0% found this document useful (0 votes)
24 views57 pages

Pages 37 93

Uploaded by

Krešimir Mikoč
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views57 pages

Pages 37 93

Uploaded by

Krešimir Mikoč
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 57

Design of anchors

Safety concept .................................................................................. 38


Design method .................................................................................. 38
Handling of the design tables ........................................................ 38
Design actions ................................................................................... 39
Required safety checks ................................................................... 40
Examples ............................................................................................ 40

4.1

Introduction:
In chapter 4.1 you find general information about the basic
principles of the design tables in the chapters 4.2 and 4.3
and how to handle them. The anchor design according to
European Technical Approval ETA (see chapter 4.2) and the
anchor design according to fischer specification act on the
same principles. In the examples you can easily follow how to
work with the tables. Please mind that the values of the tables
of chapter 4.3 are used in the examples.

For choosing the right tables please observe the introduc-


tions of the chapters 4.2 (Anchor design according ETA) and
4.3 (Anchor design according fischer specification). In case
of doubt do not hesitate to contact your responsible fischer
representation.

Status 03/2006 37
Design of anchors

Safety concept ▯ Different failure modes and the correspon-


This Technical Handbook uses the partial ding load bearing capacities were taken into
safety factor concept. Within this concept, the account, especially splitting failure under ten-
well known global safety factor is separated sion load and pryout failure under shear load
in two partial safety factors, namely a partial are considered. These failure modes are often
safety factor for material resistance γM and a decisive in the design process.
partial safety factor for load actions γL. ▯ Differentiation of the safety factors based
on different failure modes.
The used design method is based on the CC-
limit state

Ru,m mean ultimate resistance method. However, the CC-method was simpli-
ultimate

fied so that engineers could use it easily and


Rk characteristic resistance
quickly solve oncoming design questions in
Load, Resistance

global safety factor

4.1 Rk / γ M
practical day work. For this reason in the sim-
plified method an implying of eccentricities
of tension and shear loads is not taken into
Sd design load < Rd design resistance account.
S x γL Rd / γ L
serviceability

Handling of the design tables


limit state

S actual load Rrec recommended load


In the following, the design method used
in this handbook will be explained using a
common fastening problem.
▯ group of 4 anchors,
The partial safety factors for loads γL cover s1 = 180 mm, s2 = 190 mm, c2 = 80 mm
uncertainties and scatter of the dead and
variable loads. The partial safety factors for ▯ non-cracked concrete,
the material resistance include uncertainty C20/25, member thickness h = 250 mm
of the material resistance, namely the load ▯ anchor type FH 15 gvz
bearing capacity of the fastening. The partial ▯ applied loads (service loads)
safety factors for the resistance depend on the NG = 3 kN NQ = 5 kN
installation safety factor and the failure mode VG = 4 kN VQ = 3 kN
(i.e. steel failure, pull-out failure, concrete cone
failure). s1

Design method s2
c2
In order to gain optimum performance of the
h

anchors and at the same time an economical


design, it is necessary to differentiate between
the load direction and the mode of failure. N Sd
State of the art regarding this kind of design of
fastenings is the so called Concrete Capacity
method (CC-method). The mean advantages
of this design method are:
d
VS

38 Status 03/2006
Design of anchors

Design actions
For design actions, a partial safety factor γL,G = 1.35 for actions due to dead loads and γL,Q = 1.5
for actions due to variable loads are taken into account (safety factors can vary depending on the
country) . Assuming a uniform load distribution among all 4 anchors of the fastening group one
gets.

NS,G ⋅ γ L ,G + NS,Q ⋅ γ L ,Q 3. 0 kN ⋅ 1. 35 + 5. 0 kN ⋅ 1. 5
NhSd = = = 2. 9 kN
n 4

h VS,G ⋅ γ L ,G + VS,Q ⋅ γ L ,Q 4 kN ⋅ 1. 35 + 3 kN ⋅ 1. 5 4.1


VSd = = = 2. 5 kN
n 4

But for concrete edge failure only the two most unfavourable anchors are to be taken into
account.

h VS,G ⋅ γ L ,G + VS,Q ⋅ γ L ,Q 4 kN ⋅ 1. 35 + 3 kN ⋅ 1. 5
VSd,c = = = 5.0 kN
nc 2

