0% found this document useful (0 votes)
61 views17 pages

Daanii

Uploaded by

kenabadane0938
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
61 views17 pages

Daanii

Uploaded by

kenabadane0938
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 17

Question # 1: Convert binary to decimal

A. 110100011110111010001111011101000111101

1. Write powers of 2 below the binary number:


1101000111101=212+211+29+26+25+24+23+221101000111101 = 2^{12} + 2^{11}
+ 2^9 + 2^6 + 2^5 + 2^4 + 2^3 +
2^21101000111101=212+211+29+26+25+24+23+22
2. Calculate: 4096+2048+512+64+32+16+8+4=68284096 + 2048 + 512 + 64 + 32 + 16
+ 8 + 4 = 68284096+2048+512+64+32+16+8+4=6828 Answer: 682868286828
(decimal)

B. 101010101010101010101010101010101010

1. Write powers of 2 below the binary number:


101010101010=211+29+27+25+23+21101010101010 = 2^{11} + 2^9 + 2^7 + 2^5 +
2^3 + 2^1101010101010=211+29+27+25+23+21
2. Calculate: 2048+512+128+32+8+2=27302048 + 512 + 128 + 32 + 8 + 2 =
27302048+512+128+32+8+2=2730
Answer: 273027302730 (decimal)

Question # 2: Convert decimal to binary

A. 569656965696

1. Divide 569656965696 by 2 repeatedly and record remainders:


o 5696÷2=2848,remainder 05696 \div 2 = 2848, \text{remainder }
05696÷2=2848,remainder 0
o 2848÷2=1424,remainder 02848 \div 2 = 1424, \text{remainder }
02848÷2=1424,remainder 0
o 1424÷2=712,remainder 01424 \div 2 = 712, \text{remainder }
01424÷2=712,remainder 0
o 712÷2=356,remainder 0712 \div 2 = 356, \text{remainder }
0712÷2=356,remainder 0
o 356÷2=178,remainder 0356 \div 2 = 178, \text{remainder }
0356÷2=178,remainder 0
o 178÷2=89,remainder 0178 \div 2 = 89, \text{remainder }
0178÷2=89,remainder 0
o 89÷2=44,remainder 189 \div 2 = 44, \text{remainder } 189÷2=44,remainder 1
o 44÷2=22,remainder 044 \div 2 = 22, \text{remainder } 044÷2=22,remainder 0
o 22÷2=11,remainder 022 \div 2 = 11, \text{remainder } 022÷2=11,remainder 0
o 11÷2=5,remainder 111 \div 2 = 5, \text{remainder } 111÷2=5,remainder 1
o 5÷2=2,remainder 15 \div 2 = 2, \text{remainder } 15÷2=2,remainder 1
o 2÷2=1,remainder 02 \div 2 = 1, \text{remainder } 02÷2=1,remainder 0
o 1÷2=0,remainder 11 \div 2 = 0, \text{remainder } 11÷2=0,remainder 1
2. Write remainders bottom to top:
5696=10110010000005696 = 10110010000005696=1011001000000
Answer: 101100100000010110010000001011001000000 (binary)

B. 123.750123.750123.750

1. Convert the integer part (123123123):


123÷2=61 r 1123 \div 2 = 61 \, r \, 1123÷2=61r1, 61÷2=30 r 161 \div 2 = 30 \, r \,
161÷2=30r1, …\dots… → 111101111110111111011
2. Convert the fractional part (0.7500.7500.750):
o 0.750×2=1.5, integer 10.750 \times 2 = 1.5, \, \text{integer }
10.750×2=1.5,integer 1
o 0.5×2=1.0, integer 10.5 \times 2 = 1.0, \, \text{integer } 10.5×2=1.0,integer 1
Fraction =.11= .11=.11
3. Combine: 123.750=1111011.11123.750 = 1111011.11123.750=1111011.11
Answer: 1111011.111111011.111111011.11 (binary)

Question # 3: Convert octal to decimal

A. 377783777_837778

1. Expand as: 3×83+7×82+7×81+7×803 \times 8^3 + 7 \times 8^2 + 7 \times 8^1 + 7 \


times 8^03×83+7×82+7×81+7×80
2. Calculate: 3×512+7×64+7×8+7=1536+448+56+7=20473 \times 512 + 7 \times 64 + 7
\times 8 + 7 = 1536 + 448 + 56 + 7 =
20473×512+7×64+7×8+7=1536+448+56+7=2047
Answer: 204720472047 (decimal)

B. 120481204_812048

1. Expand as: 1×83+2×82+0×81+4×801 \times 8^3 + 2 \times 8^2 + 0 \times 8^1 + 4 \


times 8^01×83+2×82+0×81+4×80
2. Calculate: 1×512+2×64+0+4=512+128+4=6441 \times 512 + 2 \times 64 + 0 + 4 =
512 + 128 + 4 = 6441×512+2×64+0+4=512+128+4=644
Answer: 644644644 (decimal)

