0% found this document useful (0 votes)
42 views5 pages

Gregggggggggggg

Uploaded by

Greggy Beee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
42 views5 pages

Gregggggggggggg

Uploaded by

Greggy Beee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 5

x f Class xm rf <cf >cf <cpf >cpf

Boundarie
s
26-32 2 25.5-32.5 29 2.86 2 70 6 140
33-39 4 32.5-39.5 36 5.71 6 68 18 136
40-46 7 39.5-46.5 43 10 13 64 34 128
47-53 13 46.5-53.5 50 18.57 26 57 58 114
54-60 15 53.5-60.5 57 21.43 41 44 88 88
61-67 10 60.5-67.5 64 14.29 51 29 114 58
68-74 8 67.5-74.5 71 11.43 59 19 134 38
75-81 6 74.5-81.5 78 8.57 65 11 130 22
82-88 5 81.5-88.5 85 7.14 70 5 140 10

x f xm Fxm X¹ Fx¹ X¹ Fx¹ cf


26-32 2 29 58 -4 -8 -3 -6 2
33-39 4 36 144 -3 -12 -2 -8 6
40-46 7 43 301 -2 -14 -1 -7 13
47-53 13 50 650 -1 -13 0 0 26
54-60 15 57 855 0 0 1 15 41
61-67 10 64 640 1 10 2 20 51
68-74 8 71 568 2 16 3 24 59
75-81 6 78 468 3 18 4 24 65
82-88 5 85 425 4 20 5 25 70

x f cf xm X̄ |xm- f(xm- ∑ f (xm− x̄ )²∑ f (xm− x̄ )³ ∑ f (xm− x̄ )⁴


X̄ | X̄ )
26- 2 2 29 58.7 29.7 59.4 1,764.18 52,396.15 1,556,165.66
32
33- 4 6 36 58.7 22.7 90.8 2,061.16 46,788.33 1,062,095.09
39
40- 7 13 43 58.7 15.7 109.9 1,725.43 27,093.96 425,375.17
46
47- 13 26 50 58.7 8.7 113.1 983.97 8,560.54 74,476.70
53
54- 15 41 57 58.7 1.7 25.5 43.35 73.70 125.29
60
61- 10 51 64 58.7 5.3 53 280.9 1,488.77 7,890.48
67
68- 8 59 71 58.7 12.3 98.4 1,210.32 14,886.94 183,109.36
74
75- 6 65 78 58.7 19.3 115.8 2,234.94 43,134.34 832,492.76
81
82- 5 70 85 58.7 26.3 131.5 3,458.45 90,957.24 2,392,175.41
88
141.7 797.4 13,762.7 285,379.97 6,533,905.92
HISTOGRAPH
16 15
14 13
12
10
10
8
8 7
6
6 5
4
4
2
2

0
26-32 33-39 40-46 47-53 54-60 61-67 68-74 75-81 82-88

FREQUENCY POLYGON
f
16 15

14 13

12
10
10
8
8 7
6
6 5
4
4
2
2
0
2 6 -3 2 3 3 -3 9 4 0 -4 6 4 7 -5 3 5 4 -6 0 6 1 -6 7 6 8 -7 4 7 5 -8 1 8 2 -8 8

OGIVE
80
70 68
70 64 70
57 65
60 59
50 44 51

40 41
29
30
26 19
20
11
13 5
10
6
0 2
26-32 33-39 40-46 47-53 54-60 61-67 68-74 75-81 82-88

<cf >cf
Mean Median Mode

( )
∑ fxm 4109 n Mo = 3(Mdn) – 2(x̄ )
x̄ ¿ = =58.7 −cf
n 70 Mdn = XLB+ 2 = 3(57.7) – 2(58.7)
i = 173.1 – 117.4
f
assume mean = 55.7
= XO + (
∑ fx 1
i ) = 53.5+ (
3 5−26
15 )
7

= 57 +
n
17
( )
7
= 53.5 + 4.2
= 57.7
Mo =XLB + (
D1
D 1+ D 2
i
)
( )
70 2
= 53.5+ 7
= 57 + 1.7 2+5
= 58.7 = 53.5 + 2
= 55.5
= XO + ( ∑ fxn 1 )i Modal class
= 50 + ( )7
87 D1 = 15-13 = 2
70 D2 = 15-10 = 5
= 50 + 8.7
= 58.7

Quartiles

( ) ( ) ( )
1 2 3
n−cf n−cf n−cf
Q1 = XLB + 4 Q2 = XLB + 4 Q3 = XLB + 4
i i i
f f f

( ) ( ) (
1 2 = XLB +
(7 0)−cf (7 0)−26

)
= XLB + 4 = 53.5 + 4 3
7 7 (7 0)−51
f 15 4
i
f
= 46.5 + (17.5−1 3
7 ) = 53.5 +( )
35−26
7
13
= 46.5 + 2.42
15
= 53.5 + 4.2
= 67.5 + ( 52.5−51
8 )7
= 48.92 = 57.7 = 67.5 + 1.31
= 68.81

Deciles

( ) ( )
1 4
n−cf n−cf
D2 = XLB + 5 D4 = XLB + 10
i i
f f

( ) ( )
1 4
( 7 0 )−6 ( 7 0 )−26
= 39.5 + 5 = 92.5 + 10 7
7
7 15
= 39.5 + 8 = 53.5 + 0.93
= 47.5 = 54.43

( ) ( )
6 7
n−cf n−cf
D6 = XLB + 10 D7 = XLB + 10
i i
f f

( ) ( )
6 7
(7 0)−41 ( 7 0 )−4 1
= 60.5 + 10 = 60.5 + 10
7 7
10 10
= 60.5 + 0.7 = 60.5 + 5.6
= 61.2 = 66.1
Percentile

P96=
n [
100 ( P−X LB ) f
i
+ cf ]
=
70 [
100 ( 57−53.5 )
7
+13 ]
=1.43 (0.5 + 13)
= 1.43(13.5)
= 19.31

Quartile Deviation Mean Deviation


Q 3−Q1 ∑ f ( xm− x̄)
Qd= Md =
2 n
68.81−48.92 797.4
Qd = =
2 70
= 9.95 = 11.39

Variance Standard Deviation


∑ f ( xm− x̄)² ∑ f (xm− x̄)2
s² = s=
n−1 n−1
13,762.7 =√ 199.46
=
7 0−1 = 14.12
= 199.46

Coefficient of Variation Coefficient of Quartile Skewness


SD Q3 −Q1 3 ( x̄−Median )
CV = ×100 % CQD= ×100 % Sk=
x̄ Q 3+Q 1 SD
14.12 68.81−48.92 3 (58.7−57.7 )
¿ ×100 % ¿ ×100 % ¿
58.7 68.81+48.92 14.12
= 0.24× 100% 19. 89 3 (1 )
= 0.24 ¿ × 100 % ¿
117 . 73 14.12
= 0.10× 100% 3
¿
= 0.17 14.12
¿ 0.21(positively skewed)
Moments (4 Moments) Kurtosis
∑ f ( xm− x̄ ) ∑ f ( xm− x̄ )
4
1. K=
n n¿ ¿ ¿
797.4 6 ,533,905.92
¿ ¿
70 7 0 ( 19 9 . 46 )
2

= 11.39 6 ,533,905.92
∑ f ( xm− x̄ )
2 ¿
2. 2,784,900.41
n
13,762.7 = 2.35
¿
70
= 196.61
3
∑ f ( xm− x̄ )
3.
n
285,379.97
¿
70
= 4,076.86
4
∑ f ( xm− x̄ )
4.
n
6 ,533,905.92
¿
70
= 93,341.51

You might also like