Tensile resistance
Three failure modes can occur in tension (pull-out, concrete failure and steel failure). Each failure mode will be regarded separately.
failure mode design resistance description see table

steel failure NRd,s = 30.7 kN basic value of design resistance 4.1


pull-out NRd,p = N0Rd,p = 18.0 kN basic value of design resistance 4.2
concrete cone failure N0Rd,c = 21.6 kN basic value of design resistance 4.3
fb,N = 1.0 influence of concrete strength 4.3.1
fs1,N = 0.93 influence of spacing, direction 1 4.3.2.1
fs2,N = 0.96 influence of spacing, direction 2 4.3.2.1
fc2,N = 0.82 influence of edge distance 4.3.2.2
NRd,c = N0Rd,c ⋅ fb,N ⋅ fs1,N ⋅ fs2,N ⋅ fc2 = 15.8 kN -
concrete splitting N0Rd,c = NRd,sp = 21.6 kN basic value of design resistance 4.3
fb,N = 1.0 influence of concrete strength 4.3.1
fs1,sp = 0.76 influence of spacing, direction 1 4.3.3.1
fs2,sp = 0.77 influence of spacing, direction 2 4.3.3.1
fc2,sp = 0.61 influence of edge distance 4.3.3.2
fh = 1.47 influence of member thickness 4.3.3.3
NRd,sp = N0Rd,c ⋅ fb,N⋅ fs1,sp⋅ fs2,sp⋅ fcz,sp ⋅ fh = 11.3 kN -
minimum design resistance min {NRd,s; NRd,p; NRd,c; NRd,sp} min NRd = NRd,sp = 11.3 kN -

Status 03/2006 39
Design of anchors

Shear resistance
Three failure modes can occur in shear (steel failure, concrete edge failure, pryout failure). Each failure mode will be regarded separately.
failure mode design resistance description see table

steel failure VRd,s = 30.4 kN basic value of design resistance 5.1


concrete edge failure V0Rd,c = 6.1 kN basic value of design resistance 5.3
fb,V = 1.0 influence of concrete strength 5.3.1
fα,V = 1.0 influence of load direction 5.3.2
fsc,Vn = 2 = 0.88 influence of spacing, direction 1 5.3.3.2
VRd,c = V0Rd,c ⋅ fb,V ⋅ fα,V ⋅ fsc,Vn = 2 = 5.4 kN -
pryout failure V0Rd,cp = 43.3 kN basic value of design resistance 5.2
fb,V = 1.0 influence of concrete strength 5.3.1
fs1,N = 0.93 influence of spacing, direction 1 4.3.2.1
fs2,N = 0.96 influence of spacing, direction 2 4.3.2.1

4.1 fc2,N
VRd,cp
= 0.82
= V0Rd,cp ⋅ fb,V ⋅ fs1,N ⋅ fs2,N ⋅ fc1,N = 31.7 kN
influence of edge distance 4.3.2.2
-
minimum design resistance min {VRd,s; VRd,c; VRd,cp} min VRd = VRd,c = 5.4 kN -

Required safety checks Example 1:


Sd ≤ Rd
s1
Tension:
NhSd = 2.9 kN
2
≤ min NRd s
= 11.3 kN 9
Shear:
h

VhSd,c = 5.0 kN
≤ min VRd
= 5.4 kN 9
N Sd

Combined tension and shear:

