0% found this document useful (0 votes)
45 views14 pages

Column Base Connection Design

base plate example

Uploaded by

SibuBhusal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
45 views14 pages

Column Base Connection Design

base plate example

Uploaded by

SibuBhusal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

Project:

Project no:
Author:

Project data
Project name
Project number
Author
Description
Date 12/2/2024
Design code IS

Material
Steel E 250 (Fe 410 W) A
Concrete M20

1 / 14
Project:
Project no:
Author:

Project item Column Base Connection

Design
Name Column Base Connection
Description Base Plate connection Design
Analysis Stress, strain/ simplified loading

Beams and columns


β – Direction γ - Pitch α - Rotation Offset ex Offset ey Offset ez
Name Cross-section Forces in
[°] [°] [°] [mm] [mm] [mm]
COL 2 - General 0.0 -90.0 0.0 0 0 0 Node

Cross-sections
Name Material
2 - General E 250 (Fe 410 W) A, E 250 (Fe 410 W) A, E 250 (Fe 410 W) A, E 250 (Fe 410 W) A

Anchors
Diameter fu Gross area
Name Bolt assembly
[mm] [MPa] [mm2]
M27 4.8 M27 4.8 27 420.0 573

Load effects (equilibrium not required)


N Vy Vz Mx My Mz
Name Member
[kN] [kN] [kN] [kNm] [kNm] [kNm]
LE1 COL -160.0 0.0 0.0 0.0 17.0 200.0

2 / 14
Project:
Project no:
Author:

Foundation block
Item Value Unit
CB 1
Dimensions 550 x 500 mm
Depth 1000 mm
Anchor M27 4.8
Anchoring length 600 mm
Shear force transfer Anchors
Mortar joint 30 mm

Check

Summary
Name Value Check status
Analysis 100.0% OK
Plates 0.8 < 5.0% OK
Anchors Not calculated
Welds 98.6 < 100% OK
Concrete block 81.2 < 100% OK
Buckling Not calculated

Plates
fyd Thickness σ εPl σcEd
Name Material Loads Check status
[MPa] [mm] [MPa] [%] [MPa]
COL-bfl 1 E 250 (Fe 410 W) A 227.3 14.1 LE1 173.7 0.0 0.0 OK
COL-tfl 1 E 250 (Fe 410 W) A 227.3 14.1 LE1 176.5 0.0 0.0 OK
COL-w 1 E 250 (Fe 410 W) A 227.3 7.2 LE1 227.4 0.1 0.0 OK
COL-bfl 2 E 250 (Fe 410 W) A 227.3 14.1 LE1 225.6 0.0 0.0 OK
COL-tfl 2 E 250 (Fe 410 W) A 227.3 14.1 LE1 166.1 0.0 0.0 OK
COL-w 2 E 250 (Fe 410 W) A 227.3 7.2 LE1 228.2 0.5 0.0 OK
COL-bfl 3 E 250 (Fe 410 W) A 227.3 10.0 LE1 176.4 0.0 0.0 OK
COL-bfl 4 E 250 (Fe 410 W) A 227.3 10.0 LE1 192.5 0.0 0.0 OK
BP1 E 250 (Fe 410 W) A 227.3 20.0 LE1 227.7 0.2 0.0 OK
RIB1a E 250 (Fe 410 W) A 227.3 10.0 LE1 227.9 0.3 0.0 OK
RIB1b E 250 (Fe 410 W) A 227.3 10.0 LE1 227.9 0.3 0.0 OK
RIB2a E 250 (Fe 410 W) A 227.3 10.0 LE1 228.9 0.8 0.0 OK
RIB2b E 250 (Fe 410 W) A 227.3 10.0 LE1 228.7 0.7 0.0 OK
RIB3a E 250 (Fe 410 W) A 227.3 10.0 LE1 207.5 0.0 0.0 OK
RIB3b E 250 (Fe 410 W) A 227.3 10.0 LE1 227.5 0.1 0.0 OK
RIB4a E 250 (Fe 410 W) A 227.3 10.0 LE1 227.3 0.0 0.0 OK
RIB4b E 250 (Fe 410 W) A 227.3 10.0 LE1 227.4 0.1 0.0 OK

3 / 14
Project:
Project no:
Author:

Symbol explanation
εPl Plastic strain
σ Equivalent stress
fyd Design yield strength
σcEd Contact stress

Overall check, LE1

4 / 14
Project:
Project no:
Author:

Strain check, LE1

Equivalent stress, LE1

5 / 14
Project:
Project no:
Author:

Anchors
Tb Vsb
Shape Item Loads
[kN] [kN]
A5 LE1 0.0 0.3
A6 LE1 114.6 1.5
A7 LE1 0.0 0.6
A8 LE1 113.8 1.6
A9 LE1 0.0 1.4
A10 LE1 123.2 0.2
A11 LE1 112.9 1.4
A12 LE1 111.3 1.2

Symbol explanation
Tb Tension force
Vsb Resultant of shear forces Vy, Vz in bolt

Detailed result for A10

Anchor checks have not been performed.

