GR 09 Maths
GR 09 Maths
(iii) 3𝑥 − 8 ≤ 4 (iv) 6𝑥 + 7 ≥ 25
(iii) 8 + 𝑥 ≤ 12 (iv) 𝑥 − 5 ≥ −3
𝑥 4𝑥
(v) ≥3 (vi) ≥8
2 3
−3𝑥 −8𝑥
(vii) +2≥5 (viii) + 3 ≤ 11
4 5
05. rpahk; 100 &gha; itj;jpUe;jhd;. mtd; &gha; 𝑎 tpiyAs;s mg;gps; xd;iwAk;
&gha; 40 ngWkjpAs;s Njhlk;gok; xd;iwAk; thq;fpdhd;. mtd; thq;fpa
goq;fspd; ngWkhdj;jij 𝑎 + 40 ≥ 100 vDk; rkdpyp %yk; fhl;lyhk;.
mr;rkdpypia jPu;j;J mg;gps; xd;wpd; Fiwe;jgl;r tpiyiaf; fhz;f.
07. jd;dplk; ,Uf;Fk; gzk; rpahkplk; cs;s gzj;jpd; 5 klq;fpYk; 4 FiwT vd mg; uj;
$Wfpd;whd;. mg;uj;jplk; 101 &gha; cs;sJ. rpahkplk; cs;s gzk; 𝑥 vdpd;>
(ii) rpahkplk; 5 &gha; ehzak; kl;LNk cs;sJ vdpd; rpahkplk; cs;s mjp$ba
gzj;ijf; fhz;f.
A B
(vii) 𝐴′ ∩ 𝐵′ (viii) 𝐴′ ∪ 𝐵′
Q P
07.
jug;gl;l ntd;tupg;glj;ij gad;gLj;jp
9 gpd;tUtdtw;wpd; %yfq;fis vOjp mjd;
1 Kjypikia vOJf.
4 8
P 3 Q
6
10
5
B 7
(v) 𝑃 ∩ 𝑄 = (v) ∩ (𝑃 ∩ 𝑄) =
(vi) 𝑃 ∪ 𝑄 = (vi) ∩ (𝑃 ∪ 𝑄) =
(vii) 𝑃′ ∩ 𝑄 = (vii) ∩ (𝑃 ′ ∩ 𝑄) =
(viii) 𝑃 ∩ 𝑄′ = (viii) ∩ (𝑃 ∩ 𝑄′ ) =
08.
1 jug;gl;l ntd;tupg;glj;ij gad;gLj;jp
9
3 2 gpd;tUtdtw;wpd; %yfq;fisAk;
6 KjypikiaAk; vOJf.
B
4 A
5 8
1 7
(iii) 𝐴 ∩ 𝐵 = (iii) ∩ (𝐴 ∩ 𝐵) =
(viii) 𝐴 ∩ 𝐵′ = (viii) ∩ (𝐴 ∩ 𝐵′ ) =
(iii) 𝐴 ∩ 𝐵 I vOJf.
(iv) ∩ (𝐴 ∪ 𝐵) ahJ?
(v) njhil A ,w;F vj;jid njhil gpupTfs; cz;L? mtw;Ws; 5 ,id vOJf.
(iii) 𝑄′ ∩ 𝑃
(iv) 𝑃′ = {5 , 7 , 8 } vdpd; ∈11,d; %yfq;fis vOJf.
11. ntd;cUtpd; juTfSf;Nfw;g>
3
(i) 𝑁 … … . 𝑀 vd;gjpy; ntw;wplj;jpw;F nghUj;jkhd 1 2
M
FwpaPl;il milg;gpypUe;J njupf.(∈ , ∉ , ⊂ , ⊄) 4 6 N
5 7
9
(ii) 𝑀 ∩ 𝑁′ I fhz;f.
(ii) ∩ (𝑀 ∪ 𝑁) I vOJf.
A = { 12 ,d; fhuzpfs;; }
A B P 6𝑐𝑚 Q 20𝑐𝑚 R Q R
14𝑐𝑚 12𝑐𝑚
≫
20𝑐𝑚 14𝑐𝑚
𝑎
ℎ
≫
16𝑐𝑚
𝐴 = 80𝑐𝑚 2 𝐴 = 175𝑐𝑚 2
D C
06. 05. ≫
cUtpYs; s juTfisf; nfhz;L ℎ If; fhz;f.
