The Laplace Transform
Note: Some topics have been repeated in the slides. Just for better
          understanding. Not for classroom teaching.
                                                                      1
 The Laplace Transform
Laplace transform converts time domain problems into
functions of a complex variable, s, that is related to the
frequency response of the system
                          Laplace
                         Transform
       Time domain
                            lesson10et438a.pptx   Complex frequency   2
lesson10et438a.pptx   3
 Basic Laplace Transform Pairs
                                     5
                   5  u s (t)   →
                                     s
                                       4 
                   3  sin(4t ) → 3   2       =4
                                       s + 16 
              10                                                        1
 10 t
              s2                                        e −2 t         s+2
       − at       1                                                       s 
t e                                                   3 cos( t )   3   2       
              (s + a ) 2                                                   (s + 1) 
                1
e5 t           s−5
     Laplace Theorems
 Laplace of an unknown function
                                                         Capitalize unknown function name
                       L (f1 ( t ) ) = F1 (s)            Replace t with s
                        Examples
 Laplace
 Operator              L (i1 ( t ) ) = I1 (s)
 Symbol
                       L (v1 ( t ) ) = V1 (s)
Linearity of transform - can multiply by constant
If       L (f1 ( t ) ) = F1 (s) and L (f 2 ( t ) ) = F2 (s)
Then L (a  f1 ( t ) + b  f 2 ( t ) ) = a  F1 (s) + b  F2 (s)
                                                                                      5
    Laplace Transforms of Calculus Operators
Laplace Transform turns derivative into multiplication by s
                        If       L (f1 ( t ) ) = F1 (s)                       Subtract any
                                                                                non-zero
                                                                                 initial
                               d         
                        Then L  f1 ( t )  = s  F1 (s) − f1 (0)              conditions
                                dt       
For higher order derivatives                    0 initial conditions reduces
                                                formula to
   d2                                          d              d2          2
L  2 f1 ( t )  = s  (s  F1 (s) − f1 (0)) − f1 (0)      L  2 f1 ( t )  = s  F1 (s)
                                                               
    dt                                        dt              dt          
                                                                                          6
  Laplace Transforms of Calculus Operators
Laplace turns integration into division by s
                  If      L (f1 ( t ) ) = F1 (s)
                          d              1
                  Then L   f1 ( t ) dt  =  F1 (s)
                          dt             s
Examples from circuit analysis:
                                                 1                 
Capacitor voltage             L (v C ( t ) ) = L    i C ( t ) dt 
                                                 C                 
           1
           C  
v C ( t ) =  i C ( t ) dt                 1 1
                             VC (s) =     I C (s) = 
                                                                 1 
                                                                        I C (s)
                                          C s                 Cs
                                                                             7
 More Examples From Circuit Analysis
Find the Laplace relationship for inductor voltage
                                       d
                       vL (t) = L  i L (t)
                                       dt
                                           d             
                       L (v L ( t ) ) = L  L  i L ( t ) 
                                           dt            
                       VL (s) = L  s  I L (s)
Laplace relationship for resistor voltage
     v R (t) = R  i R (t)            L (v R ( t ) ) = L (R  i R ( t ) )
                                     VR (s) = R  I R (s)
                                                                            8
   Laplace Transforms and Impedance
Remember phasor analysis is only valid for sinusoidal steady-state. Turns
ac analysis into an analysis similar to the dc. (Ohm's law)
 Resistance                   R
 Inductive Reactance          XL = j  L               = 2  f   j = 90
                                       1            1                   1
 Capacitive Reactance        XC =           = − j                 - j = = −90
                                    j  C          C                j
Since Laplace variable represents frequency, it's possible to replace j with s
and s with j. If s is replaced with j, analysis reverts to phasors We can find
the frequency response of a dynamic system by converting differential
equation into Laplace domain and replacing s with j. Sweeping frequency
produces Bode plot of system.
                                  lesson10et438a.pptx                               9
   Laplace Transforms and Impedance
Laplace “Impedances” (Ohm’s Law) Impedance (Phasors)
              Ls =
                   VL (s)                         VL ( j)
 Inductors                   Inductors    jL =
                   I L (s)                        I L ( j)
              1 VC (s)                     1   VC ( j)
 Capacitors     =            Capacitors      =
              Cs I C (s)                  jC I C ( j)
                V (s)                        VR ( j)
  Resistors   R= R            Resistors   R=
                I R (s)                      I R ( j)
                                                              10
Q3. In the circuit shown in Figure, switch 1 is closed at t = 0 and then, at t = t’=
4ms, switch 2 is opened. Find the current i(t) in the intervals 0 < t < t’ and t > t’
using Laplace Transform.
        1            50
                     100          2
100V
            i (t )
                            0.1H
Q3. In the circuit shown in Figure, switch is closed at t =0. Find the current i(t)
for t > 0 using Laplace Transform.
Representation of R, L, and C in the S-domain
Using differentiation and integration
Laplace property
                   Laplace Circuit Analysis
Time domain to complex frequency domain
               v 1 (0)
        R!           _                       L2           R2
              +                    _
 +             C1                  v 2 (0)       i2 (t)                 _
                          C2
     VA(t)                         +                                        VB (t)
 _                            L1
                                    i1 (t)                              +
                                   v 1 (0)
                                             _                              L2i2(0)
              R!                   + s                        sL 2          +
                                                                                  _
                                                                                      R2
                          1                   1
                         sC 1                sC 2         _
                                                              v 2 (0)
        +                                                                                          +
             VA(s)                                        +      s
                                                                                           VB(s)
        _                                                                                          _
                                                          sL 1
                                            +
                                     L1i1(0)
                                                  _
                      Laplace Circuit Analysis
Circuit Application:
   Given the circuit below. Assume zero IC’s. Use Laplace to find vc(t).
      The time domain circuit:
                t=0           100 
                                            +
            +
  2u(t) V                         0.001 F
                                            v c (t)
            _
                                            _               Laplace circuit
                                                      t=0
               2  1000                                         100 
                       
