4 1 0.5 多
名4 4
y
4 2 1 3
x
x - 2y = -5
2
x
x
I i 1
y x
x
-4 -3 -2 -1 0 1 2
The solution is .
y = 3x
學
12. Solve the following simultaneous equations by the method of substitution.
2 x + y = 5
(a) (b)
2 x + 3 y = 11 3 y - 4 x = 10
put 1into2 y 5 Ix
2x313x 11 put03into
Putx intoa
yen ifg 3152x 我 10 2位 g 5
x I 15⼀比⼀比⼆10 y 4
put ⼼00 1比⼆ ⼼ 5
䓬 爪 台 i 瓷
13. Solve the following simultaneous equations by the method of elimination.
2 x + 3 y = 13
o 5 x + 7 y = 8
(a) (b) o
2 x + y = 7 o 2 x - 7 y = 13
uirzx 03 i 5xnx⼆8
put into0 zx.it13
Ix 3 t Ix 13 N 21
zxtztx 13 3
x 2 put x 3into
putx 2into 2
2121tyit ⼼態 只
g3 15
i
⾏⾔
i.si
01 E B 02HK 410 03.i 15 15 2011/5/24 3 3 02
Junior Secondary Summer Exercise (S2 to S3)
x zilg.io
vi3xt8
0put
intoQx.iIBx
812了
x 訕台
x計⼆号 2
x 8 20
putx 8into
yi 3⼼ 8
y 32
16
Exercise
1. Determine whether each of the following expressions is correct. If it is correct, put a ‘✓’ in the box, otherwise,
put a ‘✗’.
1
(a) 2-3 = (b) ( x 4 )-3 = x 4-3 x
8
(c) (a -2 )3 = (a3 )-2 (d) -b -1 = b
v x
x -3 -3 - ( -7 ) -3 1
(e) =x (f) 2a =
ㄨ
i
x -7 2a 3
-5 NF (h) All binary numbers are even numbers.
(g) 0.000 087 = 8.7 × 10 ㄨ
Short Questions
2. Simplify the following expressions and express your answers with positive indices.
(a) a 2 × a3 × a 4 = (b) (- a 2 )3 =
5 6
d i
b ×b
= (d) (b3 )5 ÷ b7 =
i i
(c)
y
3 4
b ×b
3. Simplify the following expressions and express your answers with positive indices.
3x -2
(a) a -2 × a 4 × a -6 = (b) =
i x5 ㄋㄧㄤ
4
2a 0
(c) (-2b -2 )3 = (d) -3 =
i
m -2
-1
b
i ni
(a0b 2 )4
(e) 3 = (f) =
n mi mi (a 2b 4 )0 1 8
4. Use a calculator to find the values of the following expressions, and give your answers in scientific notation.
7.85 × 109 - 2.65 × 1010
(a) = (b) (6.84 × 108 )2 ÷ (3.8 × 10-5 ) =
7.46 × 1016 2.54x⼼ ⼼⼼
17
5. 5 x-1 =
1 5x
A. 5 x - 5 B. C. D. -5 x
5x 5
6. x7 - x3 =
7
A. x 7-3 B. x 3 C. - x 7+3 D. None of the above
Long Questions
Simplify the following expressions and express your answers with positive indices. (9 – 14)
3
2 3 2 ( - x 3 y )3 2 2a
9. (a b ) × (ab ) 10. 11. 4a b ÷ 3
( - xy 3 )2 b
=
dtixib
=
ii =
ybxi
巡8
⼆ oi joy3
i ⼆
是
-3 2
-4 -1 -2 -1
x -2 y 0
12. (3x y ) 2 3
13. (2a b ) 14. × -1
y x
= = =
nii 主5 x3 4
3X
2ti y
i
yi
18
Simplify the following expressions and express your answers with positive indices. (15 – 16)
8 2n 27 2n+1
15. 16.
2n- 2 9n-1
= =
ppn
zn2 5
20n 3on3
zn2 了
zcon.cn21
34n5
NF 17. y 如
Convert the following numbers into denary numbers.
(a) 110012 (b) BEAD16
⼆llxni14⼼ ⼼1613
25
48813www
NF 18. Convert the following numbers into binary numbers.