35𝑐𝑚
15𝑐𝑚 ℎ
≫
A 21𝑐𝑚 B
> >
19𝑐𝑚
14𝑐𝑚
4𝑐𝑚
6𝑐𝑚
14𝑐𝑚
>
16𝑐𝑚
12𝑐𝑚
13. juk; 9 khztu;fs; 0.7m MiuAila tl;ltbthd G+e;Njhl;lk; xd;iw mikj;J mjid
rkkhd 6 Miur;rpiwfis gpupj;Jf; nfhz;ldu;.
(i) G+e;Njhl;lj;jpd; tpl;lj;jpid cm ,y; jUf.
21𝑚
(ii) Nkilapd; Rw;wsitf; fhz;f.
120𝑚
3
(v) epow;wg;gl;l gFjpapd; gug;gsT miutl;l Fsg;gFjpapd; gug;gstpd; gq;F
11
vdf;fhl;Lf.
8𝑚 6𝑚
A D
(iii) nrt;tfk; ABCD ,d; gug;gsT ahJ?
B C
(iv) miutl;l gFjpapd; gug;gsT ahJ?
28𝑚
(ii) ikjhdj;jpd; miutl;l tpy;ypd; ePsk; ahJ?
56𝑚
Miuiaf; fhz;f.
14𝑚 14𝑚
(ii) ,yl;rizapd; Rw;wsT 58cm vdf; fhl;Lf.
−
14𝑐𝑚
−
(iii) ,yl;riz ntl;b vLf;fKd; jfl;bd; gug;gsT ahJ?
02. tFg;giw xd;wpYs;s 160 khztu;fs; cs;sdu;. mtu;fspy; xUtiu njupT nra; jhy;
2
mtu; Mzhf ,Ug;gjw;fhd epfo;jfT vdpd; tFg;giwapy; cs;s ngz;fspd;
5
vz;zpf;if ahJ?
04. 1 > 1 > 2 > 2 > 3> 3 vd ,yf;fkplg;gl;l Nfhlhj rJuKfp jhaf;fl;ilia cUl;Lk;
NghJ NkypUf;Fk; vz;iz Fwpf;Fk; gupNrhjidapy;>
(i) ngwf;$ba vy;yh NgWfisAk; cs;slf;fpa khjpup ntspia (𝑆) vOJf.
05. 4 ePy epw khgps;fSk;> 3 fWg;G epw khgps;fSk; mlq;fpa ig xd;wpypUe;J vOkhwhf
xU khgpis vLj;J epwk; Fwpf;Fk; gupNrhjidapy;
(i) khjpupntspia vOJf.
06. ngl;b xd;wpy; 5 kQ;rs; epw ml;ilfSk;> 4 nts;is epw ml;ilfSk;> 3 fWg;G epw
ml;ilfSk; cs;sd. vOkhwhf xU ml;il ntspNa vLf;fg;gLfpd;wJ.
(i) epfo;r;rpf;fhd khjpupntspia vOJf.
𝑥 1000 1650 𝑥
1200 𝑥
𝑥 750
08. Xu; xOq;fhd gy;Nfhzpapd; xd;wpd; mff;Nfhzk;> Gwf;Nfhzj;jpd; %d;W klq;F vdpd;
mg;gy;Nfhzpapd; gf;fq;fspd; vz;zpf;ifiaf; fhz;f.
̂ Uw,d;
(iii)(ii) epow;
𝑄V g;gl;lngWkhdk;
gFjpapd; ahJ?
gug;gsT ahJ?
−
P Q U
(vii) 𝑇Ŝ𝑅 + 𝑃R
̂ 𝑆 ,d; gUkd; ahJ?
F E
5𝑥 4𝑥 5𝑎 2𝑎
(v) − (vi) −
9 9 3 3
04. gpd;tUk; gFjpapy; rkdhd ml;ru fzpj cWg;ig nfhz;l gpd;dq;fis RUf;Ff.