(NhSd/NRd) + (VhSd/VRd) ≦ 1.2

(2.9/11.3) + (5.0/5.4) = 1.18 ≦ 1.2 9 d


VS

40 Status 03/2006
Design of anchors

Tension: NRd,sp = N0Rd,c · fb,N · fs1,sp · fs2,sp · fh


NSd = 63.0 kN 1) N0Rd,c (see table FH: 4.3)
fb,N (see table FH: 4.3.1)
NhSd = 63.0 kN / 4 fs (see table FH: 4.3.2.1)
= 15.8 kN (single anchor) NRd,sp = 51.7 kN · 1.1 · 0.74 · 0.60 · 1.0
Shear: NRd,sp = 25.3 kN
VSd = 45.0 kN 1)
VhSd = 45.0 kN / 4 Summary of required proof:
= 11.3 kN (single anchor) NhSd ≤ (NRd,s; NRd,p; NRd,c; NRd,sp)
1)
factored load 15.8 kN < 25.3 kN 9
Concrete: Shear load:
4.1
non-cracked concrete VRd,s = 93.6 kN (see table FH: 5.1)
concrete strength class C 25/30
concrete thickness h = 250 mm VRd,cp = V0Rd,cp · fb,V · fs1 · fs2
Spacing: V0Rd,cp (see table FH: 5.2)
s1 = 300 mm; s2 = 125 mm fb,V (see table FH: 5.3.1)
Edge distances: -
fs (see table FH: 4.3.2.1)
Anchor type:
VRd,cp = 103.3 kN · 1.1 · 0.89 · 0.66
FH 24 gvz (see page: 276 to 286)
VRd,cp = 66.7 kN
Tension load:
NRd,s = 83.3 kN (see table FH: 4.1)
Summary of required proof:
NRd,p = N0Rd,p · fb,N
VhSd ≤ (VRd,s; VRd,cp)
N0Rd,p (see table FH: 4.2)
11.3 kN < 66.7 kN 9
fb,N (see table FH: 4.3.1)
Combined tension and shear load:
NRd,p = 51.3 · 1.10 N hSd Vh
+ Sd ≤ 1.2
NRd,p = 56.4 kN N Rd V Rd
NRd,c = N0Rd,c · fb,N · fs1 · fs2
15.8 kN 11.3 kN
N0Rd,c (see table FH: 4.3) + ≤ 1.2
25.3 kN 66.7 kN
fb,N (see table FH: 4.3.1)
0.79 < 1.2 9
fs (see table FH: 4.3.2.1)
NRd,c = 51.7 kN · 1.1 · 0.89 · 0.66
NRd,c = 33.4 kN

Status 03/2006 41
Design of anchors

Example 2: NRd,p = 16.7 · 1.0


NRd,p = 16.7 kN

s1 NRd,c = N0Rd,c · fb,N · fs · fc2,1 · fc2,2


N0Rd,c (see table FBN: 4.3)
2
2,
c fb,N (see table FBN: 4.3.1)
1
2,
c fs (see table FBN: 4.3.2.1)
fc (see table FBN: 4.3.2.2)
h

NRd,c = 19.7 kN · 1.0 · 0.80 · 0.82 · 0.82


NRd,c = 10.6 kN
N Sd NRd,sp = N0Rd,c · fb,N · fs,sp · fc2,1,sp · fc2,2,sp · fh
4.1
N0Rd,c (see table FBN: 4.3)
fb,N (see table FBN: 4.3.1)
fs,sp (factor interpolated accor-
ding to table FBN:
4.3.3.1)
fc,sp (see table FBN: 4.3.3.2)
Tension:
NSd = 12.0 kN 1) fh (see table FBN: 4.3.3.3)

NhSd = 12.0 kN / 2 NRd,sp = 19.7 kN · 1.0 · 0.72 · 0.68 · 0.68 · 1.50

= 6.0 kN (single anchor) NRd,sp = 9.8 kN


1)
factored load
Summary of required proof:
Concrete: NhSd ≤ (NRd,s; NRd,p; NRd,c; NRd,sp)
non-cracked concrete
concrete strength class C 20/25 6.0 kN < 9.8 kN 9
concrete thickness h = ∞
Spacing: s1 = 125 mm
Edge distances: c2,1 = 80 mm;
c2,2 = 80 mm
Anchor type:
FBN 12 A4 (see page: 206 to 218)
hef = 70 mm
Tension load:
NRd,s = 24.7 kN (see table FBN: 4.1)
0
NRd,p = N Rd,p · fb,N
N0Rd,p (see table FBN: 4.2)
fb, N (see table FBN: 4.3.1)

42 Status 03/2006
Design of anchors

Example 3: VRd,cp = V0Rd,cp · fb,V · fs1,1 · fs1,2· fs2


V0Rd,cp (see table FH: 5.2)
s 1,1 s1,2 fb,V (see table FH: 5.3.1)
fs (see table FH: 4.3.2.1)
s2 VRd,cp = 103.3 kN · 1.22 · 0.76 · 0.76 · 0.76
VRd,cp = 55.3 kN
h

Summary of required proof:


VhSd ≤ (VRd,s; VRd,cp)
45.1 kN < 55.3 kN 9
4.1
Example 4:

V Sd,1 h
2
d,
VS

Shear:
s2

VSd,1 = 225.0 kN 1)
VSd,2 = 150.0 kN 1)
VSd = √ (225.02 kN + 150.02 kN)
= 270.4 kN
VhSd = 270.4 kN / 6 c 1,1 s1 c 1,2
= 45.1 kN
1)
factored load
Concrete:
non-cracked concrete
concrete strength class C 30/37
concrete thickness h = 300 mm
Spacing:
s1,1 = 200 mm; s1,2 = 200 mm; V Sd
s2 = 200 mm
Edge distances: - Shear:
VSd = 195.0 kN 1)
Anchor type:
VhSd = 195.0 kN / 4
FHA 28 gvz (see page: 276 to 286)
= 48.8 kN
Shear load:
1)
VRd,s = 113.6 kN (see table FH: 5.1) factored load

