Solution For The Solidification of Liquid Slab: Exact A Mixture
Solution For The Solidification of Liquid Slab: Exact A Mixture
B. N. Antar, F. G. Collins,
and A. E. Aumalis
The University of Tennessee Space Institute
Tulahoma, Tennessee
Prepared for
George C. Marshall Space Flight Center
under Contract NAS8-34268
National Aeronautics
and Space Administration
Scientific and Technical
Information Branch
1986
                           FOREWORD
    The work reported here concerning formulation and solution
of a two phase mixed Stephan problem is relevant to alloy
solidification and crystal growth processes such as those being
investigated in low gravity experiments aboard orbiting
laboratories. The work was supported by the Atmospheric Science
Division of the Systems Dynamics Laboratory at the Marshall Space
Flight Center.
                          TABLE OF CONTENTS
CHAPTER
  I   .            .......................
          INTRODUCTION                                              1
I1 . PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . 4
Numerical Method . . . . . . . . . . . . . . . . . . . . 25
Analytical Method . . . . . . . . . . . . . . . . . . . 28
Computation Results . . . . . . . . . . . . . . . . . . 37
LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . 68
. . . .
                                 iv
                                LIST OF FIGURES
FIGURE PAGE
numerical. ....................... 40
numerical. ....................... 41
 6.   Concentration distributions at P = 10
                                             S
                                                -4
                                                    .........             42
 7.   Concentration distributions at P = 10
                                             S
                                                -5
                                                    .........             43
8.    Concentration distributions at P = 10
                                             S
                                                -6
                                                    .........             44
                                         V
FIGURE                                                                              PAGE
R=1.06 ........................ 58
R=1.06 ........................ 59
R=1.06 ........................ 60
                                               vi
                              LIST OF SYMBOLS
depth of slab
d solute diffusivity
C concentration
C        specific heat
     P
h        heat transfer coefficient
k thermal conductivity
i; partition coefficient
11 latent heat
interface
temperature
t time
z distance
IC thermal diffusivity
P density
                                    vii
                                CHAPTER I
INTRODUCTION
the two phases, with release or absorption of latent heat at this inter-
did not find the constant of proportionality. The first known solu-
tions for this problem were found by Neumann (1860) and Stefan (1889)
[ 6 ] . The solution takes the form of error integrals and the position
at the interface.
                                     1
namely, the interface position and the temperatures of both phases.
of the two phases, adds three more unknowns to the problem. Work done
valid. To describe the system for all time, we must resort to numer-
algorithm using the Implicit Imbedding technique that solves the prob-
lem of the slab, but does not take into consideration the case of alloy
solidification.
finite slab, with heat dissipation from both the upper and lower sur-
ferences between solid and liquid phases. This causes a moving upper
                                     2
presented.     One, a purely numerical technique, makes use of a Runge-
tion gradients that cause more carbon to diffuse to the surface. This
outer layer is no longer of the same type steel and would have to be
                                      3
                                                   CHAPTER I1
PROBLEM FORMULATION
I n t h i s c h a p t e r w e w i l l d i s c u s s t h e f o r m u l a t i o n of t h e b a s i c
s i s t i n g of a b i n a r y l i q u i d a l l o y , i n i t i a l l y a t c o n s t a n t t e m p e r a t u r e ,
a l l o w f o r d i f f e r e n t d e n s i t i e s f o r t h e s o l i d and l i q u i d c a u s i n g a
d i f f u s i o n i n t h e s o l i d and l i q u i d w i l l b e i n v e s t i g a t e d . S i n c e t h e sub-
s t a n c e i s an a l l o y , t h e f r e e z i n g temperature w i l l b e dependant on t h e
F i g u r e 1.