1 3 8 2
(i) + (ii) −
𝑥 𝑥 𝑎 𝑎
9 11 15 15 8 3
(v) + − (vi) − +
2𝑚+5 2𝑚+5 2𝑚+5 7𝑥−2 7𝑥−2 7𝑥−2
𝑥 3𝑥 2 3
(xi) + (xii) −
𝑥+2 2(𝑥+2) 𝑥−5 4(𝑥−5)
4𝑎 3𝑎 3 3
(xiii) − (xiv) −
𝑎−2 3(𝑎−2) 𝑝−5 2(𝑝−5)
2𝑥 𝑥+𝑦 𝑝+𝑞 𝑞
(xv) − (xvi) −
𝑥−𝑦 2(𝑥−𝑦) 𝑝−𝑞 3(𝑝−𝑞)
B
02. 𝑁 600 𝐸 60𝑚 vDk; ,lj;jpw;Fwpa jpirNfhis vOJf.
N N
(iii) (iv)
B
A→B= A→B=
0
160
A 250
B→A= B→A=
A
B
06. khYkp JiwKfk; A ,ypUe;j Gwg;gl;L 0300 jpirNfhspy; 100𝑚 J}uk; nrd;W JiwKfk;
B I milfpwhu;. gpd; B ,ypUe;J 2700 jpir NfhspYk; 80𝑚 J}uj;jpYk; A ,w;F tlf;Nf
cs;s JiwKfk; C ,id milfpd;whu;.
07. mstpilg;glk; xd;wpy; 5𝑐𝑚 ,dhy; 2.5𝑘𝑚 Fwpf;fg;gLkhapd; mjd; mstpil tpfpjj;ij
fhz;f.
11. 1 ∶ 2 000 vDk; mstpilf;F tiuag;gl;l tiuglj;jpy; cz;ik ePsj;ij 1𝑘𝑚 ,dhy;
Fwpf;fg;gLk; mstpil ePsj;ij 𝑐𝑚 ,y; jUf.
13. fpilj;jiuapy; 200𝑚 J}uj;jpy; mike;Js;s Gs;sp P , Q ,y; KiwNa 150𝑚 , 100𝑚
cauKs;s epiyf;Fj;J NfhGuq;fs; 2 mike;Js;sd.
(i) nghUj;jkhd mstpilfis gad;gLj;jp Nkw;Fwpj;j jfty; cs;slf;fpa
mstpilg;glk; xd;iw tiuf.
(ii) P ,d; cr;rpapypUe;J Q ,d; cr;rpapd; jpirNfhis mse;J vOJf. ,jpypUe;J Q
,ypUe;J P ,d; jpirNfhis fzpf;f.
14. tlf;F njw;fhf nry;Yk; xU Neu; ghijapy; mike;Js;s Gs;sp R ,ypUe;J ,lJ
gf;fj;jpy; itj;jparhiy 2300 jpir Nfhspy; cs;sJ. R ,ypUe;J ghij topNa 140𝑚
njw;F Nehf;fp te;J Gs;sp S ,ypUe;J itj;jparhiyia mtjhdpj;j NghJ 3000 jpir
Nfhspy; ,Ue;jJ.
(i) Nkw;Fwpj;j jfty;fis cs;slf;fpa gUkl;lhd glk; xd;iw tiuf.
jpzpT (𝑘𝑔) 31 32 33 34 35 36 37 38
khzttu;
vz;zpf;if 3 13 7 6 6 8 5 2
(i) khztu;fspd; jpzptpd; tPr;R ahJ?
(v) vOkhwhf xU khztid njupT nra;jhy; mtd; 35𝑘𝑔 jpzpit tpl mjpf
jpzpTilatdhf ,Ug;gjw;fhd epfo;jfitf; fhz;f.
Gj;jfq;fspd; ehl;fspd;
eLg;ngWkhdk; 𝑓𝑥
vz;zpf;if vz;zpf;if (𝑓)
0 – 10 5
10 – 20 11
20 – 30 25 21
30 – 40 13
40 – 50 8
50 – 60 2
𝑓 = 𝑓𝑥
=
07. khztu;FO xd;W fzzpia gad;gLj;Jtjw;F vLj;j Neuk; njhlu;ghd tpguk; fPNo
ml;ltizapy; jug;gl;Ls;sJ.
vLj;j Neuk; khztu; eLg;ngWkhdk; 𝑓𝑥
vz;zpf;if 𝑥
0 – 5 2
5 – 10 5
10 – 15 6
15 – 20 8
20 – 25 5
25 – 30 4
(i) Mfhu tFg;G ahJ?
1 – 15 7
16 – 30 23 5
31 – 45 8
46 – 60 53 5
61 – 75 3
76 – 90 2
𝑓 = 𝑓𝑥 =
(i) 1 – 15 vDk; tFg;ghapilapd; fPo; vy;iy Nky; vy;iy vd;gtw;iw vOJf.