Nwwz
313no TDA
20. It is given that heartbeat rate of a human body is about 72 per minute. Suppose there are 365 days in a year,
calculate and express, in scientific notation, the total number of heartbeats a 15-year-old boy experiences since
his birth. (Give your answer correct to 3 significant figures.)
皉424436515
5⼼⼼
19
Exercise
1. In the figure, PRS is a straight line. Determine whether each of the following expressions S
is correct. If the expression is correct, put a ‘✓’ in the box, otherwise, put a ‘✗ ’.
R d
(a) a = b X (b) c = a ˇ b
Short Questions
2. 3. D 4. H
A
c
b
85°
80° 130°
a 32°
B C 2b 120° K I
E J
F
KJI is a straight line.
a= b= c=
65 20 50
5. P
Q 6. M 7.
4d X
e
46° R
50°
38° f
S 70° Y Z
PQR is a straight line. N P
d= 240 e=
40 f=
ti
20
8. 9. D 10.
A H
E 130°
2g
j
h I K
J
B C F G
IJK is a straight line.
DEF is a straight line.
g= h= j = 1200
30 65
11. 12. Z
M
P U 130° m
Y
k
N 42° 105°
130°
68°
X
O
W
k= 145 m= 2600
Find the unknowns in the following figures. Write down the answers on the answer lines and state the suitable
reasons in the brackets provided. (13 − 15)
13. In BDF, A
D
∠BFD + ∠BDF = ∠ (ext. ∠ of )
ABE 80°
132°
∠BFD + 80° = 1320 E
r
C
B F
= 520
14. In PSR, L P
21
15. In ABC, E
A
z 112°
∠ABC = ∠BAC = 60 ( )
prop.dk
4
56°
∵ Sum of the interior angles of polygon ABDE = ( - 2) × 180° B D
C
( )
BCD is a straight line.
Long Questions
E
B
ABIDE
岩笑flint.Ls
LBA
70lextLot N
歪恐
17. In the figure, HSK, HTM, KMN and STN are straight lines. Find p. H
46°
S p
T
70° 23°
K N
M
Lksnti230 N Lsumof⼼
LKSNǏ
p4Etilext.Lof⼼
p Hi
22
18. In the figure, EADH and FBCG are straight lines. Find n. E A D 60°
35° H
n 110°
⼼⼼⼆3⼼ext.isofpolygon
n356 F
B C
G
n 1550
念
m
Q
B
m 7512590120⼆540
130
jni
m P
105° 125°
D
C
⼆LWYxlbase.is的
LWXY
Lwxitnnxtmimǒusumorn
wixio X Y
LXIY LZYXlbae.Ls.tl
Lzi 14⼼⼼ Lsunof⼼
Lzito
Lwxziio40
⼆30
23
(2x - 3) cm
C
xtkIx 3
九⼆ 4
In21XIN⼆156in
18On 360 150n
n 15
(b) the size of each exterior angle.
180 15424
23. In the figure, BCD and EDF are straight lines. Find w. A
80° F
w 65°
B
LADCLACDlbase.Ls.AM C r D
LADC65
adj.Lonst.in
LEDC4654800 1800 E
⼭
悲淼 s.AM叫
24
Exercise
1. Determine whether each of the following is correct. If it is correct, put a ‘✓’ in the box, otherwise, put a ‘✗’.
4 4
(a) 4 is a surd. (b) 2.308 is a rational number.
x x
(c) 7 2 + 2 2 = 9 2 (d) 2 6 = 6 2
v x
45
(e) 12 - 2 = 10 (f) =3
x 5 v
Short Questions
(c) 0.25
卡 (d) -1.32
器
4. Determine whether the following numbers are rational or irrational. Put a ‘✓’ in the appropriate box.
Rational Irrational Rational Irrational
25
2 2 ( ) 10 10 ( )
(a) = × 3 (b) = ×
3 3 ( ) 5 5 ( )
3
=
琴 =
V5
24 ( )
(c) 6 × 3 5 = 3 × ______ × ______ (d) =
6 5 54 ( )
9
=
3坑 =
⾔
26
Long Questions
NF 8. Simplify the following expressions.