                                                           4
                   0
                   QI
                   5
 0       n
a        u
         W    II
II       VI
              N
N
     5
in the liquid, and
                                                    2
                              --
                               aTS              a Ts
                                                -
                               at
                                     - K
                                           s            2                               (3)
                                                az
                                                    2
                              --                a       cs
                               at - ds 2                                                (4)
                                                az
S(t) is the interface position and p , K and d denote the density, thermal
                             aTS     aTR                       dS
                        ks   az - kt az             = psR      dt                       (5)
                       acS
                Psds   Ti--   PRdR   az -
Equations (5) and ( 6 ) are the conservation of energy and mass equations
                        c,
and liquid must be at the equilibrium melting temperature, Tm, and the
                                            6
                             Tm = Ti - mC                                 (7)
                                            II
will begin to increase. Since the method of solution does not depend
the form:
atz=O
                                aT = h2 (T,
                                -
                          - k g az
                                                 - T2)
                                    7
                     t
                     v)
            0
            cn
            0
            a
L
i=I   .-c
      I-
                          c
U     Q)o
0     FF
      c
                          0
                          t
Q)    C                   c
I     Q)
      ?              os        El
                              rn
                               I
      $0             O &      P
          (D              n   b
E     .-0
      E                       N
v)    0
      c                       a,
 I    40
n           tn
n
            0
            d-
            %
            0
            N
            0
                     a
                     n
                 8
where subscripts 1 and 2 denote lower and upper surfaces, respectively.
Equations (9) and (11) represent heat dissipation from the surfaces by
governing equations are (l), (2), and interface condition (5). They do
not allow for a density change between the solid and liquid, i.e.,
Ps
     --   Pg’   The boundary conditions at zero and         are
Ts = 0 at z = 0
The solutions
                            TR = T   -   Berfc (- = >
                                                 2 f i
                                                     S
                               Ts = Aerf (- = >
                                           2 f i
                                                 S
dition
                                           9
                                       Ts=T             = T         a t z = s
                                                    R           m
we have
                                       S                                      S
                          Aerf (-             ) = T         -   Berfc (-)             = Tm
                                    2Q                                       2 4 7
                                              S
                                         -=                 X = constant
                                           2 q -
or
s = 2hQ
r e w r i t i n g t h e s o l u t i o n a t t h e i n t e r f a c e , w e have
                                Aerf(X) = T             -   Berfc ( A
                                                                             p)
                                                                              KR     = Tm
                                                           m
                                                  A =
                                                        erf (A)
                                                            T   -   Tm
                                              B -
                                                    erfc
                                                                         R
Now, u s i n g t h e i n t e r f a c e c o n d i t i o n ( 5 ) , w e can e v a l u a t e t h e c o n s t a n t A :
                                                            10
                           2
                                                               exp(-        -
                                                                            K
                                                                              R
                  exp(-A )      - -k                 T
                                                          m                              =-    ARJ;;
                                                                                              C T
                   e r f (A)                          m
                                       S                                                       ps
S t e f a n ' s s o l u t i o n assumes t h e l i q u i d i s i n i t i a l l y a t t h e m e l t i n g
temperature (T = Tm), g i v i n g t h e e q u a t i o n f o r A a s
                                             2
                                       Aexp(A ) e r f ( A ) =        -      u
a?G
          Adding t h e change i n d e n s i t y t e r m (p / p
                                                                            s R
                                                                                     -   l), so that the basic
e q u a t i o n matches e q u a t i o n , ( l ) , changes t h e s o l u t i o n i n t h e l i q u i d
r e g i o n t o t h e following:
                       Ts = T     - B e r f c [-
                                                  2J"R"
                                                              + A ( - -p~
                                                                     PR
                                                                                1)   J21   R
with
                                                      T - T
                                                               m
                                           B =
er f c (A-
and t h e e q u a t i o n t o determine A :
                                                        11
                      Numerical Technique, the Method of Meyer
one such technique using the Invariant Imbedding Method. This tech-
nique also allows for the use of non-linear boundary conditions. The
and boundary conditions (9) and (11). Since numerical methods are
       c   = -C                                                     Lewis Number
             cO
                     cO
       M     TI      -    To
                               m                       = -ds
                                                           =        Lewis Number
                                                  ps       K
                                                               S
             K
       K = KS                                              hido
                                                  B.   =   -= Biot Modulus
                 R                                 =           kR
                                             12
       z = -z
             do
             k                                          T2   - To
                 S
       A=-                                        Y =
             kg                                         T1   - To
             T       -   To                             K
       o =
             T1      - To
                                 aos        a 2os
                                -- -   K-
                                 aT               2
                                             aZ
                                aos
                              A---=
                                       aoR        RL -
                                                      dS
                                az     az             dT
                                       13
yielding a set of ordinary differential equations, solvable at discrete
time steps, N. Next, equations (13) and (14) are rewritten as a first
order system.
