1.
Implement word count / frequency programs
import string
def word_count(file_path):
  # Initialize an empty dictionary to store word counts
  word_counts = {}
  try:
    # Open the file in read mode
    with open(file_path, 'r') as file:
         # Read the entire content of the file
         text = file.read()
         # Remove punctuation and convert text to lowercase
         text = text.translate(str.maketrans('', '', string.punctuation)).lower()
         # Split the text into individual words
         words = text.split()
         # Count the frequency of each word
         for word in words:
           if word in word_counts:
              word_counts[word] += 1
           else:
              word_counts[word] = 1
    return word_counts
  except FileNotFoundError:
    print(f"Error: The file at {file_path} was not found.")
    return None
# Example usage
file_path = 'example.txt' # Replace this with the path to your text file
word_counts = word_count(file_path)
# Display the word counts if the dictionary is populated
if word_counts is not None:
  for word, count in word_counts.items():
    print(f"{word}: {count}")
OUTPUT
2.Implement an python program that processes a weather dataset
import pandas as pd
# Read CSV file into a pandas DataFrame
df = pd.read_csv('weather.csv')
# Print the DataFrame to see the content
print(df)
output
3. Implement SVM / Decision tree classification techniques.
3 a) import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.inspection import DecisionBoundaryDisplay
# import some data to play with
iris = datasets.load_iris()
# Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (
    svm.SVC(kernel="linear", C=C),
    svm.LinearSVC(C=C, max_iter=10000),
    svm.SVC(kernel="rbf", gamma=0.7, C=C),
    svm.SVC(kernel="poly", degree=3, gamma="auto", C=C),
models = (clf.fit(X, y) for clf in models)
# title for the plots
titles = (
    "SVC with linear kernel",
    "LinearSVC (linear kernel)",
    "SVC with RBF kernel",
    "SVC with polynomial (degree 3) kernel",
# Set-up 2x2 grid for plotting.
fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
X0, X1 = X[:, 0], X[:, 1]
for clf, title, ax in zip(models, titles, sub.flatten()):
    disp = DecisionBoundaryDisplay.from_estimator(
      clf,
      X,
      response_method="predict",
      cmap=plt.cm.coolwarm,
      alpha=0.8,
      ax=ax,
      xlabel=iris.feature_names[0],
      ylabel=iris.feature_names[1],
  ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors="k")
  ax.set_xticks(())
  ax.set_yticks(())
  ax.set_title(title)
plt.show()
3b) Decision tree
# Import necessary libraries
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Load the Iris dataset
data = load_iris()
X = data.data # Features
y = data.target # Labels
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Create and train the Decision Tree Classifier with optimized hyperparameters
clf = DecisionTreeClassifier(
    criterion='entropy', # Use 'entropy' for Information Gain
    max_depth=5,            # Limit the depth of the tree
    random_state=42
clf.fit(X_train, y_train)
# Make predictions on the test set
y_pred = clf.predict(X_test)
# Evaluate the performance
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# Optional: Visualize the Decision Tree
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
plot_tree(clf, feature_names=data.feature_names, class_names=data.target_names, filled=True)
plt.show()
4. Visualize data using any plotting framework
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import pandas as pd
# Load the Iris dataset
data = load_iris()
# Convert it into a pandas DataFrame for easier visualization
df = pd.DataFrame(data.data, columns=data.feature_names)
df['species'] = data.target
df['species'] = df['species'].map({0: 'setosa', 1: 'versicolor', 2: 'virginica'})
# Pairplot to visualize relationships between features
sns.pairplot(df, hue='species', diag_kind='kde', corner=True)
plt.show()
# Heatmap to visualize feature correlations
plt.figure(figsize=(8, 6))
sns.heatmap(df.iloc[:, :-1].corr(), annot=True, cmap='coolwarm')
plt.title("Feature Correlation Heatmap")
plt.show()
# Boxplot to show feature distributions
plt.figure(figsize=(10, 6))
sns.boxplot(data=df.iloc[:, :-1], orient='h', palette='Set2')
plt.title("Boxplot of Features")
plt.show()
# Scatter plot for specific features
plt.figure(figsize=(8, 6))
sns.scatterplot(
    data=df,
    x='sepal length (cm)',
    y='petal length (cm)',
    hue='species',
    style='species',
    palette='deep',
    s=100
plt.title("Scatterplot of Sepal Length vs Petal Length")
plt.show()