Question # 4: Convert decimal to octal

A. 655366553665536

1. Divide 655366553665536 by 8 repeatedly:


o 65536÷8=8192 r 065536 \div 8 = 8192 \, r \, 065536÷8=8192r0
o 8192÷8=1024 r 08192 \div 8 = 1024 \, r \, 08192÷8=1024r0
o …\dots… → Octal =200000= 200000=200000
Answer: 2000008200000_82000008 (octal)
B. 765247652476524

1. Divide 765247652476524 by 8 repeatedly:


o 76524÷8=9565 r 476524 \div 8 = 9565 \, r \, 476524÷8=9565r4, …\dots… →
Octal =224154= 224154=224154
Answer: 2241548224154_82241548 (octal)

Question # 5: Convert hex to decimal

A. 37FD1637FD_{16}37FD16

1. Expand as: 3×163+7×162+F×161+D×1603 \times 16^3 + 7 \times 16^2 + F \times


16^1 + D \times 16^03×163+7×162+F×161+D×160
2. Substitute F=15,D=13F = 15, D = 13F=15,D=13: 12288+1792+240+13=1433312288
+ 1792 + 240 + 13 = 1433312288+1792+240+13=14333
Answer: 143331433314333 (decimal)

B. 1B9161B9_{16}1B916

1. Expand as: 1×162+B×161+9×1601 \times 16^2 + B \times 16^1 + 9 \times


16^01×162+B×161+9×160
2. Substitute B=11B = 11B=11:
256+176+9=441256 + 176 + 9 = 441256+176+9=441
Answer: 441441441 (decimal)

Question # 6: Convert decimal to hex

A. 409540954095

1. Divide 409540954095 by 16 repeatedly → Hex FFFFFFFFF


Answer: FFF16FFF_{16}FFF16

B. 256192561925619

1. Divide 256192561925619 by 16 repeatedly → Hex 63B363B363B3


Answer: 63B31663B3_{16}63B316

Question # 7: Convert binary to hex

A. 110100011110111010001111011101000111101

1. Group into 4 bits: 0001 1010 0011 11010001 \, 1010 \, 0011 \,


11010001101000111101
2. Convert: 1A3D161A3D_{16}1A3D16
Answer: 1A3D161A3D_{16}1A3D16

B. 111011101110111011101110

1. Group into 4 bits: 1110 11101110 \, 111011101110


2. Convert: EE16EE_{16}EE16
Answer: EE16EE_{16}EE16

Question # 8: Binary addition

A. 1011.1101+11.11011.1101 + 11.11011.1101+11.1

1. Align decimals:
1011.1101+0011.1000=1111.01011011.1101 + 0011.1000 =
1111.01011011.1101+0011.1000=1111.0101
Answer: 1111.01011111.01011111.0101

B. 10011011+1001110110011011 + 1001110110011011+10011101

1. Add: 10011011+10011101=10011100010011011 + 10011101 =


10011100010011011+10011101=100111000
Answer: 100111000100111000100111000

Question # 9: Binary subtraction

A. 101011100−11101110101011100 - 11101110101011100−11101110

1. Perform subtraction:
101011100−011101110=011101110101011100 - 011101110 =
011101110101011100−011101110=011101110
Answer: 011101110011101110011101110

B. 101010100−1111000101010100 - 1111000101010100−1111000

1. Subtract:
101010100−0001111000=100011000101010100 - 0001111000 =
100011000101010100−0001111000=100011000
Answer: 100011000100011000100011000

Question # 10: Mixed operations

A. Hex addition ABEBE+CADEFABEBE + CADEFABEBE+CADEF:


1. Add hex values directly:
o Convert to decimal: ABEBE=703550, CADEF=831215ABEBE = 703550, \,
CADEF = 831215ABEBE=703550,CADEF=831215
o Add: 703550+831215=1534765703550 + 831215 =
1534765703550+831215=1534765
o Convert back to hex: 176F2D176F2D176F2D
Answer: 176F2D16176F2D_{16}176F2D16

B. Octal subtraction (567)8−(473)8(567)_8 - (473)_8(567)8−(473)8:

1. Convert to decimal:
(567)8=375, (473)8=315(567)_8 = 375, \, (473)_8 = 315(567)8=375,(473)8=315
2. Subtract: 375−315=60375 - 315 = 60375−315=60
3. Convert 606060 back to octal: (74)8(74)_8(74)8
Answer: (74)8(74)_8(74)8