150
(a) 6 × 24 (b) -
5
=
派 =
5g
⼆12
no
= 4 = 的
2巧 wi
⼆
点 器
⼀些
⼀
Simplify theyg
following expressions. (10 − 15)
NF 10. 5 + 20 - 45 NF 13. 2( 8 - 3 )
= =
V5205 3巧 n_n
o 4no
2 + 128
NF 11. 75 - 2 27 + 3 48 NF 14.
3
=
5巧6巧tws =
ill
15
NF 12. 3 × 8 × 10 NF 15.
12 × 10
=
4圬 = 圬⼼5
2圬⼼⼼
忘 27
Exercise
Short Questions
Find the unknown in each of the following figures. (1 – 3)
1. 4 2. 3.
y z
41
3
x 12 40
35
x= y= z=
3A 下
3 9
Find the unknown in each of the following figures. (Leave your answers in surd forms.) (4 – 6)
4. 5. 6.
18 12
a
4
b c c
15
5
a = 6.40 b= 9 95 c = 8.49
Determine whether each of the following triangles is a right-angled triangle. If it does, put a ‘✓’ in the box and state
the right angle. Otherwise, put a ‘✗’. (7 – 9)
7. A 8. P
9.
Z
25
14 4 0.9 2 5 4
B C Q R X Y
20 4.1 6
28
y2 =
25
y=
5
12. In the figure, determine whether ABC is a right-angled triangle. A
2 2 2 2
∵ AC + BC = ( ) +( ) = 4225
33 56 65
33
2 2
and AB = ( ) = 4225
65
∵ AC + BC ( = / ≠ ) AB 2
2 2 B C
0 56
9
20 55
29
A. ∠A B. ∠B C. ∠C D. none of above
i
16. A ship sails 5.6 km due east and then sails 3.3 km due south. How far is it from the starting point?
Long Questions
17
Q S
6 R 9
PQ i lotqi
wamintci.no
18. Referring to the figure, find the length of PN. (Leave your answer in surd form.) P N
5 cm
7 cm
Q
NMWE 5 6 cm
it M
in
A x cm B
lxtqiix245
xiox it2025
x 108
30
20. To celebrate Christmas, Christmas lights are hanged from the top of B
building A to the top of building B as shown in the figure. Find the
length of the Christmas lights.
A
60 m
48 m
ABW35122 35 m
37
ithelenght oftheChristmaslightsis
21. At noon, two ships S1 and S2 leave port A at the same time. N
37m.si15B
Ship S1 sails due north at 15 km/h, and ship S2 sails due east at 25 km/h.
15 km/h
Find the distance between two ships at 3 : 00 p.m.
(Give your answer correct to 3 significant figures.)
S1
E
A
45 EN 1452 75 S2
25 km/h
Sz 25 ㄨ 3 Ei 87.5
75
22. In the figure, a ladder AB is placed against a vertical wall. If the top
B
of the ladder slides downwards by 3 m, how far does the foot of the
ladder slide on the ground? (Give your answer correct to 2 decimal 3m
places.) 10 m
9m
D c
Aciiii
Acn
cnwiò
an
AD派via
AD3 64
31
1 ( )
Exercise
Short Questions
2. Find the perimeters and the areas of the following figures in terms of π .
(a) (b)
8m
2 mm
6 mm
Perimeter = mm Perimeter =
不 2
4下 8 2
m
Area = mm Area = m
5下 8不
3. In each of the following figures, find AB and the area of sector OAB. (Give your answers in terms of π .)
(a) B (b)
9 cm A 15 m B
O
O 60°
216°
AB = cm AB = m
4 下
5
2
18
下
Area = cm Area = m2
20.3
下 135
下
32
4. In each of the following figures, O is the centre of the sector. Find the perimeter and the area of the shaded
region. (Give your answers correct to 3 significant figures.)
(a) A B (b) A
80° 5 cm
O 9 cm
B O
5. Find the volumes and the total surface areas of the following cylinders. (Give your answers in terms of π .)
(a) 2 cm (b) 3m
7 cm 12 m
(b)
Im
3.5 m 44 m3
i
Multiple Choice Questions
7. The figure shows a semi-circle. If the perimeter of the semi-circle is 28 cm, find
the radius of the semi-circle. (Give your answer correct to 2 decimal places.)
