0% found this document useful (0 votes)
32 views32 pages

Ip Practical 2024 25 1 To 34

Uploaded by

Aryan Patial
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views32 pages

Ip Practical 2024 25 1 To 34

Uploaded by

Aryan Patial
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 32

`

Informatics Practices
#Practical no 1
#Create a pandas series from a dictionary of values and an
ndarray
import pandas as pd
import numpy as np
students={"Harshil":10,"Sunny":10,"Sanya":12,"Shivani":13,"ABC"
:14}
print("Original
Dictionary")
print(students)
s1= pd.Series(students)
print("Series created from dictionary:")
print(s1)
arr=np.arange(6)
print("Array
is:",arr)
s2=pd.Series(arr)
print("Series created from ndarray is :")
print(s2)
#Output
# Sort the series S1 in descending order.
import pandas as pd
section=["A","B","C","D"]
contri= [6700,7800,5500,4300]
S1=pd.Series(data=
contri,index=section) print(S1)
print(S1.sort_values(ascending=False))
#Output
mport pandas as pd
#Practical no 6
Program to create a DataFrame to store weight, age and
names of 3 people. Print the DataFrame and its transpose.
import pandas as pd
df=pd.DataFrame({"Weight":[42,75,66],"Name":["Arnav","Charle
s","Guru"], "Age":[15,22,23]})
print("Original
DataFrame:") print(df)
print("Transpose:")
print(df.T)
#Output
#Practical no 7
Create a DataFrame DF showing population, hospitals and
schools in 4 cities. Add a column Density to the DataFrame.
import pandas as pd df=pd.DataFrame({"Population":
[10234542,12567875,46251466,
45897152],"Schools":[7895,8547,7258,7345],"Hospitals":
[189,208,149,157]},index=["Delhi" ,"Mumbai","Kolkata"
, "Chennai"])
print("Original
DataFrame:") print(df)
df["Density"]=1200
print("After adding column:")
print(df)
#Output
#Practical no 8
#Adding/Modifying a row to the DataFrame DF .
import pandas as pd df=pd.DataFrame({"Population":
[10234542,12567875,46251466,
45897152],"Schools":[7895,8547,7258,7345],"Hospitals":
[189,208,149,157]},index=["Delhi" ,"Mumbai","Kolkata"
, "Chennai"])
print("Original DataFrame:")
print(df)
print("After adding a new row:")
df.loc["Banglore"]=[23456783,9845,234]
print(df)
df.Schools["Delhi"]=5420
print("After modifying a new row:")
print(df)
#Output

# Practical no 9
Create another DafaFrame from DF and it must not contain the
column "Population" and the row "Bangalore".
import pandas as pd df=pd.DataFrame({"Population":
[10234542,12567875,46251466,
45897152],"Schools":[7895,8547,7258,7345],"Hospitals":
[189,208,149,157]},index=["Delhi" ,"Mumbai","Kolkata",
"Chennai"]) print("Original
DataFrame:") print(df)
print("After adding a new row:")
df.loc["Banglore"]=[23456783,9845,234]
print(df)
df1=pd.DataFrame(df)
del df1["Population"]
df1=df1.drop(["Banglore"])
print(df1)

#Output
# Practical no 10
Create a data frame for examination result and display row
labels, column labels data types of each column and the
dimensions.
import pandas as pd
Dic={"Class":[ 1,2,3,4,5,6] , "Pass Percentage":
[100,100,100,100,95,96]}
Result=pd.DataFrame(Dic)
print(Result)
print(Result.dtypes)
print("Shape of the
dataframe:") print(Result.shape)
#output
#Practical no 11
Importing and exporting data between pandas and CSV
file import pandas as pd DF=pd.read_csv(“C:\\Python\\
abc.csv”)
print(DF)
Output
Roll no Name
0 1201 abc
1 1202 xyz
2 1203 pqr
3 1204 lmn
4 1205 qwe

import pandas as pd people={'Sales':


{'name':'ABC','age':'24','Gender':'Male'} ,
'Marketing':{'name':'xyz','age':'22','Gender':'Female'}}
df1=pd.DataFrame(people)
print(df1) df1.to_csv("C:\\Python\\
abc.csv") print()
#Output
#Practical no 12
#Given the school result data, analyse the performance of the
students on different parameters e.g subject wise or class wise
import matplotlib.pyplot as plt
Subject=["Physics","Chemistry","Biology","Math",
"Informatics Practices"]
Percentage= [85,78,65,90,100]
plt.bar(Subject,Percentage,align="center",color="Green")
plt.xlabel("Subjects Name")
plt.ylabel("Pass Percentage")
plt.title("Bar Graph for result Analysis")
plt.show()
output