                 N
                0%   - oIIN- 1            -            -    N- 1
                                 -   (R       1) (SN       S       )   uII   =   u’n.
                       AT                       AT
                                 osN - osN- 1
                                          AT         = KU’,                                        (19)
                                                               N
                                                       +   zII
then
                                               14
                                                                                                 N'
                                                                       N            N            N'
                                   *';            =   Y
                                                      ;
                                                      1       + Y
                                                                       R                 +    zR
                                                                                                N- 1
  N'                                                                                                           N N           N
                                                                               AT               AT          FRYR OR   -   FRZQ
where
                                                  - (R -      1) (SN             -      SN-')
                                         FR       -                        AT
rearranging,
                                                                                                                         N- 1
                                                                                                                       0
                                         + FRYRN ORN                   -                -                       FRZR --
    Y '0 N     +   (YRN ) 2 0;                                    =         Z N'              YRN Z RN      -      N    R
     R R                                                                     R                                            AT
from t h i s we g e t t h e e q u a t i o n s f o r Y                       and Z
                                                                       R                 R'
                               Y
                                   N'
                                              =   -         N 2
                                                          (YR )                      N
                                                                                            + -AT1
                                   R                                   -
                                                                                                  N-1
                               ZR
                                   N'
                                              =   -    N
                                                      YE
                                                                  N                     N     --uR
                                                                           -    FRZR                   AT
                                                                       N
                                           UaN
                                                      = YII" 0
                                                                       R
                                                                               + Z RN
i s s u b s t i t u t e d i n t o (17) t o y i e l d
                                                                  15
and theref ore
                                                     N
                                                    ZR   (Zf) =          -   B2Y
                                               usN   =
                                                          N
                                                         Ys        osN   + zsN
                                           dY   ,"
                                           - - - --       1           N 2
                                               dz        KAT         us1
                                                                   N = -B 1
                                               at z =
                                                          0Ys            A
                                                                               N- 1
                                   -dZ=
                                      ," -                N         N        OS
                                      dz
                                                         Ys        zs -      ___
                                                                              KA 'c
                                                              16
                                    N
                                -doR
                                  - -
                                  dz       Y;         0;    + z RN
                                    N
                                dos
                                - dz
                                  - -      Ys
                                                 N
                                                     osN + zsN
              c; -       N- 1
                        CR
                                         - 1)               -       N- 1
                                -   (R               (SN        S
                                                                           VR = P V '
                   AT                                 AT                         R R
Vs = C I S
                                csN -     c;-1
                                                       =    KP V'
                                         AT                     s    s
Om = Oi - MCR
cs = iCR
                                                 17
                                     ac,"
                                     -=             0                            (32)
                                      az
                                     ac,N
                                     --           - 0                            (33)
                                         aZ
                                              N     N        N
                                     = XI1 CI1           + RR
                                              N     N
                               V,"   = Xs          Cs    + R,"
at z = Zf x; = 0
                      dR:
                      --     - - [ FR    N ] RN ~ --
                                   P + X ~
                                                                 PRAT            (35)
                        dz
                                     R
at z = Zf :R = 0
at z = 0 x,"=o
                                              18
                            d
                            R
                            :                              cSN-1
                           --
                             dz
                                      --   xsN     N
                                                  Rs