Status 03/2006 43
Design of anchors

Concrete: Example 5:
non-cracked concrete
concrete strength class C 40/50 s 1,1 s
1,2 s 1,3
concrete thickness h = 500 mm
Spacing: 2
s
s1 = 160 mm; s2 = 250 mm c2
Edge distances:

h
c1,1 = 175 mm; c1,2 = 175 mm
Anchor type:
RG M 20 A4 + R M 20 (see page: 310 to 320) N Sd
Shear load:
4.1 VRd,s = 55.0 kN (see table R: 5.1)
VRd,cp = V0Rd,cp · fb,V · fs1 · fs2 · fc1,1
V0Rd,cp (see table R: 5.2) V Sd,1
2
fb,V (see table R: 5.3.1) d,
VS
fs (see table R: 4.3.2.1)
Tension:
fc (see table R: 4.3.2.2)
NSd = 15.3 kN 1)
VRd,cp = 149.1 kN · 1.41 · 0.74 · 0.87 · 1.0
NhSd = 15.3 kN / 8
VRd,cp = 135.3 kN
= 1.9 kN
VRd,c = V0Rd,c · fb,V · fα,V · fsc,Vn=2
Shear:
V0Rd,c (see table R: 5.3)
VSd,1 = 30.0 kN 1)
fb,V (see table R: 5.3.1)
VSd,2 = 6.0 kN 1)
fα,V (see table R: 5.3.2)
VSd = √(30.02 kN + 6.02 kN)
αV = 90 °
= 30.6 kN
fsc,Vn=2 (see table R: 5.3.3.2) h
V Sd = 30.6 kN / 8
c / cmin ≈ 2.0
= 3.8 kN
s2 / cmin ≈ 3.0
VSd,c = √ [(0.5 · 30.0)2 kN + 6.02 kN]
VRd,c = 12.1 kN · 1.41 · 2.0 · 2.12
= 16.2 kN
VRd,c = 72.3 kN h
V Sd,c = 16.2 kN / 4
Summary of required proof: = 4.0 kN
VhSd ≤ (VRd,s; VRd,cp; VRd,c) 1)
factored load
48.8 kN < 55.0 kN 9
Concrete:
cracked concrete
concrete strength class C 25/30
concrete thickness h = 200 mm

44 Status 03/2006
Design of anchors

Spacing: VRd,cp = V0Rd,cp · fb,V · fs1,1 · fs1,2 · fs2 · fc


s1,1 = 80 mm; s1,2 = 120 mm; V0Rd,cp (see table FZA-D: 5.2)
s1,3 = 80 mm; s2 = 80 mm
fb,V (see table FZA-D: 5.3.1)
Edge distances:
c2 = 120 mm fs (see table FZA-D: 4.3.2.1)

Anchor type: fc (see table FZA-D: 4.3.2.2)


FZA 18x100 M 12 D A4 (see page: 242 to 252) VRd,cp = 34.3 · 1.1 · 0.67 · 0.75 · 0.67 · 1.0
Tension load: VRd,cp = 12.7 kN
NRd,s = 31.6 kN (see table FZA-D: 4.1) VRd,c = V0Rd,c · fb,V · fα,V · fsc,Vn>2
0
NRd,p = N Rd,p · fb,N V0Rd,c (see table FZA-D: 5.3)
N0Rd,p (see table FZA-D: 4.2) fb,V (see table FZA-D: 5.3.1)
fb,N (see table FZA-D: 4.3.1) αV (see table FZA-D: 5.3.2) 4.1
NRd,p = 17.2 · 1.1 tan αV = 0.5 · 30 kN / 6 kN
NRd,p = 18.9 kN αV = 68 °
NRd,c = N0Rd,c · fb,N · fs1,1 · fs1,2 · fs2 · fc fsc,Vn>2 (see FZA-D: 5.3.3.3)
N0Rd,c (see table FZA-D: 4.3) concrete thickness
fb,N (see table FZA-D: 4.3.1) h ≥ 1.5 · c2 = 180 mm

fs (see table FZA-D: 4.3.2.1) and spacing


s1,1; s1,2; s1,3 ≤ 3 · c2 = 360 mm
fc (see table FZA-D: 4.3.2.2)