6 / 14
Project:
Project no:
Author:

Weld sections
tt lj lje fe fwd Ut
Item Edge Electrode Loads Status
[mm] [mm] [mm] [MPa] [MPa] [%]
BP1 COL-bfl 1 E 250 (Fe 410 W) A ◢8.0 76 38 LE1 186.4 189.4 98.4 OK
BP1 COL-tfl 1 E 250 (Fe 410 W) A ◢8.0 76 38 LE1 186.5 189.4 98.5 OK
BP1 COL-w 1 E 250 (Fe 410 W) A ◢8.0 236 34 LE1 186.4 189.4 98.4 OK
BP1 COL-bfl 2 E 250 (Fe 410 W) A ◢8.0 76 38 LE1 186.8 189.4 98.6 OK
BP1 COL-tfl 2 E 250 (Fe 410 W) A ◢8.0 76 38 LE1 186.3 189.4 98.4 OK
BP1 COL-w 2 E 250 (Fe 410 W) A ◢8.0 236 34 LE1 186.7 189.4 98.6 OK
BP1 COL-bfl 3 E 250 (Fe 410 W) A ◢8.0 275 34 LE1 185.9 189.4 98.1 OK
BP1 COL-bfl 4 E 250 (Fe 410 W) A ◢8.0 275 34 LE1 186.2 189.4 98.3 OK
BP1 RIB1a E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 147.1 189.4 77.7 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.8 189.4 98.1 OK
COL-w 1 RIB1a E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.9 189.4 98.2 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.8 189.4 98.1 OK
BP1 RIB1b E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 186.0 189.4 98.2 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 161.0 189.4 85.0 OK
COL-w 1 RIB1b E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.8 189.4 98.1 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.9 189.4 98.2 OK
BP1 RIB2a E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.7 189.4 98.1 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.7 189.4 98.0 OK
COL-w 2 RIB2a E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 186.1 189.4 98.3 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 186.3 189.4 98.4 OK
BP1 RIB2b E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.7 189.4 98.1 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.7 189.4 98.1 OK
COL-w 2 RIB2b E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 186.2 189.4 98.4 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 186.1 189.4 98.3 OK
BP1 RIB3a E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.7 189.4 98.0 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.6 189.4 98.0 OK
COL-bfl 3 RIB3a E 250 (Fe 410 W) A ◢6.0◣ 178 11 LE1 65.3 189.4 34.5 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 95.6 189.4 50.5 OK
BP1 RIB3b E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.6 189.4 98.0 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 186.0 189.4 98.2 OK
COL-bfl 3 RIB3b E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.6 189.4 98.0 OK
E 250 (Fe 410 W) A ◢6.0◣ 178 11 LE1 185.6 189.4 98.0 OK
BP1 RIB4a E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 132.3 189.4 69.9 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.8 189.4 98.1 OK
COL-bfl 4 RIB4a E 250 (Fe 410 W) A ◢6.0◣ 178 11 LE1 104.0 189.4 54.9 OK
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 75.6 189.4 39.9 OK
BP1 RIB4b E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 185.9 189.4 98.1 OK
E 250 (Fe 410 W) A ◢6.0◣ 99 11 LE1 161.6 189.4 85.3 OK
COL-bfl 4 RIB4b E 250 (Fe 410 W) A ◢6.0◣ 178 11 LE1 185.6 189.4 98.0 OK

7 / 14
Project:
Project no:
Author:

tt lj lje fe fwd Ut
Item Edge Electrode Loads Status
[mm] [mm] [mm] [MPa] [MPa] [%]
E 250 (Fe 410 W) A ◢6.0◣ 179 11 LE1 185.6 189.4 98.0 OK

Symbol explanation
tt Fillet weld throat thickness
lj Weld length
lje Weld element length
fe Equivalent stress in the weld
fwd Design strength of a fillet weld
Ut Utilization