                                                         --U   S A ~             (37)
at z = 0 R:=O
                                d
                                C
                                :
                                --     -   XgN CRN      + RgN
                                 dz
                                d
                                C
                                :
                                --     - XsN      CsN   + RsN                    (39)
                                 dz
ature and concentration distributions from the previous time step are
                                             19
p o s i t i o n and t i m e , which i s a p p r o p r i a t e t o t h e s p e c i f i c c o o l i n g a t t h e
w i t h boundary c o n d i t i o n s
                                    aog
                                    -az- -     Bl(Oll     -    1)   at z = 0                                   (41)
                                     aoR
                                    - = -          B2(Og+Y)          at z = 1
                                      az
and w i t h i n i t i a l c o n d i t i o n s 0         = 0 a t T = 0.       The s o l u t i o n i s d e r i v e d
                                                   R
u s i n g s e p a r a t i o n of v a r i a b l e s .     The s o l u t i o n of t h e homogenous p a r t
t a k e s t h e form
then
ZT' = Z"T
or
                                                 T'       Z"             2
                                                                    -A
                                                 T        Z
                                                           20
             _
             dT -
                - -A   2
                           T                                                    -dLZ
                                                                                  - -   -A
                                                                                             2
                                                                                                 z
             dT                                                                    2
                                                                                dz
                               2
        T = Alexp(-A               T)                             Z = A2sin(Xz)          + A 3c o s ( X z )
and
                   aoR
                   -- -            A[A2cos(Az)       - A3sin(Az)]           exp(-X 2 T )                      (44)
                    32
a t z = O
                                               2                            2
                                   AA2exP(-A       T) = B 1A 3exp(-A            T)
                                                      B1
                                           A2 =       A  A3                                                   (45)
a t z = 1
using (45)
                                                      21
                                                      lA3
          B1A3cos(X)   -   XA3sin(X) =   -   B2 [     -
                                                      X
                                                          sin(A) + A3cos(X) 3
                                                  2
                                                  X - B1B2
                   (B1 + B2)cos(X)       = [           h     sin(X)   3
B = B1(a - 1)
and
                                             22
                                                          B1(l     + B2) -      B2Y
                                              a =
                                                          B1(l     +    B2) + B2
Now u s i n g t h e i n i t i a l c o n d i t i o n
we can s o l v e for t h e
                                     %
                     0 = a       +   Bz   +       1       p”   [x
                                                               B1
                                                                N
                                                                  sin(A
                                                                               N
                                                                                   z)   + cos(A,z)]
                                              N= 1
                                          -   a       -   Bz =          C   %EN(z)
                                                                    N- 1
AN
                                                                   23
NOW, to calculate the distribution for the first state, N = 0, we must
ing temperature,
                       Om
                            .   The initial temperature distribution is then
equal to O ( Z , T
                     sol)
                                           24
                                               CHAPTER I11
Numerical Method
assumed. Once these equations are solved, the temperature and con-
surface for the solid and from the interface to the upper surface for
                                                      25
the liquid.   The time is then advanced by one time step, AT, and the
                                                      -5
                                      P       = 10
                                          S
K = 2.7
AT = 1
if
                      y’ = f(z,y) with a -
                                         < z -
                                             < b
                            w       = boundary value
                                0
                                kl = hf(xi, wi)
                                                               1
                         k 2 = hf(xi            + -h2 , wi   +-k )
                                                               2 1
                                                               1
                         k3 = hf(x
                                            i
                                                + h? , w i   +yk2)
k4 = hf(xi+l , wi + k3)
                               = -
                                 1 (kl          + 2k2 + 2k3 + k4)
                       W i+l      6
f o r each i = 0, . . . ,N - 1.
following values:
For i = 0
                                                             2
                               kl = +7.407           x 10
k2 = - 2 . 0 0 3 x 10 3
kg = - 1 . 9 3 1 x 104
                               k4 = - 7 . 4 6 0      x 10
                                                             6
and
                                                             6
                               w1 =        - 1.250   x 10
For i = 1
                                                             10
                               kl = -3.127           x 10
                                                27
                                                             18
                                 k2   = -4.889        x 10
k3 = - 1.195 x 1035
                                 k, = -2.865          x 1068
                                  4
The calculation for k       causes overflow on the VAX 11/780, which has an
                        4
upper bound of order 10
                            38
                                 .