Oooooooooooooooooor
Question # 1: Convert binary to decimal

A. 110100011110111010001111011101000111101

1. Write down powers of 2 for each bit position from right to left:
212,211,210,…,202^{12}, 2^{11}, 2^{10}, \dots, 2^0212,211,210,…,20
2. Add powers of 2 corresponding to 111-bits:
212+211+29+26+25+24+23+222^{12} + 2^{11} + 2^{9} + 2^{6} + 2^{5} + 2^{4} + 2^{3} +
2^{2}212+211+29+26+25+24+23+22
3. Calculate:
4096+2048+512+64+32+16+8+4=68294096 + 2048 + 512 + 64 + 32 + 16 + 8 + 4 =
68294096+2048+512+64+32+16+8+4=6829
Answer: 682968296829

**B

You said:
show all answer

ChatGPT said:
ChatGPT

Here are all the answers with complete step-by-step solutions for each question:

Question # 1: Convert binary to decimal

A. 110100011110111010001111011101000111101:

1. Binary representation:
1⋅212+1⋅211+0⋅210+1⋅29+0⋅28+0⋅27+1⋅26+1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅201 \cdot 2^{12} +
1 \cdot 2^{11} + 0 \cdot 2^{10} + 1 \cdot 2^9 + 0 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \
cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot
2^01⋅212+1⋅211+0⋅210+1⋅29+0⋅28+0⋅27+1⋅26+1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅20
2. Calculation:
4096+2048+0+512+0+0+64+32+16+8+0+0+1=68294096 + 2048 + 0 + 512 + 0 + 0 + 64 + 32 +
16 + 8 + 0 + 0 + 1 = 68294096+2048+0+512+0+0+64+32+16+8+0+0+1=6829
3. Answer: 682968296829

B. 101010101010101010101010101010101010:

1. Binary representation:
1⋅211+0⋅210+1⋅29+0⋅28+1⋅27+0⋅26+1⋅25+0⋅24+1⋅23+0⋅22+1⋅21+0⋅201 \cdot 2^{11} + 0 \
cdot 2^{10} + 1 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot
2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot
2^01⋅211+0⋅210+1⋅29+0⋅28+1⋅27+0⋅26+1⋅25+0⋅24+1⋅23+0⋅22+1⋅21+0⋅20
2. Calculation:
2048+0+512+0+128+0+32+0+8+0+2+0=27302048 + 0 + 512 + 0 + 128 + 0 + 32 + 0 + 8 + 0 + 2
+ 0 = 27302048+0+512+0+128+0+32+0+8+0+2+0=2730
3. Answer: 273027302730

Question # 2: Convert decimal to binary

A. 569656965696:

1. Repeated division by 2:
o 5696÷2=2848 r 05696 \div 2 = 2848 \, r \, 05696÷2=2848r0
o 2848÷2=1424 r 02848 \div 2 = 1424 \, r \, 02848÷2=1424r0
o 1424÷2=712 r 01424 \div 2 = 712 \, r \, 01424÷2=712r0
o 712÷2=356 r 0712 \div 2 = 356 \, r \, 0712÷2=356r0
o 356÷2=178 r 0356 \div 2 = 178 \, r \, 0356÷2=178r0
o 178÷2=89 r 0178 \div 2 = 89 \, r \, 0178÷2=89r0
o 89÷2=44 r 189 \div 2 = 44 \, r \, 189÷2=44r1
o 44÷2=22 r 044 \div 2 = 22 \, r \, 044÷2=22r0
o 22÷2=11 r 022 \div 2 = 11 \, r \, 022÷2=11r0
o 11÷2=5 r 111 \div 2 = 5 \, r \, 111÷2=5r1
o 5÷2=2 r 15 \div 2 = 2 \, r \, 15÷2=2r1
o 2÷2=1 r 02 \div 2 = 1 \, r \, 02÷2=1r0
o 1÷2=0 r 11 \div 2 = 0 \, r \, 11÷2=0r1
2. Binary: Write remainders from bottom to top:
101100100000010110010000001011001000000
3. Answer: 101100100000010110010000001011001000000

B. 123.750123.750123.750:

1. Convert integer 123123123:


o 123÷2=61 r 1123 \div 2 = 61 \, r \, 1123÷2=61r1
o 61÷2=30 r 161 \div 2 = 30 \, r \, 161÷2=30r1
o 30÷2=15 r 030 \div 2 = 15 \, r \, 030÷2=15r0
o 15÷2=7 r 115 \div 2 = 7 \, r \, 115÷2=7r1
o 7÷2=3 r 17 \div 2 = 3 \, r \, 17÷2=3r1
o 3÷2=1 r 13 \div 2 = 1 \, r \, 13÷2=1r1
o 1÷2=0 r 11 \div 2 = 0 \, r \, 11÷2=0r1
Binary integer: 111101111110111111011
2. Convert fraction 0.7500.7500.750:
o 0.750×2=1.5 (integer 1)0.750 \times 2 = 1.5 \, \text{(integer } 1\
text{)}0.750×2=1.5(integer 1)
o 0.5×2=1.0 (integer 1)0.5 \times 2 = 1.0 \, \text{(integer } 1\
text{)}0.5×2=1.0(integer 1)
Binary fraction: .11.11.11
3. Combine: 1111011.111111011.111111011.11
4. Answer: 1111011.111111011.111111011.11
Question # 3: Convert octal to decimal

