Exp.
7 Determination of moment of inertia of
                          rigid bodies
          I Experimental objectives
              I. Learn to use moment of inertia instrument, measure the moment of inertia of regular
                 rigid body and compare with theoretical value;
              2. Verify the parallel-axis theorem with experiment.
          II Experimental instrument
          _Rdro...~"J.- :~bo._mQ..OMl]le,wiwt ;~-u.mul-, E~wc..-~ ·,_~ nd~.
           iko_(~\ru,w,,o..~Je.J:-ww!- c)_tU.~- l f \ \ ~ ~"~-,- SwtJL.~ w ~\cw. .
          III Experimental principle
          - @_m\-~,, of ~ i>l-~~ ~
                                 "~J .Jup;
                                    '-                                                          t#J lJ.,~ ~
          ~-blo~,-~>
         ~ ~ c . 000¥'         .
                                                                                                       00~ c)r~
                                                                                                 ~~b\
                                                                                                  ~ 0 e,'tt\,~c-d-oor
                                                                                                                   -    _ _j
                                                                                                        A~WAl1~
     -
                                                                                                                         -,
                                                                                                       S~{{.11~
~,\l__                                                                                                 HaH-.~ ceid
'™'i' ~to"A
  miJ_eA.___J_
                                                                                                        ~l\~
                                                                                                              l
                                                                                                              I
                 I     JiC       - -     ._
            0
                                                               ,1· 11 0   t11b'aYlcl sh ot,   0
2 ..
3
                                                     6       J '.t   ~e \e ,b ic crMM
                             \:o:tnu
                                   I
                                     o
       Mi   ~~        ~V\       \-o ,t~       i~C,A.C\ ~ ~c. .ho Y\        \el tt   ~w etf t\     neo.AA-"~
            0~       ~ ~~ ~~ ei-
       ~ ~ ~ Ott\°hu\CJ.A Cl.til\~ o" t,LMO.eA "VI :)~ ~                            1
                                                               o t \v\ M )'
       ~ y ». ~ W\ '\~O J\ D.LJ:..Q..\~o \'\ u,'Ylo.e.i, \-\ t
                                                                                        -""
                                                                           on \i.
                        -·------ --
         1     w•
             I...--,,
                    I
                              I
                              •
                                                                                  Ho>b 0 1
                    lo     •I
                    i    r i af
                    •         •               G =m. g      _J                                      _              _         fuli
      -\¼      ·s1:n.l}o-
                          4
                                  s\-~\:-5, 'n::, 40\0\e aj\QN)          \:\oa   Cili/.l"lhft wei.~      ~""o0    ''   i2
         tA'.J \\.w cAw\h,u~\. , wi b.ve •                                M ..   ,a.. - h",, °cfT          i a ~       <~
         Cl.Cfdlrlini fD          \:¼a,   Sfc01cl        law Q f rvewR;v1
    &>crui,::,e          0-cce \fA&Y'.1       cf ~o u-oMteA. ,;u,i o}k o.            -V>   c..;.'\'l'4{<:cOMt½s, c..wolleA fu<1M
    \\u. ¥141\\            <Kre~ohaVl        % \~ \\u.       9~iM&1~ ,             we °ll
    .fil \.\1 0 S&2f Irmo 1-bo luwion a~ Yu Gt-1,·n~ adi1                          1~ 011    fho   4-eppRd ,~               T ' u-.
     eq.i,a~ hi I-ha ~JL~ tfilC'i T al lh, cb1:t1~ o,h·n~                                    an    J..he ce n J.ew:ie,t}il:: doe
    h,       stu, b'Y' k <¼t ,,:kl~ , ~ .i>-                    1
                                                                    1
                                                                        =I
    c..ri     ,ve        Cl.AbbY'.f       ot\.h. f-o\\01uiY104 equa\i.on· tv'.\' = I'r ~:fr~                                m,,,,c~{
    So   I£n~~ \.½. MoM~ at '"'IIA¼i..                                  ~ eooo he so\ved                 a>:-.;
        --' J.~: kbw._ ~ ~ok
- - "-'~-CZ>.                                             C\,~0.,\       fi.C.l.g__\Moho\'\ ··
                --         ~        ~a.A             cl<:.~\Cl.CQ./t'Yle,rj.     f-et~
_        _ _ _e_ ~ W 0                      ~ _ -t   t    ~~l . _
•
    W\.OAA.J: .~/)I\:¼ ~\-oele.ck-tir °dW LI\ b\oc.Ked \:¼D ~J- kw ½ \\io t4't
     'b\o~ and 02:> \:- o1 oc.c£nc1~ ~ J1 c,M cl t( de.rule. Yu mamMfs ~ p},nlv-
     Jt,11, ~ale v. blacked (m tb N. Ht bme Md M JI, km1 ; 4obp ech:ve¼ ( ,iri UiA
    eM'~J,Wl¾k, "* se} NA -:: 2 oMd N9. - 6) . As ~ thR o"'l\"~M di,~ocaimeJ.