                                     Analytical Method
                                                 U'
                                          Y=,
U" + Bu' - AU = 0
                                            28
                              r2   + Br - A     =   0
                                 = -
                                   1    (-B    2    B + 4A)
                                                    7
                         r 1,2      2
u = Clexp(rlz) + C2exp(r2z)
then
                            rlexp(rlz)    + Cr2exp(r2z)
                        =     exp(rlz)    + Cexp(r2z)
where
                                          U'
                                    Y   =y
yielding
u" = Au
u = clexp(Jji;Z) + C2exp(-fiz)
                                        29
with
                                          -dy- - - F ( z ) y         -   G(z)
                                          dz
b u t can b e e a s i l y solved u s i n g t h e V a r i a t i o n of P a r a m e t e r s t e c h n i q u e
[91
                          z                             Z                         2'
        y = exp(-                F(z)dz) [ C    -   I        G(z')exp         (IF ( z ) d z ) d z '   ]
                         Z                          Z                            Z
                             i                          i                            i
known t o b e h i g h l y s t a b l e , a l l o w i n g s o l u t i o n s t o be o b t a i n e d a t lower
c e n t r a t i o n p r o f i l e s a t each t i m e s t e p .
                                          rlexp(rlz)             + C 1r 2e x p ( r 2 z )
                                 Y;   =
                                            exp(rlz)             +   Clexp(r2z)
                                                            30
                             L        L
                                          N- 1
= exp(-
          Zf
               (F,+Y;)dz)   [ C2-     1
                                      Zf OR
                                           -
                                           AT
                                              exp( jzf (FR+Y;         )dz)dz']   (49)
          Z                           Z                 2'
C2 = - B2Y
                                          6K    - B,I
                                 c5   =
                                          bK    + B1
                                         N- 1
                                      2 0S              2'
  N                ' N
 Zs = e x p ( - I    Ys dz) [ C 6 - l      -  e x p ( l    Y;dz)dz'     ]
                  0                  0 KAT            0
                                    C6 =
                                               - B1
                                               -A
                                          31
                                                1        FR
                                      r 1Y2   =T[-P
                                                  R
                                                    f
 N
RR = exp(-
                      FR
                 I"f (-+Xx, N
                              )dz) f
                                     z                cN-l
                                                      *exp(-
                                                                                    FR
                                                                              I "f (-+xR             N
                                                                                                         )dz)dz'    (53)
                 z   pR                         z                             z'    pR
                                                 N =-                      6z )
                                                                     tanh( -                                        (54)
                                                              S
                                                                              ?T
                                                                               S
u s i n g t h e V a r i a t i o n of Parameters technique [ 9 ] .
       N                                                                                 z
     OR ( z ) = e x p (   I'           N
                                      YR dz) [ C g      + I'           N
                                                                      Z R exp(      -f            N
                                                                                                 YR dz)dz' 3        (56)
                          z                                  z                          2.
                                  i                              i                          1
      N                       '       N                                  N               '       N
     Os    (2)   = exp(               Ys dz) [ Cl0      +Iz           Z s exp(      -            Ys dz)dz' ]        (57)
                          z.                                 z                          z
                              1                                i                             i
                              z                                                          z'
       N                               N
     cs    (2)   =exP(    I           Xs      [ CI2   + I'         Rs
                                                                     N
                                                                             exp(   -I               N
                                                                                                 Xs d z ) d z ' ]   (59)
                          z                              z                              z
                              i                           i                                  i
                                                                 32
           The c o n s t a n t s , C       and Cll, r e p r e s e n t t h e temperature and con-
                                       9
c e n t r a t i o n of t h e l i q u i d a t t h e i n t e r f a c e .     The c o n s t a n t s , Cl0 and
from t h e i n t e r f a c e down.
e v a l u a t e d as
                                                      N
                                                     Ys       = 6
whenever
f o r example,
w a s e v a l u a t e d f i r s t , t h e n t r e a t e d as a c o n s t a n t s o t h a t i t could b e
exponents are e v a l u a t e d .