A. 377783777_837778:

1. Expand:
3⋅83+7⋅82+7⋅81+7⋅803 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8^1 + 7 \cdot
8^03⋅83+7⋅82+7⋅81+7⋅80
2. Calculation:
3⋅512+7⋅64+7⋅8+7=1536+448+56+7=20473 \cdot 512 + 7 \cdot 64 + 7 \cdot 8 + 7 = 1536 +
448 + 56 + 7 = 20473⋅512+7⋅64+7⋅8+7=1536+448+56+7=2047
3. Answer: 204720472047

B. 120481204_812048:

1. Expand:
1⋅83+2⋅82+0⋅81+4⋅801 \cdot 8^3 + 2 \cdot 8^2 + 0 \cdot 8^1 + 4 \cdot
8^01⋅83+2⋅82+0⋅81+4⋅80
2. Calculation:
1⋅512+2⋅64+0+4=512+128+0+4=6441 \cdot 512 + 2 \cdot 64 + 0 + 4 = 512 + 128 + 0 + 4 =
6441⋅512+2⋅64+0+4=512+128+0+4=644
3. Answer: 644644644

Question # 4: Convert decimal to octal

A. 655366553665536:

1. Repeated division by 8:
o 65536÷8=8192 r 065536 \div 8 = 8192 \, r \, 065536÷8=8192r0
o 8192÷8=1024 r 08192 \div 8 = 1024 \, r \, 08192÷8=1024r0
o 1024÷8=128 r 01024 \div 8 = 128 \, r \, 01024÷8=128r0
o 128÷8=16 r 0128 \div 8 = 16 \, r \, 0128÷8=16r0
o 16÷8=2 r 016 \div 8 = 2 \, r \, 016÷8=2r0
o 2÷8=0 r 22 \div 8 = 0 \, r \, 22÷8=0r2
2. Octal: 200000200000200000
3. Answer: 2000008200000_82000008

B. 765247652476524:

1. Repeated division by 8:
o 76524÷8=9565 r 476524 \div 8 = 9565 \, r \, 476524÷8=9565r4
o 9565÷8=1195 r 59565 \div 8 = 1195 \, r \, 59565÷8=1195r5
o 1195÷8=149 r 31195 \div 8 = 149 \, r \, 31195÷8=149r3
o 149÷8=18 r 5149 \div 8 = 18 \, r \, 5149÷8=18r5
o 18÷8=2 r 218 \div 8 = 2 \, r \, 218÷8=2r2
o 2÷8=0 r 22 \div 8 = 0 \, r \, 22÷8=0r2
2. Octal: 224154224154224154
3. Answer: 2241548224154_82241548
Question # 5: Convert hex to decimal

A. 37FD1637FD_{16}37FD16:

1. Expand:
3⋅163+7⋅162+F⋅161+D⋅1603 \cdot 16^3 + 7 \cdot 16^2 + F \cdot 16^1 + D \cdot
16^03⋅163+7⋅162+F⋅161+D⋅160
2. Substitute F=15,D=13F = 15, D = 13F=15,D=13:
3⋅4096+7⋅256+15⋅16+133 \cdot 4096 + 7 \cdot 256 + 15 \cdot 16 +
133⋅4096+7⋅256+15⋅16+13
3. Calculation:
12288+1792+240+13=1433312288 + 1792 + 240 + 13 = 1433312288+1792+240+13=14333
4. Answer: 143331433314333

B. 1B9161B9_{16}1B916:

1. Expand:
1⋅162+B⋅161+9⋅1601 \cdot 16^2 + B \cdot 16^1 + 9 \cdot 16^01⋅162+B⋅161+9⋅160
2. Substitute B=11B = 11B=11:
1⋅256+11⋅16+91 \cdot 256 + 11 \cdot 16 + 91⋅256+11⋅16+9
3. Calculation:
256+176+9=441256 + 176 + 9 = 441256+176+9=441
4. Answer: 44144144
Here are all the answers with complete step-by-step solutions for each question:

Question # 1: Convert binary to decimal

A. 11010001111011101000111101:

1. Binary representation:
1⋅212+1⋅211+0⋅210+1⋅29+0⋅28+0⋅27+1⋅26+1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅201 \cdot
2^{12} + 1 \cdot 2^{11} + 0 \cdot 2^{10} + 1 \cdot 2^9 + 0 \cdot 2^8 + 0 \cdot 2^7 +
1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \
cdot 2^0
2. Calculation:
4096+2048+0+512+0+0+64+32+16+8+0+0+1=68294096 + 2048 + 0 + 512 + 0 + 0 +
64 + 32 + 16 + 8 + 0 + 0 + 1 = 6829
3. Answer: 68296829

B. 101010101010101010101010:

1. Binary representation:
1⋅211+0⋅210+1⋅29+0⋅28+1⋅27+0⋅26+1⋅25+0⋅24+1⋅23+0⋅22+1⋅21+0⋅201 \cdot
2^{11} + 0 \cdot 2^{10} + 1 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \
cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0
2. Calculation:
2048+0+512+0+128+0+32+0+8+0+2+0=27302048 + 0 + 512 + 0 + 128 + 0 + 32 + 0
+ 8 + 0 + 2 + 0 = 2730
3. Answer: 27302730

Question # 2: Convert decimal to binary

A. 56965696:

1. Repeated division by 2:
o 5696÷2=2848 r 05696 \div 2 = 2848 \, r \, 0
o 2848÷2=1424 r 02848 \div 2 = 1424 \, r \, 0
o 1424÷2=712 r 01424 \div 2 = 712 \, r \, 0
o 712÷2=356 r 0712 \div 2 = 356 \, r \, 0
o 356÷2=178 r 0356 \div 2 = 178 \, r \, 0
o 178÷2=89 r 0178 \div 2 = 89 \, r \, 0
o 89÷2=44 r 189 \div 2 = 44 \, r \, 1
o 44÷2=22 r 044 \div 2 = 22 \, r \, 0
o 22÷2=11 r 022 \div 2 = 11 \, r \, 0
o 11÷2=5 r 111 \div 2 = 5 \, r \, 1
o 5÷2=2 r 15 \div 2 = 2 \, r \, 1
o 2÷2=1 r 02 \div 2 = 1 \, r \, 0
o 1÷2=0 r 11 \div 2 = 0 \, r \, 1
2. Binary: Write remainders from bottom to top: 10110010000001011001000000
3. Answer: 10110010000001011001000000

B. 123.750123.750:

1. Convert integer 123123:


o 123÷2=61 r 1123 \div 2 = 61 \, r \, 1
o 61÷2=30 r 161 \div 2 = 30 \, r \, 1
o 30÷2=15 r 030 \div 2 = 15 \, r \, 0
o 15÷2=7 r 115 \div 2 = 7 \, r \, 1
o 7÷2=3 r 17 \div 2 = 3 \, r \, 1
o 3÷2=1 r 13 \div 2 = 1 \, r \, 1
o 1÷2=0 r 11 \div 2 = 0 \, r \, 1
Binary integer: 11110111111011
2. Convert fraction 0.7500.750:
o 0.750×2=1.5 (integer 1)0.750 \times 2 = 1.5 \, \text{(integer } 1\text{)}
o 0.5×2=1.0 (integer 1)0.5 \times 2 = 1.0 \, \text{(integer } 1\text{)}
Binary fraction: .11.11
3. Combine: 1111011.111111011.11
4. Answer: 1111011.111111011.11

Question # 3: Convert octal to decimal

A. 377783777_8:

1. Expand:
3⋅83+7⋅82+7⋅81+7⋅803 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8^1 + 7 \cdot 8^0
2. Calculation:
3⋅512+7⋅64+7⋅8+7=1536+448+56+7=20473 \cdot 512 + 7 \cdot 64 + 7 \cdot 8 + 7 =
1536 + 448 + 56 + 7 = 2047
3. Answer: 20472047

B. 120481204_8:

1. Expand:
1⋅83+2⋅82+0⋅81+4⋅801 \cdot 8^3 + 2 \cdot 8^2 + 0 \cdot 8^1 + 4 \cdot 8^0
2. Calculation:
1⋅512+2⋅64+0+4=512+128+0+4=6441 \cdot 512 + 2 \cdot 64 + 0 + 4 = 512 + 128 + 0
+ 4 = 644
3. Answer: 644644

Question # 4: Convert decimal to octal

A. 6553665536:
1. Repeated division by 8:
o 65536÷8=8192 r 065536 \div 8 = 8192 \, r \, 0
o 8192÷8=1024 r 08192 \div 8 = 1024 \, r \, 0
o 1024÷8=128 r 01024 \div 8 = 128 \, r \, 0
o 128÷8=16 r 0128 \div 8 = 16 \, r \, 0
o 16÷8=2 r 016 \div 8 = 2 \, r \, 0
o 2÷8=0 r 22 \div 8 = 0 \, r \, 2
2. Octal: 200000200000
3. Answer: 2000008200000_8