33
8. The figure shows a sector OPQ. If its area is 45π cm2, find the radius of the sector. P
A. 10 cm B. 12 cm C. 15 cm D. 18 cm
ˇ 72°
O
10. The figure shows a cake in the shape of a solid with uniform cross-section.
7 cm
Find the volume of the cake in terms of π .
45o
3 3
A. 3.5π cm B. 6π cm
ˇ 2 cm
Long Questions
lzoixi14冷⼀⼼吃 4 cm 16 cm
200 8128
licni
Q
2⽢⼼整齊
34
(b) Find the area of the sector OPQ. (Give your answers in terms of π .)
Arecilzoix360
恐
40下cni
13. In the figure, ABCD is a square. ABFD and BCDE are sectors with centres A A D
and C respectively. Find the area of the shaded region correct to the nearest E
integer.
10 cm
F
Areāzlimi ⼼⼼主
了
B C
5to
14. As shown in the figure, the metal cube is melted and recast into a
cylinder of the same height. Find the base radius of the cylinder.
(Give your answer correct to 3 significant figures.) 10 cm
10 cm
⼼⼼⼼⼼⼼
的
15. The figure shows a solid which is formed by removing a rectangular wooden 8 cm
64cmzilim.mn1
block from a cylinder. If the wooden block is of the same height as the cylinder,
find the total surface area of the solid. (Give your answer correct to 3 significant 2 cm 5 cm
figures.)
到5
2⽇
35
16. As shown in the figure, 80% of the cylindrical container is filled with water. If
some stones, each of volume 64 cm3, are put into the container, at most how many
stones can be put into the container without overflow?
20 cm
zoxnonxi.li
64
7 cm
q.li
overflow
i 9stonescanputintothecontainerwithout
17. The figure shows a cylindrical tank. Water flows from a pipe at a rate of 10π cm3/s.
(a) Find the time required to fill up the tank in minutes.
30 cm
丌118⽂3⼼⼼
60 18 cm
16 2min
(b) If water flows from the pipe into the tank for 9 minutes, find the total surface area that the water is in
contact with the tank. (Give your answer in terms of π .)
llixqx60
玔8 in tioi
qncni
36
11
Exercise
Short Questions
( ) ( ) ( )
sin θ = 5 , sin θ = 7 , tan x = 1 ,
( ) ( ) ( )
13 25 2
( ) ( 24 ) ( 1 )
cos θ = 12 , cos θ = , cos y = ,
( 13 ) ( 25 ) ( 2 )
( ) ( ) ( )
tan θ = 5 tan θ = 7 sin z = 1
( ) ( 24 ) ( 2 )
12
= = =
1It 0 51 0.63
3. In each of the following, find the acute angle θ correct to the nearest degree.
2
(a) sin θ = (b) tan θ = 2 (c) 3 cos θ = 2
5
θ= θ= θ=
24 63 62
37
4. Find the value of x in the figure, correct to 5. Find θ in the figure, correct to 1 decimal place.
2 decimal places.
M L
F
8
8 x 15
θ
20° N
D E
EF ( )
∵ tan ∠D = ∵ cos ∠N = MN
( ) ( )
DF
x ( )
∴ tan 20° = cos θ =
( )
(
8 ) 15
x =( )tan 20°
8 ∴ θ =(
5t8 ) (cor. to1 d.p.)
=( ) (cor. to 2 d.p.)
291
7. If cos x = cos 30° - cos 60°, find the acute angle x correct to the nearest degree.
8. In the figure, y =
6 75°
y
6 6
A. 6 sin 75°. B. 6 cos 75°. C. . D. .
ˇ sin 75° cos 75°
8 cm
8 cos 46° 8 sin 46°
A. cm B. cm
tan 32° ˇ tan 32° B
32° 46°
C
D
8 sin 46°
C. cm D. 8 sin 46° tan 32° cm
sin 32°
38
Long Questions
For questions 10 – 18, give your answers correct to 3 significant figures if necessary.