     e~unbon , Lee~. ., ·           1~~                   :•~-~~ :~/!=)
                                                •::.: t~~ ¾                                          2 (~;~,
     4 :        w,,: initio~    O.Mo(&" vela, ..·,             of: \\ta ¥em;
     e'\»oE<m,,       [: : : :                 ..          f:: :: ..                  B=    ~1~;:fffl
    ~ a.   OMP•~oA   occ0le"o.kon uMdeA \ko                  oct:o\'l  cf Ct...:ci:i01o :\i:ngt'P   CO«Yl   k> eoixi:"A
                '
    oPro....Y\ ocl •,o, \.\.,, !i0.®e ,~        fv    u.   = !aA ( ,2 \-h - 6~>'"''\
                                 {3 - ~j
    J{~X\ C\J-LClA'l h.\,:~: _      W\.i_ __   ~ --   y,_      --
    _Q_~\-_i"'eA_\:b ~ - vne.o..~d :_ \-.\,\-l :
                         0                                                :1ht         kocLJ 's certk1 ot       maM
                          O'
                       J 00.
                                                      .              .       .                         "        ~   ,,   ,,
mob\ CM&
              k
                   ot ~ c      Y«O'd , \\Q. 0\-'
                               1    ,
                                            d~        ,   ~ \6   cw:, c;. u.W½
                                                                                   l    •
                                                                                        P>
                                                                                             .,    ,
                                                                                                  OJ       011caicw 00'.
S,o   \.b. {'Ahnilol -ciwi s. l-\ia c:,10,trt   i>-       e>& \)'\PW. d   .i,, -
-
                                   ' ,,
IV The procedures of the experiment
 ~ -\ i ~ ~ mowieJ-                         o~   ,N./\\-io.1      0   o\ ~ ~\-~ .
 © -~                ~W'D'"'eJ o\ ,,~'\.C\. ot~ ~~ ~~~\'\c\ t\u.
  -- \/eA.~              l»~4-~ ~ ~~ -
                   o.Jri.~ w\-u.J\
  ~          J.ok 1-\-..~~ .,,k fei /J,,. "1.D-J .t o=k of 1-h,_ J.,,..,;,,.,,.,
          ;\L,V'<a ,1,w.o ~c\ \¼- ~~ eJvWA ·
  (Q Vcl;.c\~c"' o\ ~ ~wJle.\-~~                                         ~oi\AMl ·
 V Data processing
 1 . Measure the moment of inertia of aluminum ring
   Mass of the aluminum ring M =           4:?iA 5 'bMass of the weight            ( including hook ) m=5..k.,5 ~
      r= ~- ?0 0w\ N1=                Q.
                                      -            N2 =    !Q                    g=      -:l
                                                                                         l'l . t~l
                                                                                               ..P('). ~'ffl/<:}
                                                                                                             /         n't'a l.  r-/,c
                                                                                                                    :;'Jf..)ti,\VJII;)'t..
                                    Under the action ofM                                     . Under the action of Mu
          Rotary
                         Times
          system                      t1(s)      t2(s)         p(s-2 )             t ul (s)         t u2 (s)       P. (s-2)
    I--
                         1          J 6b A '.3 .3<?,h 2.o~3                        o.s 6':(        ,A.'101 -o.ob~ 3
          The
                         2           .A .h?b
                                        3 . .AlS ~.056                             o,56~           ,A . 6~S1 - 0,o6 <?>"'
      object stage
                         3       .A.Liu 3 . .A6o !i..ObS                           o.56'-f.        .A.'fo~ _0.06."i 3
          O o)
                         average                 S!. oSIA                                                          -o. ob <i"1
            The          I        R,030 L .;~5 .,to~:r                             Q.':f l1         9.. ~~u. -o.o\.4ltO
          whole          2           .A, i\41 ~-OYlt A-OiS                         ,o:~is           2.36~ ... o.O'?>X~
          system         3           _.A .(AA~ Ji . .A\°:) ,.\.DSG)                o .16~           ~. ?>J b -o.o~Ao
            U)           average                                                                        ~
                                                               A.o~h                                         .. o.ol.J~
             Rinne.= J,.o.50       (Ho'\         Rexterio.= \\.~~        CA-vi
   £ JJx -J,h,orelicall      \5, 5 'J':f t Ao'- - '5.~65,1(      Ao"\        Y,.   A,c:,()
            J,h,omical                        5. Lt6S ;.\OV.
2•   Verify parallel-axis theorem
The mass ofone pillar M=      A6S bo..