                                                         33
point Gauss-Legendre quadrature, with maximum interval size of 0.1,
                b                              15         ri(b   -   a)   +b +a
             I      F(x)dx   =   (b   -   a)    C wiF (
                                                                      2           )
             a                                 i=1
The roots and weights (r.,w ) were obtained from Table 2 . 2 in ref
                        1 i
[51
the integrator, when applied to equation (59). The error occurs when
                                      N =- 6               6z
                                                    tanh( -)
                                               S
                                                         KS
and
tanh(-) 6z
                                                34
we evaluate equation ( 6 0 ) in closed form. Note that these equations
are the same as (54) and (55), except for the missing concentration
                                          6
                                sech(-)         -   1
                                        JI;-
                                           S
when evaluated from zero to one. For large values of 6/< the solu-
K = 2.7
pS =
AT = 1
                                   z
                                    i
                                          =o
z = l
we get the value of -1.36, which is a difference of .36 from the true
different values of P S .
                                        35
                                 Table 1
                           Number of                 Difference
     Value                Intervals in                  from
     of P,                 Quadrature               Actual Value
                            -
10 2.33 x
10 3.62 x 10-1
100 1.22
250 1.30
250 5.24
500 4.60 x
results down to a Lewis number, Ps, of 10-4 . Alloys having this high
rate of diffusion in its solid phase are rare.            For more common
alloys, such as lead-tin (Pb-Sn), the Lewis number is of order 10-10
                             To   -   T = '5
                                       m
Tm - T1 = '2
T2 - Tm = 4'
K = 2.326 B1 = 1.00
M = - 0.22 B2 = 0.01
              -2
       PR = 10
k = 0.580 y = - 0.14286
A = 2.703 AT = 1
                                      37
                                                                                              -4
A more r e a l i s t i c l i q u i d L e w i s number, P k , i s of o r d e r 10                   [8].    Compu-
p a r i s o n of t h e two t e c h n i q u e s a t P         =          i s shown i n F i g u r e s 3, 4
                                                         S
The s o l i d l i n e s r e p r e s e n t t h e a n a l y t i c a l s o l u t i o n w h i l e t h e c i r c l e s
r e p r e s e n t t h e numerical s o l u t i o n .
t i o n d i s t r i b u t i o n s a t d i f f e r e n t L e w i s numbers a t t i m e s t e p i n t e r v a l s
f a c e p o s i t i o n i s seen a s t h e v e r t i c a l l i n e s w i t h t h e s o l i d phase t o
s i o n t o occur.
p e r a t u r e v a r y w i t h t i m e and t h e temperature w i t h i n t e r f a c e p o s i t i o n
m e l t i n g temperature d e c r e a s e s , as c o n c e n t r a t i o n i n c r e a s e s , t o a
                                                        38
                     4
                     rr
                     $ 27
                     aJG
                     a
                     rl I1
I-
d         I:   d
19        c    19
     39
                                                19   a
                                              -Ea
                                                N    aC
                                                61
                                              -Ln
                                                4
                                                6
                                                l
                                              -61
                                                4
                                                19
                                              -Ln
                                              -GI
    7ll-I-                 T l - l l -
                                                          h
             I                           c                rl
                                                          a
6
i
I          1
             hi        hi
                       I
                                         6I               aG
        I-WZL
                  40
                                        a
                                        e
                                        ld
                                        erlj
                                        0
                                   w
                                   z
                                   H
                                   I-
                          l    C
-
F
c3
     I   I   I   I
                      U
                              4
                               a
oozu
                 41
                         m
Ln
N
II
J
<
>
E
W                                 4-
I-                                I
                                      0
Z                                     4
w
                                      II
W                                          v)
E                                     PI
W                                     u
I-                                    a
                             W
                             0
                             Z
                             <
                             I-
                             cn
                             W
                             0
d
I
W
                                      \D
6
l                                     aJ
                                      Ll
.-I
 II
cn
a
      1
                s
      d   d    4
oozo
                    42
     P