B. 7652476524:

1. Repeated division by 8:
o 76524÷8=9565 r 476524 \div 8 = 9565 \, r \, 4
o 9565÷8=1195 r 59565 \div 8 = 1195 \, r \, 5
o 1195÷8=149 r 31195 \div 8 = 149 \, r \, 3
o 149÷8=18 r 5149 \div 8 = 18 \, r \, 5
o 18÷8=2 r 218 \div 8 = 2 \, r \, 2
o 2÷8=0 r 22 \div 8 = 0 \, r \, 2
2. Octal: 224154224154
3. Answer: 2241548224154_8

Question # 5: Convert hex to decimal

A. 37FD1637FD_{16}:

1. Expand:
3⋅163+7⋅162+F⋅161+D⋅1603 \cdot 16^3 + 7 \cdot 16^2 + F \cdot 16^1 + D \cdot 16^0
2. Substitute F=15,D=13F = 15, D = 13:
3⋅4096+7⋅256+15⋅16+133 \cdot 4096 + 7 \cdot 256 + 15 \cdot 16 + 13
3. Calculation:
12288+1792+240+13=1433312288 + 1792 + 240 + 13 = 14333
4. Answer: 1433314333

B. 1B9161B9_{16}:

1. Expand:
1⋅162+B⋅161+9⋅1601 \cdot 16^2 + B \cdot 16^1 + 9 \cdot 16^0
2. Substitute B=11B = 11:
1⋅256+11⋅16+91 \cdot 256 + 11 \cdot 16 + 9
3. Calculation:
256+176+9=441256 + 176 + 9 = 441
4. Answer: 441441

Let me know if you need explanations for additional questions!


Question #1: Convert Binary to Decimal

A. 110100011110111010001111011101000111101:

1. Binary number: 110100011110111010001111011101000111101


2. Convert to decimal using powers of 2:
1⋅212+1⋅211+0⋅210+1⋅29+0⋅28+0⋅27+0⋅26+1⋅25+1⋅24+1⋅23+1⋅22+0⋅21+1⋅201 \cdot
2^{12} + 1 \cdot 2^{11} + 0 \cdot 2^{10} + 1 \cdot 2^{9} + 0 \cdot 2^{8} + 0 \cdot
2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot
2^{2} + 0 \cdot 2^{1} + 1 \cdot
2^{0}1⋅212+1⋅211+0⋅210+1⋅29+0⋅28+0⋅27+0⋅26+1⋅25+1⋅24+1⋅23+1⋅22+0⋅21+1⋅20
4096+2048+512+32+16+8+1=68284096 + 2048 + 512 + 32 + 16 + 8 + 1 =
68284096+2048+512+32+16+8+1=6828
3. Answer: 682868286828

B. 101010101010101010101010101010101010:

1. Binary number: 101010101010101010101010101010101010


2. Convert to decimal using powers of 2:
1⋅211+0⋅210+1⋅29+0⋅28+1⋅27+0⋅26+1⋅25+0⋅24+1⋅23+0⋅22+1⋅21+0⋅201 \cdot
2^{11} + 0 \cdot 2^{10} + 1 \cdot 2^{9} + 0 \cdot 2^{8} + 1 \cdot 2^{7} + 0 \cdot
2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot
2^{1} + 0 \cdot
2^{0}1⋅211+0⋅210+1⋅29+0⋅28+1⋅27+0⋅26+1⋅25+0⋅24+1⋅23+0⋅22+1⋅21+0⋅20
2048+512+128+32+8+2=27302048 + 512 + 128 + 32 + 8 + 2 =
27302048+512+128+32+8+2=2730
3. Answer: 273027302730

Question #2: Convert Decimal to Binary

A. 569656965696:

1. Divide by 2 repeatedly: 5696÷2=2848r05696 \div 2 = 2848 \quad r05696÷2=2848r0


2848÷2=1424r02848 \div 2 = 1424 \quad r02848÷2=1424r0 1424÷2=712r01424 \div
2 = 712 \quad r01424÷2=712r0 712÷2=356r0712 \div 2 = 356 \quad r0712÷2=356r0
356÷2=178r0356 \div 2 = 178 \quad r0356÷2=178r0 178÷2=89r0178 \div 2 = 89 \
quad r0178÷2=89r0 89÷2=44r189 \div 2 = 44 \quad r189÷2=44r1 44÷2=22r044 \div 2
= 22 \quad r044÷2=22r0 22÷2=11r022 \div 2 = 11 \quad r022÷2=11r0 11÷2=5r111 \
div 2 = 5 \quad r111÷2=5r1 5÷2=2r15 \div 2 = 2 \quad r15÷2=2r1 2÷2=1r02 \div 2 =
1 \quad r02÷2=1r0 1÷2=0r11 \div 2 = 0 \quad r11÷2=0r1
2. Write remainders from bottom to top:
101100011000010110001100001011000110000
3. Answer: 101100011000010110001100001011000110000
B. 123.750123.750123.750:

1. Convert integer part 123123123 to binary:

123÷2=61r1123 \div 2 = 61 \quad r1123÷2=61r1 61÷2=30r161 \div 2 = 30 \quad


r161÷2=30r1 30÷2=15r030 \div 2 = 15 \quad r030÷2=15r0 15÷2=7r115 \div 2 = 7 \
quad r115÷2=7r1 7÷2=3r17 \div 2 = 3 \quad r17÷2=3r1 3÷2=1r13 \div 2 = 1 \quad
r13÷2=1r1 1÷2=0r11 \div 2 = 0 \quad r11÷2=0r1

Integer part in binary: 111101111110111111011

2. Convert fractional part 0.7500.7500.750 to binary:

0.750×2=1.500r10.750 \times 2 = 1.500 \quad r10.750×2=1.500r1


0.500×2=1.000r10.500 \times 2 = 1.000 \quad r10.500×2=1.000r1

Fractional part in binary: .11.11.11

3. Combine results:

1111011.111111011.111111011.11

4. Answer: 1111011.111111011.111111011.11

Question #3: Convert Octal to Decimal

A. 377737773777:

1. Expand the octal number: 3⋅83+7⋅82+7⋅81+7⋅803 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot
8^1 + 7 \cdot 8^03⋅83+7⋅82+7⋅81+7⋅80 3⋅512+7⋅64+7⋅8+7⋅13 \cdot 512 + 7 \cdot 64
+ 7 \cdot 8 + 7 \cdot 13⋅512+7⋅64+7⋅8+7⋅1 1536+448+56+7=20471536 + 448 + 56 +
7 = 20471536+448+56+7=2047
2. Answer: 204720472047

B. 120412041204:

1. Expand the octal number: 1⋅83+2⋅82+0⋅81+4⋅801 \cdot 8^3 + 2 \cdot 8^2 + 0 \cdot
8^1 + 4 \cdot 8^01⋅83+2⋅82+0⋅81+4⋅80 1⋅512+2⋅64+0⋅8+4⋅11 \cdot 512 + 2 \cdot 64
+ 0 \cdot 8 + 4 \cdot 11⋅512+2⋅64+0⋅8+4⋅1 512+128+0+4=644512 + 128 + 0 + 4 =
644512+128+0+4=644
2. Answer: 644644644

Question #4: Convert Decimal to Octal

A. 655366553665536:
1. Divide by 8 repeatedly: 65536÷8=8192r065536 \div 8 = 8192 \quad
r065536÷8=8192r0 8192÷8=1024r08192 \div 8 = 1024 \quad r08192÷8=1024r0
1024÷8=128r01024 \div 8 = 128 \quad r01024÷8=128r0 128÷8=16r0128 \div 8 = 16 \
quad r0128÷8=16r0 16÷8=2r016 \div 8 = 2 \quad r016÷8=2r0 2÷8=0r22 \div 8 = 0 \
quad r22÷8=0r2
2. Write remainders from bottom to top: 200000200000200000
3. Answer: 200000200000200000

B. 765247652476524:

1. Divide by 8 repeatedly: 76524÷8=9565r476524 \div 8 = 9565 \quad


r476524÷8=9565r4 9565÷8=1195r59565 \div 8 = 1195 \quad r59565÷8=1195r5
1195÷8=149r31195 \div 8 = 149 \quad r31195÷8=149r3 149÷8=18r5149 \div 8 = 18 \
quad r5149÷8=18r5 18÷8=2r218 \div 8 = 2 \quad r218÷8=2r2 2÷8=0r22 \div 8 = 0 \
quad r22÷8=0r2
2. Write remainders from bottom to top: 225354225354225354
3. Answer: 225354225354225354

Question #5: Convert Hexadecimal to Decimal

A. 37FD37FD37FD:

1. Expand the hexadecimal number: 3⋅163+7⋅162+F⋅161+D⋅1603 \cdot 16^3 + 7 \cdot


16^2 + F \cdot 16^1 + D \cdot 16^03⋅163+7⋅162+F⋅161+D⋅160 Where F=15F =
15F=15 and D=13D = 13D=13. 3⋅4096+7⋅256+15⋅16+13⋅13 \cdot 4096 + 7 \cdot 256
+ 15 \cdot 16 + 13 \cdot 13⋅4096+7⋅256+15⋅16+13⋅1
12288+1792+240+13=1423312288 + 1792 + 240 + 13 =
1423312288+1792+240+13=14233
2. Answer: 142331423314233

