0% found this document useful (0 votes)
14 views17 pages

665 TwoPort-Scattering

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
14 views17 pages

665 TwoPort-Scattering

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

TWO-PORT NETWORKS INCLUDING

SCATTERING P ARAMETERS
• Conventional Two-Port Network Parameters.

Several two ports, sources, and loads in different parameter systems with
corresponding quantities indicated.

ELEN 665 (ESS) Analog and Mixed-Signal Center


Texas A&M University 1
To demonstrate the expression forms independent of the particular two-port
parameters, two derivations are carried out.

E1 E1
Zin = Zin =
I1 I1
E1 = z11I1 + z12I 2 E1 = h11I1 + h12 E2
E1 I E1 E
= z11 + 2 z12 = h11 + 2 h12
I1 I1 I1 I1
E2 = − I 2 Z L = I1z12 + I 2 z22 I 2 = − E2YL = I1h21 + E2 h22

I2 − z21 E2 − h21
= =
I1 z22 + Z L I1 h22 + YL
z12 z21 h12h21
Zin = z11 − Zin = h11 −
z22 + Z L h22 + YL

A similar derivation using the generalized k parameters gives


k12k 21
M in = k11 −
k 22 + M L
Analog and Mixed Signal Center
ELEN 665 (ESS) 2
Texas A&M University
Transducer (Power) Gain GT.
power delivered to the load P
GT = = o
power available from the source Pavs

Available (Power) Gain, GA.


power available at the output Pavo
GA = =
power available from the source Pavs

Po
Pav s Pavo Power gain = G =
Pi
Z s or Ys
Two- ZL
Port or Po
Es E1 E2
YL Transducer gain = GT =
Network Pavs
Pi Po
Pavo
Power gains of a two port. Available gain = GA =
Pavs
Analog and Mixed-Signal Center
Texas A&M Universiyt
ELEN 665 (ESS) 3
Tabulation of Functions in Terms of General Parameters
And Variables
Independent input variable . . . . . . . . . . . . . . . . . . . Uii
Independent output variable . . . . . . . . . . . . . . . . . . Uoi
Source Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . Us
Source immittance . . . . . . . . . . . . . . . . . . . . . . . . . M s
Input immittance . . . . . . . . . . . . . . . . . . . . . . . . . . M in
Dependent input variable . . . . . . . . . . . . . . . . . . . Uid
Dependent output variable . . . . . . . . . . . . . . . . . . Uod
Load variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . UL
Load immittance . . . . . . . . . . . . . . . . . . . . . . . . . ML
Output immittance . . . . . . . . . . . . . . . . . . . . . . . . Mo
Defining equations: U id = Uii k11 + U oi k12
U od = Uii k21 + U oik 22
Two-port parameters: k11k12
k21k22
k12k21 k12k 21
M in = k11 − M o = k22 −
k22 + M L k11 + M s
Amplification 1
U od k21M L k M
= = 21 L
U s (k11 + M s )(k22 + M L ) − k12k 21 D
Analog and Mixed-Signal Center
Texas A&M University
4
ELEN 665 (ESS)
General Parameters (continues)

Amplificat ion 2 :
U oi − k21 − k21
= =
U s (k11 + M s )(k 22 + M L ) − k12k21 D
Power gains :
2
M Lr k21
G=
Re[k11 − k12k21 (k 22 + M L )] k22 + M L
2

2
k21 M sr
GA =
Re[(k11k22 − k12k 21 + k22 M s )(k11 + M s )]
2
4 k21 M Lr M sr
GT =
(k11 + M s )(k22 + M L ) − k12k 21 2

Analog and Mixed-Signal Center


ELEN 665 (ESS) Texas A&M University
5
Sensitivit ies of U oi / U s or U od / U s to changes in k ' s :

− k11 (k22 + M L )
Sk11 =
D
k k
Sk12 = 12 21
D
(k + M s )(k22 + M L )
Sk 21 = 11
D
− k22 (k11 + M s )
Sk22 =
D

ELEN 665 (ESS) Analog and Mixed-Signal Center


Texas A&M University 6
Stability Conditions

For a two-port that is not potentially unstable the following inequalities must be
satisfied:
Po P
i) = GT ≤ G = o
Pavs P1

ii ) GT = Gmax

Po Pav
= GT ≤ GA = o
Pavs Pavs

Transducer gain only equals the available gain when the output port is conjugate-
matched. It can be proved that the condition for potentially instability of the ports
with real parameters is

h12h21 ≥ h11h22

Analog and Mixed-Signal Center


ELEN 665 (ESS) Texas A&M University
7
Stability Summary of Results.

Po o
is within 3dB of the maximum available gain unless the port is potentially unstable
Pi o
at the frequency in question.

Poo
The port is potentially unstable if is negative or if the critical factor C exceed unity
Pio

2 P o o h12
C=
Pi o h21

When C is less than 1, the maximum available gain is


(
KG P o o Po o 1 − 1 − C 2
=
)
Pi o Pi o C2

Analog and Mixed-Signal Center


ELEN 665 (ESS)) Texas A&M University 8
Where

2
Poo h21
=
Pi o 4h11r h22r − 2 Re(h12h21 )

θ = arg(− h12h21 ) = − arg(− h12h21 )


*

*
 h h  CK G exp jθ 
Z s,opt = Zin
*
=  h11 − 12 21 1 − 
 2h22r  2 

2 h22r
YL ,opt = Yo* = − h22 +
1 − CK G exp jθ / 2

Analog and Mixed-Signal Center


ELEN 665 (ESS)
Texas A&M University 9
Scattering Parameters.
For very high-frequencies where short- or open-circuit conditions are not possible,
an alternative method of representing a linear time-invariant network is by means
of its scattering parameters, also known as S-Parameters.