     I
     L
              W
              U
              Z
                   II
!=-I
                   c,
                   cd
                        v)
              <
              I-
              m
              W
              a
W
h)
 *
84
         43
                m
 m
 N
 I1
 -I
 <
>
E
w
t-
Z
H
w
t
H
I-
(D
I
W
6l
d
II
cr)
a
      LI
           44
                                    e
                                    I
                                        0
                                        d
d                                       II
                                              m
1                                       P.4
W                     L                 u
                                        td
Ip
4
 m
                      I   - -   c       B
                                        d
II
v)
LL
                      t                 c,
                                        *
                                        m
                                        a,
                                        U
                                        td
                                    rcI
                                        k
                                        a,
                                        c,
                                        c
                                    H
                                    m
                                        9)
                                        k
                                    1
                                        M
                                    d
                                    !A
             v
     f       6
     f   b   u
                 45
                         U
                         I
                             0
I
w
hl
 8
             \
                     E       (I)
4                            P
11
m
a
                 8
             4
OOZO
        46
                             w    al
                                  E
                                  .rl
                             H    &
                             t-   [II
                                  3
                                  al
                                  k
                                  7
                                  &
                                  (d
                                  k
7
                                  al
                                  a
                                  E
                                  al
                                  f3
     Il-ll-
              t
dI            hi        dI
              I
          +wxa
                   47
rs'   ai        dI   tsi
 I    1               I
           48
     ul
      I
        0
II
t
            [II
      PI
      4J
       (d
      al
       E
      4J
      G
      H
49
                                                   t
                                                   F
                                                   f
                                                   L
                                                        I-
                                                   I-        v)
                                                             P
I   I   I   I        I    I   I        I
                t9                         1
                                               1
                ni                         4
uozu
                                  50
Ln
I
W
Ea
    8
4
             al
             $4
             3
             u
             2
             r .
             al
             a
              E
              al
             E-l
        51
                                        61
                                    -   8
                                        .--I
                                                     u
                                                     lu
Ln
I                                   -d         w
                                               I \   Ll
W                                                    a,
                                                     u
                                                     c
61                                                   .d
    8
4                                                    CJY
I!                                                   3
0                                                    a,
LL
        Ei     Ei          d   dI
        I       I          I
             I-WZEQ
                      52
                   rn
                  PI
                  U
             W    (d
             z
             H
             I-
    53
                      [I]
#               PI
                u
1               rd
W               a
                E
                .rl
6
l               c,
    m
4
                [I]
                P
                e
                0
uozo
           54
                   U
                   (d
m'   m'
I    i
          55
(D
 I
W
m
     1
4
I!
v)
a             I
                      1111
         I                c
         m'   m'
                  I
                         m'
                          I
                                   dI
                              56
c e r t a i n v a l u e and t h e n b e g i n s t o i n c r e a s e .     Allowances f o r t h i s have
i n c r e a s i n g , t h e m e l t i n g temperature w i l l c o n t i n u a l l y d e c r e a s e , which
i n t e r e s t i n g t o n o t e t h a t t h e v e l o c i t y of t h e i n t e r f a c e i s p r o p o r t i o n a l
more t i m e f o r t h e a l l o y t o r e a c h t h e m e l t i n g temperature s i n c e t h e
h e a t r a t e s remain t h e same.
F i g u r e s 21-23 i l l u s t r a t e t h e e f f e c t s of d i f f e r e n t d e n s i t i e s
when t h e d e n s i t y of t h e s o l i d i s g r e a t e r t h a n t h a t of t h e l i q u i d .
significantly.
d i s t r i b u t i o n s by t h e dashed l i n e s .
d i f f u s i v i t y i n t h e s o l i d ( F i g u r e 30-B).