B. 1B91B91B9:

1. Expand the hexadecimal number: 1⋅162+B⋅161+9⋅1601 \cdot 16^2 + B \cdot 16^1 + 9


\cdot 16^01⋅162+B⋅161+9⋅160 Where B=11B = 11B=11. 1⋅256+11⋅16+9⋅11 \cdot
256 + 11 \cdot 16 + 9 \cdot 11⋅256+11⋅16+9⋅1 256+176+256 + 176 +256+176+

4o mini

You said:

6
ChatGPT said:

ChatGPT

Question #6: Convert Decimal to Hexadecimal


A. 409540954095:

1. Divide by 16 repeatedly: 4095÷16=255r15 (F)4095 \div 16 = 255 \quad r15 \,


(F)4095÷16=255r15(F) 255÷16=15r15 (F)255 \div 16 = 15 \quad r15 \,
(F)255÷16=15r15(F) 15÷16=0r15 (F)15 \div 16 = 0 \quad r15 \, (F)15÷16=0r15(F)
2. Write remainders from bottom to top: FFFFFFFFF
3. Answer: FFFFFFFFF

B. 256192561925619:

1. Divide by 16 repeatedly: 25619÷16=1601r325619 \div 16 = 1601 \quad


r325619÷16=1601r3 1601÷16=100r11601 \div 16 = 100 \quad r11601÷16=100r1
100÷16=6r4100 \div 16 = 6 \quad r4100÷16=6r4 6÷16=0r66 \div 16 = 0 \quad
r66÷16=0r6
2. Write remainders from bottom to top: 641364136413
3. Answer: 641364136413

Question #7: Convert Binary to Hexadecimal

A. 110100011110111010001111011101000111101:

1. Group bits in sets of 4 from right to left: 1 1010 0011 11011 \, 1010 \, 0011 \,
11011101000111101 Add leading zeros if necessary: 0001 1010 0011 11010001 \,
1010 \, 0011 \, 11010001101000111101
2. Convert each group to hex: 0001=1, 1010=A, 0011=3, 1101=D0001 = 1, \, 1010 =
A, \, 0011 = 3, \, 1101 = D0001=1,1010=A,0011=3,1101=D
3. Answer: 1A3D1A3D1A3D

B. 111011101110111011101110:

1. Group bits in sets of 4 from right to left: 1110 11101110 \, 111011101110


2. Convert each group to hex: 1110=E, 1110=E1110 = E, \, 1110 = E1110=E,1110=E
3. Answer: EEEEEE

Question #8: Add Binary Numbers

A. 1011.1101+11.11011.1101 + 11.11011.1101+11.1:

1. Align numbers: 1011.1101+0011.10001011.1101 + 0011.10001011.1101+0011.1000


2. Perform binary addition: 1111.01011111.01011111.0101
3. Answer: 1111.01011111.01011111.0101

B. 10011011+1001110110011011 + 1001110110011011+10011101:

1. Align numbers: 10011011+1001110110011011 + 1001110110011011+10011101


2. Perform binary addition: 100110000100110000100110000
3. Answer: 100110000100110000100110000

Question #9: Subtract Binary Numbers

A. 101011100−11101110101011100 - 11101110101011100−11101110:

1. Perform binary subtraction: 101011100−011101110101011100 -


011101110101011100−011101110
2. Borrow as necessary: 110110110
3. Answer: 110110110

B. 101010100−1111000101010100 - 1111000101010100−1111000:

1. Perform binary subtraction: 101010100−0001111000101010100 -


0001111000101010100−0001111000
2. Borrow as necessary: 100100100100100100100100100
3. Answer: 100100100100100100100100100

Question #10: Perform Operations

A. ABEBE+CADEFABEBE + CADEFABEBE+CADEF:

1. Convert to decimal:
o ABEBE=703038ABEBE = 703038ABEBE=703038
o CADEF=831471CADEF = 831471CADEF=831471
2. Add decimal values: 703038+831471=1534509703038 + 831471 =
1534509703038+831471=1534509
3. Convert back to hex: 1534509=17788D1534509 = 17788D1534509=17788D
4. Answer: 17788D17788D17788D

B. (567)8−(473)8(567)_8 - (473)_8(567)8−(473)8:

1. Convert octal to decimal:


o (567)8=375(567)_8 = 375(567)8=375
o (473)8=315(473)_8 = 315(473)8=315
2. Subtract decimal values: 375−315=60375 - 315 = 60375−315=60
3. Convert back to octal: 60=(74)860 = (74)_860=(74)8
4. Answer: (74)8(74)_8(74)8

You might also like