                                   ·o The mass of the weight      ( including hook) m=        '5 y . '.o ~
d=   3,oo (ml 2Md2= 2 ~~ .\o\.~~
                            0    N,=                   -<
                                                       0          N2=   b
                               Under the action of M                          Under the action of Mu
                    Times                                                                         p)s-2)
                               t 1(s)    t2 (s)      p(s-2)        t,, 1(s)        t,, 2(s)
                    1         .A. 6j?) ":?>.bo~ A.563              o .'=>'5?>     ,A.~ti -o.o'=>~b
       3 3'         2          },. 6~6 3 .i>Ab .A . S:fA           o .65~ .1\.~6~ -o .o&io
       01)          3         J .':f 35 2> . bb .A   ft . S<i 6    o. 666 ~.oo~ - 0 -~6<?,
                    average                                                         -o.o':(~g
                                                     A.6:f 2>
                '
                    I         .A .~}.~ 3.~14 A.'5AA               ri. 1:, 6u A-~~ - O -O"b~S
       1 5'         2         ) . 53b ".l..lA \ i A .15.A\.c      o .b SC:> .A.~&1 - o.O f9.3
       (Ji)     ,3            ,4 .bA'f ~ .53~ .A . Lt~O:,         O. bS'i' .A -~ii; -o.O~~
                    average                          }, . isoi                           - -o.oio~
                         '4
VI Discussion
NA OMd \\J~ <W- \Jockec\ i"' £ =                       ol   6 ;"~ ~ .;. "'..J-                     ~
 ~ ;.,_de,t.;,, 'll'-"ol'e, ~ 6 ~ l-.k ce,cl                                     \=-c.. V\Dw, 1-\,,,._
 ..~o. Ml~ ""'cl M                         µ,,_ we,i,~ O" 1-1-u.. ~cl.-
     ~    ~ o . , , o.c.cJ e,i.ccR"" j.,. ,,J_~VQ. ¾., \4-1,_ - ~ cJ._"<;.                            ~J.
     Clr,\d "-'""'" \--\u. =~"" o.c.u.\.,.c,J;:e,. -.,.. ~.,. 1k ..,..:,..-..J-
      ;.,,J1:o. -0> ia,.1cp- 'i,O 1-\,,,._ >-Q2-l..~<. \/~ e~ IJ, <.lMd 1\/~ Jaw-
       ~ ~ ~ W\0-W,I.UW\ .,J-.
® 1-k ~••/U>/il®Js M           ~ ne seks.J;:ed s.i;i~~                        \.)ru_~~
     occa,\>M£o½ ·o\-w&~       a..   t.c},l\
                                      .      \ae.    taJ\ S4trtc&l~ Yi
                                                                   JA   QN\              ·h
                                                                                bhe_ qtov,a.-
     KoJ         OCCRJ~ n ,   .L?> ~ w,,o>b\eJh c ow:l
                                            ~ d h.Pt \:&v-~
    ~ ~ - ~qf cl \ht ikcali:eV1 be\ ~ \.ho caid i.b ~o.ca cl
- --=
    boa.:ro ~ \).;uc\ \n \\,._ <kwcl ~,\i.,~ Ofid Uv ~-,, ~,\le~
      4i>\: ~ C¥ c.a,e.
          t, ~x_ y>Jle,\ Ob c,,               -~c#:
                                  Gszco ; ~ V\tO OMA if Uu
       ~~~-,~~CW \-o \-~.ii,.~ relO w:11 ..,,\, ~ ~o.Rve I~
       o.,v,.cl ~ ~~ he-\~ i~                 0-    i.>-   C1f p,w')(L ~ d   a1s   O.
Initial data (the data recorded in class)
                           Under the action of M                 unde r the action of Mu
Rotary system
                Time{s)        t1        t2        13 (s- 2)     tu!       tu2   f3 u (s -2)
                   1         1.661     3.394   2.0428          0.567     1.707 -0.06 8334
 The objec t       2         1.456     3.125   2.0559          0.564     1.698 -0.069427
   stage           3         1.484     3.16    2.0647          0.567     1.707 -0.06 8334
                avera ge                       2.0545                          -0.068699
                   1          2.03    4.335    1.0873          0.778     2.344 -0.044003
 The whole         2         1.847    4.084    1.0851          0.785     2.364 -0.03 8597
 system{J)         3         1.919    4.189    1.0798          0.769     2.316 -0.041048
                avera ge                       1.084                           -0.04 1216
                       Under the action of M                     unde r the action of Mu
                Time{s)        t1       t2     13 (s -2)         tul       t u2    13 u(s- 2)
                   1         1.683    3.602    1.5631          0.653     1.967 -0.05 9564
  33'{J 1)         2         1.696    3.616    1.5709          0.652     1.967 -0.08 1964
                   3         1.735    3.661     1.586          0.666     2.009 -0.07 6926
                avera ge                       1.5733                            -0.07 2818
                   1         1.913    3.924    1.5109          0.654 1.986 -0.17 4325
  15'{J 2)         2         1.536    3.418    1.5135          0.659 1.987 -0.07 2265
                   3         1.617    3.539     1.499          0.658     1.985 -0.07 9753
                avera ge                       1.5078                            -0.10 8781