   Vc ( s ) =  s  s 
                                                                                  +
                      1000
              100 +                             +
                        s                   2                              1000
                                                            I(s)            s     Vc(s)
                                            s   _
                  20
   Vc ( s ) =                                                                     _
              s( s + 10)
                Laplace Circuit Analysis
Circuit Application:
                       t=0
                                    100 
                                                     +
                +
            2                               1000
                             I(s)            s       Vc(s)
            s   _
                                                     _
                         20     2    2
          Vc ( s ) =           = −
                     s( s + 10) s s + 10
                       
          vc ( t ) = 2 − 2e −10t u( t )          
                     Laplace Circuit Analysis
Circuit Application:
   Given the circuit below. Assume vc(0) = - 4 V. Use Laplace to find vc(t).
      The time domain circuit:
                     t=0      100 
                                            +
                 +
       2u(t) V                    0.001 F
                                            v c (t)
                 _
                                                _
                                                              Laplace circuit:
                                                        t=0
                                                                     100 
     2 4               1000 
      + = I ( s )100 +
                                                                                        +
                          s 
                                                                             1000
     s s                                   2
                                                    +                         s
                                                              I(s)                  _   Vc(s)
                                            s       _                         4
                        6                                                     s
     100 I ( s ) =                                                                  +   _
                     s + 10
                       Laplace Circuit Analysis
    Circuit Application:
                t=0
                              100                           1
                                                                     2
                                          1000
                                                     +                 − 100 I ( s ) − Vc ( s ) = 0
            +                              s                         s
        2
                       I(s)                      _   Vc(s)
        s   _                              4
                                           s     +                   2    6
                                                     _
                                                                       −      = Vc ( s )
                                                                     s s + 10
2                   − 4 s + 20             A     B
       Vc ( s ) =              =             +
                    s( s + 10)             s   s + 10            Check the boundary conditions
                                                                 3        vc(0) = - 4 V
                 2    6
       Vc ( s ) = −
                 s s + 10
                                                                          vc(oo) = 2 V
                
        v ( t ) = 2 − 6e −10t u( t )  
               Laplace Circuit Analysis
Circuit Application:               Find i0(t) using Laplace
                                   1              2              2H
                           +                            i0 (t)
   Time Domain 4u(t)                                              1   e-tu(t)
                       _                      1F
                                      1               2              2s
                               +
     Laplace           4                                                          1
                       s            I 1 (s)        1    I 2 (s)   1    I 3 (s)
                               _                   s                              s+1
                     Laplace Circuit Analysis
 Circuit Application:                Find i0(t) using Laplace
             1                2               2s
     +
 4                                                              1
 s         I 1 (s)         1    I 2 (s)    1     I 3 (s)
     _                     s                                    s+1
Mesh 1
              ( s + 1)            I 2 ( s) 4
                       I1 ( s ) −         =
                  s                  s      s
                     ( s + 1) I1 ( s ) − I 2 ( s ) = 4
                   Laplace Circuit Analysis
Circuit Application:                  Find i0(t) using Laplace
                   1               2
         +
     4                                                               1
     s           I 1 (s)        1   I 2 (s)     1     I 3 (s)
         _                      s                                    s+1
Mesh 2
             −1                3s + 1
                 I1 ( s ) +            I 2 ( s) − I 3 ( s) = 0
              s                  s
             −1                3s + 1                1
                 I1 ( s ) +            I 2 ( s) −          =0
              s                  s                 s +1
                                                   s
             − I1 ( s ) + ( 3 s + 1) I 2 ( s ) =
                                                 s +1
             − ( s + 1) I1 ( s ) + ( s + 1)(3 s + 1) I 2 ( s ) = s
                   Laplace Circuit Analysis
Circuit Application:                Find i0(t) using Laplace
         +
     4                                                             1
     s            I 1 (s)       1     I 2 (s)    1      I 3 (s)
         _                      s                                  s+1
 ( s + 1) I1 ( s ) − I 2 ( s ) = 4                                 Add these 2
                                                                    equations
− ( s + 1) I1 ( s ) + ( s + 1)( 3 s + 1) I 2 ( s ) = s
             s ( 3 s + 4) I 2 ( s ) = s + 4
                  Laplace Circuit Analysis
Circuit Application:                    Find i0(t) using Laplace
        +
    4                                                                        1
    s              I 1 (s)               1       I 2 (s)   1      I 3 (s)
        _                                s                                   s+1
 s( 3 s + 4) I 2 ( s ) = s + 4
           (1 )( s + 4)
   I ( s) = 3
                         1
                        = −                 3
                                             2
    2
                s( s + 4 )      s        s+ 4
                        3                         3
                     2 − 43t
  i2 ( t ) = [ 1 − e         ] u( t )
                     3