sinx 台 E
DFinto ⼆号
DEN
on
DF8 tanx⼆号
⼆年
XYii.ci sinu
炸41
cos u⼆ 年
cos30 洗 cos30 ⼼皓
x 10
0 36ci
x 8lt
⼆
sin35号
九⼆5sin35
sin0洗 x It
姚
39
14. N 15. E 6 H
5 50°
5
O θ 60°
x
F x G
I J
11
L M
7 IJHE is a rectangle.
LON is a straight line.
tan5⼼是
xiii to 淺
x 4.195498156
xǖnw
x 4no xzon
⼆
sin04195
些 xnza
co tanan品 513466
⼦
ooto
sin35是 35°
AB5 74 B C
cos35
咒
Bczia
5.735764
(b) Find the area of ABC.
Area 此8 mx5 74
D5cni
17. In the figure, Peter is flying a kite. Find the angle θ that the string makes with the
horizontal.
12 m
9m
sin0吾 θ
0 siri1到
1m
0 418
40
18. The figure shows a flagpole HK. Its top H is fastened by two cables HP and HQ. H
tan
巒
30° 45°
P
Q 11 m K
烈站0525580
圳
Mi
PQ⼆no5 li
8.05
41
12
Exercise
Short Questions
1. In the figure, AFB, CGD and EFGH are straight lines. Prove that AB // CD. A
C
Proof
E
∠FGD = ∠CGH (vert.opp.hn ) F
G H
∵ ∠EFB = ∠CGH ( given )
B
∴ ∠EFB = ∠ FGD
D
∴ AB // CD ( )
car.Lequal
2. In the figure, BCD is a straight line. Prove that BAC ∼ BDA. A
Proof 18 cm
3. In the figure, ABC and ADE are straight lines. Name all the isosceles triangles. E
D
LIADBABDEAEBC
45°
A C
B
42
Long Questions
E H
LAFGuaHlcorr.is F G
AB1lCDIiuGH
LFBDlart.LABncD
i.EHnBDlcorr.Ls.eqeun
B D
5. In the figure, AEB, BDC, AFD and EFC are straight lines. Prove that x = a + b + c. A
E a
F
x
LCDF b c
x ⼼ B C
Ftc.ixuic D
6. In the figure, AEC and BED are straight lines. Prove that ABE ≅ DCE. A D
B C
EBELECBi.EBECLABELDCElgiven.AE
micwertopp.in
三⽇
ABE
7. the figure, AEC and ADB are straight lines. Prove that EBC is an
InDCEIAMLDEBELEBclalt.L.DE A
isosceles triangle.
D E
B C
lBaLAED
LEcBlcorrL.DEnBc
LEBELECB
inEBCisanisoscelestriangle
43
LFED 162YIN 吣
B E
LEDF180no
302
⼼肛 ⼼30 C D
qo
iFDUD
9. In the figure, ABC and CDE are equilateral triangles. A
351801上sumoim
LADC 103
㗊㗊 您㗊
i 知⾔
it x it
44
13
1. 5 –7
(a)
20
x
(b) 15
10
x
1416 x
(c) 10.5 5 X
x
0
3 6 9 12 15 18 2
名
10
2. 40
20
(a)
15
x
x
xxffnf
(b) 10
129.5cm 5
x
0
129.5 139.5 149.5 159.5 169.5 179.5 189.5
(cm)
3. 1 2
1
(cm) 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70
2 4 7 11 6
45
4.
(a) 2 50
24 40
30
(b) 60
20
10
= %×
w
0
= 60 % × 30 1 1.5 2 2.5 3 3.5 4 4.5
=
孔
∴ 60 = 30
5. 20
9 10 11 12 13
2 4 5 8 1
(a)
(b)
圖
圓形
6.
2 2
60
60 50 i
40
30
50
20
10
40 0
A B A B
(a) (b)
2
46
7.
I.
20
15
II. $20
10
III. $25
5
A. I B. II
0
10 15 20 25 30 35 40 45
C. I II ˇ D. I III
($)
8. 80
80
A. 48 B. 50
60
C. 55 D. 59
ˇ 40
20
0
40 45 50 55 60 65 70
9.