(v) vOkhwhf xU ehis njupT nra;Ak; NghJ me;ehspy; 60𝑘𝑔 ,Yk; $Ljyhd
muprpia tpw;wpUg;gjw;fhd epfo;jfT ahJ?
eLg;ngWkhdk;
jpzpT (𝑘𝑔) kPbwd; (𝑓) 𝑓𝑥
(𝑥)
0 – 10 2 5
11 – 20 6 15.5
21 – 30 10
31 – 40 8
41 – 50 4 45.5
𝑓 = 𝑓𝑥
=
gFjp – 1
vy;yh tpdhf;fSf;Fk; ,j;jhspNyNa tpil vOJf.
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
𝑥
09. jug;gl;l cUtpy; 𝑥 ,d; ngWkhdj;ijf; fhz;f.
…………………………………………………………
700
10. 14𝑐𝑚 MiuAila tl;lj;jpd; gupjpiaf; fhz;f.
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
13. fhuzpg;gLj;Jf. 3𝑥 2 − 27
……………………………………………………………………………………………………………
P Q
………………………………………………………
4𝑥
15. jPu;f;f. −3= 1
3
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
1 1
18. 𝑎 = −2 > 𝑏 = vdpd; 𝑎 + 8𝑏 ,d; ngWkhdj;ijf; fhz;f.
4 2
……………………………………………………………………………………………………………
(𝑎−𝑏) (2𝑎+𝑏)
19. − RUf;Ff.
(𝑎+𝑏) (𝑎+𝑏)
……………………………………………………………………………………………………………
21. 𝑥
(2 , −3) >(1 , −6) Mfpa Gs;spfis ,izf;Fk; Nfhl;bd; rkd;ghL ahJ?
……………………………………………………………………………………………………………
……………………………………………………………………………………………………………
23. fhuzpg;gLj;Jf. 𝑎2 − 3𝑎 − 18
……………………………………………………………………………………………………………
P R
gFjp – II
vitNaDk; 6 tpdhf;fSf;F tpil vOJf.
01. (a) vz;njhlup xd;wpd; nghJ cWg;G 50 – 3n vdpd;>
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
𝑎 =……………….
400
𝑏 =………………
𝑐
600 𝑏 …
𝑎 𝑐 =………………
…..
(c) ngl;b xd;wpy; rkmsTila 5 nts;is epw G+f;fSk;> 3 rptg;G epw G+f;fSk;> 4 kQ;rs;
epw G+f;fSk; cs;sd. mg;uj; vOkhwhf xU G+it vLf;fpd;whd;.
(i) fpilf;Fk; NgWfspd; khjpupntspia vOJf.
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
5𝑥−3 3𝑥−4
03. (a) RUf;Ff. − (b) jPu;f;f. 5𝑎 − 2𝑏 = 19
𝑎−𝑏 𝑎−𝑏
3𝑎 + 2𝑏 = 21
15𝑎2 𝑏2
(d) RUf;fp tpilia Neu;r;Rl;bahf jUf.
3𝑎−5 𝑏0
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
(iii) AC vDk; Gs;spf;F rkJ}uj;jpYk; gf;fk; AC ,d; kPJk; mikAk; Gs;spia D vdg;
ngaupLf.
(iv) D I ikakhfTk; DC I MiuahfTk; nfhz;l tl;lj;ij tiuf.
(v) DC I mse;J vOJf.
𝑄 = { 12 ,d; fhuzpfs; }
∈ =…………………………………………………………………..
𝑃 =…………………………………………………………………..
𝑄 = …………………………………………………………………..
……………………………………………………………………………………………………
…………………………………………………………………………………………………
(b) fdTU tbt ghj;jpuk; xd;wpd; ePsk; 2.5m mfyk; 2m cauk; 1m MFk;.
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
07. juk; 9 khztu;fs; fzpjg;ghlj;jpy; ngw;w Gs;spfs; gw;wpa jftypd; tpguk; fhl;lg;gl;Ls;sJ.
tFg;ghapil khztu; eLg;ngWkhdk; 𝒇𝒙
vz;zpf;if (𝒙)
10 – 20 3
20 – 30 5
30 – 40 7
40 – 50 4
50 – 60 6
60 – 70 5
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………
……………………………………………………………………………………………………