Detailed result for BP1 / COL-bfl 2


Weld resistance check (IS 800, Cl. 10.5.10.1.1)

fe = ​ fa2 + 3 ⋅ q 2 =
​ ​ 186.8 MPa ≤ fwd =
​ 189.4 MPa

Where:
fe = 186.8 MPa
​ – equivalent stress in weld

fa = 140.2 MPa
​ – normal stresses, compression or tension, due to axial force or bending moment
q = 71.2 MPa – shear stress due to shear force or tension

fwd = 189.4 MPa – design strength of a fillet weld


fu
fwd =

, where:
3 ⋅ γmw
​ ​

​ ​

fu = 410.0 MPa – smaller of the ultimate stress of the weld or of the parent metal

γmw = 1.25 – partial safety factor for welds


Concrete block
c Nc Aeff σc ω Ut
Item Concrete Loads Status
[mm] [kN] [mm2] [MPa] [MPa] [%]
CB 1 M20 LE1 55 752.2 77194 9.7 12.0 81.2 OK

Symbol explanation
c Overlap of the column base over the column
Nc Compressive force
Aeff Effective area in coompression
σc Compressive stress on the effective area
ω Compressive resistance
Ut Utilization

8 / 14
Project:
Project no:
Author:

Detailed result for CB 1


Concrete block bearing resistance check (IS 800, Cl. 7.4.)
Nc
σc = = ω=

​ ​
9.7 MPa ≥ 12.0 MPa
Aef f ​

Where:
Nc = 752.2 kN
​ – compressive force
Aef f = 77194 mm2 – effective area in compression

ω = 12.0 MPa – bearing resistance of the concrete

ω = 0.6 ⋅ fck , where: ​

fck = 20.0 MPa – characteristic cube strength of concrete


c = 55 mm – overlap of the column base over the column

fy
c = ts ⋅

, where:
1.5 ⋅ fck ⋅ γm0
​ ​ ​

​ ​

ts = 20 mm – base plate thickness


fy = 250.0 MPa – yield strength of the column base


γm0 = 1.10 – partial safety factor for resistance governed by yielding


Buckling
Buckling analysis was not calculated.

9 / 14
Project:
Project no:
Author:

Bill of material

Manufacturing operations
Plates Welds Length
Name Shape Nr. Bolts Nr.
[mm] [mm] [mm]

Fillet: a = 8.0 663.7


BP1 P20.0x550.4-500.0 (E 250 (Fe 410 W) A) 1 M27 4.8 8
Fillet: a = 8.0 663.7

RIB1 P10.0x100.0-180.0 (E 250 (Fe 410 W) A) 2 Double fillet: a = 6.0 560.0

RIB2 P10.0x100.0-180.0 (E 250 (Fe 410 W) A) 2 Double fillet: a = 6.0 560.0

RIB3 P10.0x100.0-180.0 (E 250 (Fe 410 W) A) 2 Double fillet: a = 6.0 560.0

RIB4 P10.0x100.0-180.0 (E 250 (Fe 410 W) A) 2 Double fillet: a = 6.0 560.0

Welds
Throat thickness Leg size Length
Type Material
[mm] [mm] [mm]
Fillet E 250 (Fe 410 W) A 8.0 11.3 663.7
Fillet E 250 (Fe 410 W) A 8.0 11.3 663.7
Double fillet E 250 (Fe 410 W) A 6.0 8.5 2240.0

Anchors
Length Drill length
Name Count
[mm] [mm]
M27 4.8 650 600 8

10 / 14
Project:
Project no:
Author:

Drawing

BP1

P20.0x500-550 (E 250 (Fe 410 W) A)

11 / 14
Project:
Project no:
Author:

RIB1

P10.0x180-100 (E 250 (Fe 410 W) A)

RIB2

P10.0x180-100 (E 250 (Fe 410 W) A)

12 / 14
Project:
Project no:
Author:

RIB3

P10.0x180-100 (E 250 (Fe 410 W) A)

RIB4

P10.0x180-100 (E 250 (Fe 410 W) A)

13 / 14
Project:
Project no:
Author:

Code settings
Item Value Unit Reference
Friction coefficient - concrete 0.45 - IS 800, Cl. 7.4.1
Friction coefficient in slip-resistance 0.30 - IS 800, Cl. 10.4.3
Limit plastic strain 0.05 -
Detailing No
Distance between bolts [d] 2.50 - IS 800, Cl. 10.2.2
Distance between bolts and edge [d] 1.50 - IS 800, Cl. 10.2.4
Limit grip length of bolts as a multiple of bolt diameter - IS 800, Cl.
Bolt maximum grip length [d] 8.00 -
10.3.3.2
Local deformation check Yes
Local deformation limit 0.03 - CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA) Yes Analysis with large deformations for hollow section joints
IS800, Cl
Concrete in compression check
7.4
Braced system (EC stiffness
No EN1993-1-8 - Cl. 5.2.2.5
classification)

14 / 14

You might also like