#Practical no 13
#For the DataFrame created above, analyze and plot
appropriate charts with title and legend.
import matplotlib.pyplot as plt
import numpy as np
s=["1st","2nd" ,"3rd"]
per_sc=[95,89,77]
per_com=[90,93,75]
per_hum=[97,92,77]
x=np.arange(len(s))
plt.bar(x,per_sc,label="Science",width=0.25,color="Green")
plt.bar(x+.25,per_com,label="Commerce",width=0.25,color="red
")
plt.bar(x+0.50,per_hum,label="Humanities",width=0.25,color="g
old")
plt.xlabel("Position")
plt.ylabel(" Percentage")
plt.title("Bar Graph for result Analysis")
plt.legend()
plt.show()
#Practical no 14
#Take data of your interest from an open source( eg:
data.gov.in), aggregate and summarize it. Then plot it using
different plotting functions of the Matplotlib library.
import pandas as pd
import matplotlib.pyplot as plt DF=pd.read_csv("C:\\Python\\
Census.csv") slices=(DF["2019"].head(6))
states=(DF["State"].head(6))
#plt.plot(slices,states)
plt.title("2019 Census Data")
plt.ylabel("Cities")
plt.xlabel("Population")
#plt.bar(slices,states)
plt.hist(slices,bins=20,cumulative=True,histtype='barstacked',orie
ntation="vertical")
plt.show()
#Practical no 15
#Create a Data Frame based on ecommerce data and generate
descriptive statistics(mean, mode, median, quartile,and
variance)
import pandas as pd sales={"InvoiceNo":
[1001,1002,1003,1004,1005,1006,1007],

"ProductName":["LED","AC","Deodrant","Jeans","Books","Shoes"
,"Jacket"], "Quantity":
[2,1,2,1,2,1,1],
"Price":[65000,55000,500,2500,950,3000,2200] }
df=pd.DataFrame(sales)
print(df["Price"].describe().round(2))
#Output:

#Practical no 16
#Find the sum of each columns, or find the column with the
lowest mean.
import pandas as pd
Profit= { "TCS":{'Qtr1':2500,
"Qtr2":2000,"Qtr3":3000,"Qtr4":2000} ,
"WIPRO":{'Qtr1':2800,
“Qtr2":2400,"Qtr3":3600,"Qtr4":2400},
"L&T": {'Qtr1':2100,
"Qtr2":5700,"Qtr3":35000,"Qtr4":2100}}
df=pd.DataFrame(Profit)
print(df)
print()
print("Column wise sum in dataframe is :::")
print(df.sum(axis=0))
print()
print("Column wise mean value are::::")
print(df.mean(axis=0))
print()
print("Column with minimum mean value is :::")
print(df.mean(axis=0).idxmin())
#output
#Practical no 17
#Replace all negative values in a dataframe with a 0
import pandas as pd
dic={"Data1":[−5,−2,5,8,9,−6], "Data2":[2,4,10,15,−5,−8]}
df=pd.DataFrame(dic)
print(df)
print()
print("DataFrame after replacing negative values with 0::")
df[df<0]=0
print(df)
#Output
#Practical no 18
#Replace all missing values in a dataframe with a 999
import pandas as pd
import numpy as np
dic={"EmpID":[1,2,np.nan,4,5], "Empname":
["Rahul","Rohan","Raj",np.nan,"Ramesh"]}
df=pd.DataFrame(dic)
print(df)
print()
df=df.fillna({"EmpID":999,"Empname":999})
print()
print(df)
#Output
#Practical no 19
#Locate 3 largest values in a dataframe
import pandas as pd
dict1=
{'Name':['Rahul','Riya','Rohan','Raja'],'Marks':[55,94,75,67],\
'Roll no':[12,34,45,35]}
dmarks=pd.DataFrame(dict1)
print(dmarks) print(dmarks.nlargest(3,
['Marks']))
#Output

Practical no 20 : Write a query to display the list of tables stored in a database

USE DATABASE1

SHOW TABLES

Output:
#Practical no 21
Create a student table with the student id, name, and marks as
attributes where the student id is the primary key.

Create table student(student_is varchar(10) primary key not


null, name varchar(30), marks integer(5));
#Output

#Practical no 22
Insert the details of a new student in the above table
insert into student values (101),”Rohit”,410);
insert into student values (102,”Mohit”,425);
insert into student values (103,”Rahul”,475);
insert into student values (104,”Virak”,495);
Output:

#Practical no 23
Delete the details of a student in the above table
delete from student where name= “Rahul”;

Output:
#Practical no 24
Use the select command to get the details of the students with
marks more than 80.
Select * from Student where marks>80;
Output:
#Practical no 25
Find the min, max, sum, and average of the marks in a student
marks table.
Select min(marks),max(marks),sum(marks),avg(marks) from
student;

Output:

#Practical no 26
Find the total number of customers from each country in the table
(customer ID, customer Name, country) using group by.
Select country, count(*) “Total Customer” from customer group
by country;
Output :

#Practical no 27
Write a SQL query to order the (student ID, marks) table in descending order of the
marks.

Select student_id, marks from student order by marks desc;

Output:
Practical no 28:

Convert and display string "Informatics Practices " into upper case.

Select upper(“Informatics Practices”) “Uppercase”;

Output:

Practical no 29:

Write a query to display current date on your system.

Select curdate() “Current Date”;

Output:
Practical no 30:

Write a query to extract year part from date 3rd August 2023.

Select year(“2023-08-03”) “Year”;

Output:

Practical no 31:

Display 4 characters extracted from 3rd left character onwards from the string
"Informatics Practices".

Select substr(“Informatics Practices”,3,4) “Substring”;

Output:
Practical no 32:

Write a query to remove leading and trailing spaces from string " SNBP
INTERNATIONAL ".

Select trim(“ SNBP INTERNATIONAL “);

Output:

Practical no 33:

Display the position of occurrence of string "for" in string "Informatics Practices".

Select instr(“Informatics Practices”,”for”) ;

Output:
Practical no 34:

Count the number of characters in string" School".

Select length (“School”) “Length of “;

You might also like