3 · c + s1.1 + s1.2 + s1.3 c
NRd,c = 17.2 · 1.1 · 0.67 · 0.75 · 0.67 · 1.0 f sc,V n>2 = ·
3 · n · cmin cmin
NRd,c = 6.4 kN


3 · 120mm + 80mm + 120mm + 80mm 120mm
NRd,sp = N0Rd,c · fb,N · fs1,1,sp · fs1,2,sp · =
3 · 4 · 70mm
·
70mm
fs2,sp · fc,sp · fh
N0Rd,c (see table FZA-D: 4.3) = 1.0
fb,N (see table FZA-D: 4.3.1) VRd,c = 5.0 kN · 1.1 · 1.19 · 1.0
fs,sp (see table FZA-D: 4.3.3.1) VRd,c = 6.5 kN
fc,sp (see table FZA-D: 4.3.3.2) Summary of required proof:
fh (see table FZA-D: 4.3.3.3) VhSd ≤ (VRd,s; VRd,cp; VRd,c)
NRd,sp = 17.2 kN · 1.1 · 0.67 · 0.75 · 0.67 4.0 kN < 6.5 kN 9
· 1.0 · 1.16 Combined tension and shear load:
NRd,sp = 7.4 kN N hSd Vh
+ Sd ≤ 1.2
Summary of required proof: N Rd V Rd
NhSd ≤ (NRd,s; NRd,p; NRd,c; NRd,sp) 1.9 kN 4.0
+ ≤ 1.2
1.9 kN < 6.4 kN 9 6.4 kN 6.5
Shear load: 0.91 < 1.2 9
VRd,s = 24.8 kN (see table FZA-D: 5.1)

Status 03/2006 45
Notes

4.1

46 Status 03/2006
Design of anchors

Anchor bolt FAZ ................................................................................ 48


Bolt FBN ............................................................................................ 60
EXA Express-anchor ......................................................................... 74
Zykon anchor FZA ............................................................................. 84
Zykon anchor FZA-D ......................................................................... 94
Zykon anchor FZA-I........................................................................ 104
High performance anchor FH ...................................................... 114
Heavy-duty anchor TA M .............................................................. 126
Highbond anchor FHB II................................................................ 136
Resin anchor R (Eurobond) .......................................................... 146
Injection mortar FIS V / FIS VS ................................................... 156
UPM 44 Chemical mortar ............................................................ 168
Long-shaft fixing SXS ................................................................... 180

4.2

Introduction
The following chapter 4.2 permits the design of fischer
anchors according to their European Technical Approval (ETA).
This means that all products in this chapter are approved
by the European Organisation for Technical Approvals (EOTA)
- except the fischer Long-shaft fixing SXS which has a German
approval based on annex C of the guideline for European
Technical Approval (ETAG).
The ETA‘s are valid in all member states of the European Union
(EU) thus they have to be employed for all the construction
projects at which European planning and building laws are to
be considered. As a rule this applies to construction projects
which are realised in member states of the EU.
For construction projects outside the EU anchor designs accor-
ding to fischer specification (chapter 4.3) may be sufficient.

Status 03/2006 47
fischer Anchor bolt FAZ
Anchor design according to ETA

1. Types

size of anchor in
FAZ II (M 8 - M 16) – Anchor bolt (gvz)
accordance with
fire regulations

FAZ (M 20 - M 24) – Anchor bolt (gvz)


from thread M 10

FAZ – Anchor bolt (A4)

4.2 FAZ – Anchor bolt (C)

Features and Advantages


▯ European Technical Approval option 1.
▯ Suitable for cracked and non-cracked concrete.
▯ Double-shell expansion clip ensures even distribution of the load for high permissible loads.
▯ Small edge and axial spacing for structural elements.
▯ Perfectly sliding expansion clip guarantees secure conctrolled expansion, even in cracked concrete.
▯ Coated hexagon nut allows easy disassembly.