One-Port Example

Rs i Incident voltage vi
+ Transmission
vs +- v line with Reflected voltage vr
ZL
- Zo characterist
impedance.
v = vi + vr
i = ii − ir
i = (vi − vr )
1
Zo
Thus

vr = (v − Z oi )
1
2
1
vi = (v + Zoi )
2
ELEN 665 (ESS) Analog and Mixed-Signal Center
Texas A&M University 10
The reflection coefficient is defined as :
v v − Z oi
ρ= r =
vi v + Z oi

Instant power p( t ) is given by

p( t ) = v( t )i( t ) =
1
Zo
(
(vi + vr )(vi − vr ) = 1 vi2 − vr2
Zo
)

maximizing p( t ) implies minimizing vr and ρ


The scattering parameter of the one - port is defined as :

vr ir v − Ri
S= = =
v i ii v + Ri

for the (lumped) case of Zo becoming equal to R. Furthermore, the open circuit
impedance is related as

ELEN 665 (ESS)


v = Zoci or i = yscv Analog and Mixed-Signal Center
11
Texas A&M University
Z oc − R 1 − Rysc
S= =
Z oc + R 1 + Rysc
Example

Rs=1Ω C
1 1
Zoc = +
sC 1 1
+- vc +
R sL
L R
s2 RLC + sL + R
Zoc Zoc = 2
s LC + sRC

Z oc − Rs s 2 LC (R − Rs ) + s( L − RRsC ) + R
S= =
Z oc + Rs s2 LC (R + Rs ) + s( L + RRs C ) + R

ELEN 665 (ESS) Analog and Mixed-Signal Center


Texas A&M University 12
Let us consider a two-port network

a1 b2
Zs a1 = Vi1 Zo
Two-Port
+ V
- s b1
1
Network
2
a2
ZL
b1 = Vr1 Zo
a 2 = Vi 2 Zo
b2 = Vr 2 Zo
b1   S11 S12   a1 
 =  
    
b2   S 21 S 22   a2 

i.e.,
b2 = S 21a1 + S 22a2
b2 b2
S 21 ≡ ; S 22 =
a1 a =0
a2 a1 =0
2
If Z L = Zo , a2 = 0

ELEN 665 (ESS) Analog and Mixed-Signal Center


Texas A&M University
13
b1, b2, a1, a2 have the dimensions of power. Next signal flow graph
representations are introduced.
2
bs 1 b bs
Pavs = =b −a
2 2
Zs
1 − Γs
2

+- Vs b Γs
Vs Z o Z s .L − Z o
a bs = ; Γs ,L =
Zs + Zo Z s ,L − Z o
a
Vs
bs =
A two-port with a source and a load. Zs Zo + Z o

bs 1 a1 s 21 b2 Using Mason' s Rule

Γs
s 11 s
22 ΓL
b1 S11(1 − S22Γ L ) + S 21Γ L S12
b1 s 12 a2 =
bs 1 − ( S11Γs + S 22Γ L + S 21Γ L S12Γ s ) + S11Γ s S 22ΓL

P b 1 − ΓL
2
( 2
)
GT = del = 22
Pavs bs 1 − Γ s 2 ( ) b2
=
S21
bs 1 − (S11Γ s + S22Γ L + S 21ΓL S12Γ s ) + S11Γ s S 22Γ L

ELEN 665 (ESS) Analog and Mixed-Signal Center 14


Texas A&M University
GT =
(
S 21 1 − Γs
2 2
)(1 − Γ )
L
2

(1 − S11Γs )(1 − S 22ΓL ) − S 21S12ΓLΓs 2

For ideal amplifiers S12 = 0, then

GT ≅
(
S 21 1 − Γs
2 2
)(1 − Γ )
L
2

; GT = S21
2

(1 − S11Γs )(1 − S 22ΓL ) 2 ΓL =Γs = 0

Also the total voltage gain is given by


a2 b2
+
a2 + b2 bs bs
AV = =
a1 + b1 a1 + b1
bs bs

S21ΓL + S 21 S 21
AV = =
(1 − S 22ΓL ) + S11 (1 − S 22ΓL ) +S 21S12 ΓL ΓL = 0
1 + S11

ELEN 665 (ESS) Analog and Mixed-Signal Center 15


Texas A&M University
Stability Considerations using S-Parameters

• Max GT occurs when Γ s = Γin* and Γ L = Γout


*

• Conditionally Stable if Re{Zin } and Re{Zout } > 0 for some specific positive real load
and source impedance at a specific frequency. If this condition is satisfied for all
positive real oad and source impedances then the network is Unconditionally
Stable. Γs ≤ 1 , ΓL ≤ 1

• For conjugately match the input and output, the network wi ll be stable if
K >1
2 2 2
1 + S11S 22 − S12 S 21 − S11 − S22
K=
2 S12 S 21

ELEN 665 (ESS) Analog and Mixed Signal Center


Texas A&M University
16
REFLECTION COEFFICIENTS
b1 S S Γ
ΓIN = = S11 + 21 12 L
a1 1 − S 22ΓL
b S S Γ
Γout = 2 = S 22 + 21 12 s
a2 1 − S11Γs

If one sets Γin = 1, the solutions of ΓL lie on a circle. The radius, and center are given by

S12 S 21
radius = rL = 2 2
S 22 − ∆
∆ = S11S22 − S12S 21
( S22 − ∆S11 )*
center = CL = 2 2
S22 − ∆

This circle can be plotted on a Smith Chart to determine all values of ΓL that make Γin = 1.

ELEN 665 (ESS) Analog and Mixed-Signal Center


Texas A&M University 17

You might also like