I. II. III.
0 0 0
A. I B. III C. I II D. II III
ˇ
10. 50
I. II. III.
0 0 0
50 50 50
ˇ A. I B. II C. I III D. II III
47
A. B.
ˇ C. D.
12.
( )
(a) 5-9 4
10 - 14 8
15
15 - 19 11
10 20 - 24 8
5 25 - 29 6
30 - 34 3
0
2 7 12 17 22 27 32 37
名
25
13. 90
(a) 80
40
30
⼦ 23
六⽉ intnati 20
12
以
⼆7.8 10 a
4
胡⼆niiiinxno 0
35tn 35 45 55 65 75 85 95 105
(b) ⼆⽉
48
14.
(a) 17 0
100 22 45
100
27 65
75 32 90
x 37 100
50
x
25
0
x
17 22 27 32 37
(b)
分
下四位數 if
25
(c)
分
上四位數 if
in
27
㖚xwo
65
15. 2008
2009
(a) 2008 2009
⾔ 12
⼆zi3
8
(c)
49
x - 2y = -5
4 Identities and Factorization 3
2. A = 2, B = 1 3. A = 4, B = -12 4. 5(q + 2) 1
5. 3z(z - 2) 6. ab(a - b) 7. 2(c - 2d + 4e)
x
8. 4x2 - y2 9. 3x2 - 27 -4 -3 -2 -1 0 1 2
10. 25a2 + 20a + 4 11. 4b2 - 28bc + 49c2
The solution is x = -1, y = 2.
12. B 13. C 14. D 15. B
12. (a) x = 1, y = 3 (b) x = 0.5, y = 4
16. (a) A = -1, B = 3 (b) A = 7, B = 4
13. (a) x = 2, y = 3 (b) x = 3, y = -1
18. (a) (m + n)(1 + a) (b) (1 + x)(3 - 4b)
7. C 8. C 9. A 10. D
13 Statistical Diagrams and Graphs
11. 16π cm2 12. (a) 324° (b) 360π cm2
1. (a) Time spent by a group of teenagers
13. 57 cm2 14. 5.64 cm 15. 258 cm on surfing the Internet in a week
20
16. 9 17. (a) 16.2 minutes (b) 924π cm2
15
Frequency
11 Basic Concepts of Trigonometric Ratios 10
( DF ) 10
x
∴ tan20° =
(8 ) 5
x = (8) tan20°
0
= (2.91) (cor. to 2 d.p.) 129.5 139.5 149.5 159.5 169.5 179.5 189.5
Height (cm)
( MN )
5. ∵ cos ∠N = (b) 134.5 cm
( LN )
3. Length less than (cm) 20.5 30.5 40.5 50.5 60.5 70.5
(8 )
cos θ = Cumulative frequency 0 2 6 13 24 30
(15)
θ = (57.8°) (cor. to1d.p.) 4. (a) 24
6. B 7. A 8. D 9. B (b) ∵ Corresponding cumulative frequency
4 4 = 60% × total frequency
10. (a) 8 (b) sin x = , tan x =
5 3 = 60% × 50
40 9 = 30
11. (a) 41 (b) sin u = , cos u=
41 41
∴ From the graph, 60th percentile = 2.5 hours
12. x = 8.66, θ = 44.4° 13. x = 2.87, θ = 36.9°
5. (a) bar chart (b) pie chart 6. Figure (b)
14. x = 5.96, θ = 31.7° 15. x = 2.89, θ = 67.1°
7. D 8. C 9. B 10. A 11. C
16. (a) AB = 5.74 cm, BC = 8.19 cm (b) 23.5 cm2
17. 41.8° 18. (a) 11 m (b) 8.05 m
0
2 7 12 17 22 27 32 37
Time (min)
(b) 33
7 2
13. (a) In June: 7 %, in July: 26 % (b) July
9 3
14. (a) BMI of 100 citizens
100
Cumulative frequency
75
50
25
0
17 22 27 32 37
BMI
(b) Lower quartile = 20, upper quartile = 29 (c) 35%
15. (a) 2 : 3 (b) No
(c) Yes. The diagram gives an impression that the number
of sales of bottle of water in 2009 grew significantly
compared with the sales in 2008.