                                                        57
-T   I
                  rn
                  3
              I
              I
         58
(0
I                                          m
W                                          P
t9
    8
4
                                           w
                                           0
                                           c
                                           0
                                           m
        ai   hi        ai        ai   ai
             I    I-   W kI
                          I      1    1
                            59
                                            II
                                  t
                                  i
                                  l        p?;
                              -Q
                                  4
                                           0
                                           0
                              -            .--I
I1
                                Q          p?;
                              -02          !.l
                                           0
                                           W
0                                          rn
                                  Q         3
 I                            -io
W
                                      W
m                                     E
     8                                H
4                                     t-
 II
cr)
a                                          U
                                           W
                                            0
                               Q
                              -N
              I               -Q
         I            f
          s               8
         4            4
uozu
                 60
                                                          G e-
                                                          0 1
                                                            0
                                                          .li
                                                          tld
                                                          a
                                                          U II
                   oozu                        4
                                               Ei
                   I-WZII
                                                     4
               \
               I
     I n '
     b         I
               1                                I-
     W
      "        \
                   \
                           -                    m
                                                H
                                                I3
     r
     H
                       \
                           \
     I-                        \
                                   \
                                       \
                                           \         19
          v)       oozu
61
      h'                            9                   m                                   d
                                    6
                                    i
                                    I
N' Ei
      N                             0
      6i                            6i
           t-wrn                                              I-UXQ
                                         4
           I
           I
           \
                                                              I '   I
                                                                    \
m
N
               \                                   Ln
                                                   b
                                                                        \
.--I                                    t-         4                                             I-
 II                                     v,          II                                           v,
                                        H                                                        w
w                  i                    0          W                                             a
r                   \
                                                   z
                                                   C-l
w                                                                           \
t-                      \                          t-
                            \                                                   \
                                i                                                   \
                                1        19                                             \             t
                                                                                                      3
      J) u o z u
                                              62
hl
-4
                                          I-
                                          v)
                                          W
                                          a
                                          -6J
                     J) oozu $r
ni   6i              cu'             Ei
                     4               N
hl
 8   dI              6i              Ei
Ei                       I            I
                             I-urn
                                          -4
               Ln
               b
                                          I-
                I!                        v)
                                          W
               w                          n
               r
               w
               I-
                                          -61
                     t       uozu c
ni   d               ni              d
          63
                                                                     Ln
                                                                     r-
                                                                     m
                                                       d             Ei
                                                                      I
                                                             I-wxa
                                                                           -4
                                                 hl
                                                 hl
                                                 N                         I-
                                                 I!                        #
                                                                           W
                                                 W                         0
                                                 z
                                                 H
                                                 I-
                                                                           -Ea
                                                             uozu    &
                                                       d             d
                                                       m             d
                                                       EiI           lsi
                                                                     I
         t-WTI1
                                       4                                  -4
          \
Ln        I                                      Ln
N             (
                                                 b
4                                     I-         4                         I-
II            \                       v)          11                       v)
                  (                   H                                    H
W                 \                   a          W                         a
z
H
                      \                          r
                                                 H
I-                        I                      I-
                          \
                              \
                                  t    Ea                                 -Ea
     0   uozu                                          t     uozu
                                                       d
                                            64
                                                                   t-wra                    1
                                           4
           1
           1
EJ         I
Ln         I                              I-
II         I                              v)
           I                              H
W          1-                             n
E              \
H
I-                 \
                       \
                           \
                               \ \         6l
     4    uozu                       4
     N'                              d                    N'                               d
     Ln                              hl
     6l                              4                    4                                N
                                                      d                                    6i
                                                                   t-WZa
                                                                                                     4
                                                               1
                                                               I
                                                               I
                                                               1
                                                               I                                I-
                                                                                                v)
                                                               \       -                        H
                                                                   \
                                                                       \
                                                                                                a
                                                     H                     \
                                                     I-                        \
                                                                                   \
                                                                                       \
                                                          f
Lc) u o z u 4, a
Ei
                                                65
          I-WELL
                                  d
            1
            \
m           8
m
d
It
             I
             I
                I
                                 I-
                                 m
                                            .
                                 H
W                I               n
r
H
                 \
                 \
I-                   I
                     \
                         I   j
                                  6l
          u o z u &)
(3 d
                                       66
                                                            A
       8.5
             El
                                I
                                I
                                I
   C                       w '
   0
   N                       2w
                            d
   C                        B
                            2
                           H
                  SOLID         I        LIQUID
                                I
                          DISTANCE
                                    67
                           LIST OF REFERENCES
15.   Ozisik, M. N.   Heat Conduction. New York:   John Wiley and Sons,
             1980.
    I
          National Aeronautics and Space Administration
          Washington, DC 20546
                                                                                                                        I
     15. S U P P L E M E N T A R Y N O T E S
19. S E C U R I T Y C L A S S I F . (ofthln ropart) 20. S E C U R l T Y C L A S S I F . (of thln page) 21. NO. O F PAGES 22. PRICE
NASA-Langley, 19&