Materials
Anchor bolt: Carbon steel, zinc plated (5 µm) and passivated (gvz)
Stainless steel 1.4401 acc. AISI 316 (A4)
Highly corrosion-resistant steel 1.4529 (C)

2. Ultimate loads of single anchors with large spacing and edge distance
Mean values
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
non-cracked concrete
tension load C 20/25 Nu [kN] 15.9*) 16.8 16.0*) 26.4 26.8 25.4*) 38.6 35.3 52.9 48.4 55.1 79.2
C 50/60 Nu [kN] 15.9*) 16.9*) 16.0*) 27.2*) 26.9*) 25.4*) 41.6*) 39.1*) 37.0*) 66.2*) 72.9*) 74.0*) 86.6 125.0
shear load ≧ C 20/25 Vu [kN] 20.7*) 19.8*) 15.4*) 29.5*) 31.2*) 24.4*) 43.0*) 40.5*) 35.4*) 78.5*) 54.2*) 65.9*) 64.6*) 91.7*)
cracked concrete
tension load C 20/25 Nu [kN] 13.8 10.3 12.0 22.0 18.1 21.0 27.7 24.6 27.8 37.0 37.0 42.3 64.5
C 50/60 Nu [kN] 15.9*) 16.9*) 16.0*) 27.2*) 26.9*) 24.4*) 41.6*) 39.1*) 37.0*) 66.2*) 57.3 65.5 99.9
shear load ≧ C 20/25 Vu [kN] 20.7*) 19.8*) 15.4*) 29.5*) 31.2*) 24.4*) 43.0*) 40.5*) 35.4*) 78.5*) 54.2*) 65.9*) 64.6*) 91.7*)
)
* Steel failure decisive

48 Status 03/2006
fischer Anchor bolt FAZ
Anchor design according to ETA

3. Characteristic, design and permissible loads of single anchors with large spacing
and edge distance
Characteristic loads
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
non-cracked concrete
tension load C 20/25 NRk [kN] 9.0 12.0 16.0 25.0 20.0 39.5 35.0 40.0 60.0
C 50/60 NRk [kN] 13.9 17.0 16.0 24.8 38.7 31.0 61.2 54.2 62.0 93.0
shear load ≧ C 20/25 VRk [kN] 12.0 11.0 13.0 20.0 18.0 20.0 29.5 26.0 30.0 55.0 45.0 55.0 52.0 86.0
≧ C 20/25 VRk [kN] 17.5 2) 11.0 2) 13.0 2) 28.0 2) 18.0 2) 20.0 2) 41.0 2) 26.0 2) 30.0 2) 71.5 2) 45.0 2) 55.0 2) 52.0 2) 86.0 2)
cracked concrete
tension load C 20/25 NRk [kN] 5.0 9.0 16.0 12.0 28.2 25.0 30.0 40.0
C 50/60 NRk [kN] 7.7 13.9 24.8 18.6 43.7 38.7 46.5 62.0
shear load C 20/25 VRk [kN] 12.0 11.0 10.9 20.0 18.0 20.0 29.5 26.0 30.0 55.0 45.0 55.0 52.0 86.0
≧ C 40/50 VRk [kN] 12.0 11.0 13.0 20.0 18.0 20.0 29.5 26.0 30.0 55.0 45.0 55.0 52.0 86.0
C 20/25 VRk [kN] 17.5 2) 11.0 2) 10.9 2) 28.0 2) 18.0 2) 20.0 2) 41.0 2) 26.0 2) 30.0 2) 71.5 2) 45.0 2) 55.0 2) 52.0 2) 86.0 2)
≧ C 40/50 VRk [kN]+ 17.5 2) 11.0 2) 13.0 2) 28.0 2) 18.0 2) 20.0 2) 41.0 2) 26.0 2) 30.0 2) 71.5 2) 45.0 2) 55.0 2) 52.0 2) 86.0 2)

Design loads
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24

non-cracked concrete
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
4.2
tension load C 20/25 NRd [kN] 6.0 6.7 10.7 16.7 13.3 26.3 23.3 26.7 40.0
C 50/60 NRd [kN] 9.3 10.3 16.5 25.8 20.7 40.8 36.1 41.3 62.0
shear load ≧ C 20/25 VRd [kN] 9.6 8.8 8.7 16.0 14.4 13.3 23.6 20.8 20.0 44.0 36.0 36.7 41.6 57.3
≧ C 20/25 VRd [kN] 14.0 2) 8.8 2) 8.7 2) 22.4 2) 14.4 2) 13.3 2) 32.8 2) 20.8 2) 20.0 2) 57.2 2) 36.0 2) 36.7 2) 41.6 2) 57.3 2)
cracked concrete
tension load C 20/25 NRd [kN] 3.3 2.8 6.0 10.7 8.0 18.8 16.7 20.0 26.7
C 50/60 NRd [kN] 5.2 4.3 9.3 16.5 12.4 29.1 25.8 31.0 41.3
shear load C 20/25 VRd [kN] 9.6 8.8 7.2 16.0 14.4 13.3 23.6 20.8 20.0 44.0 36.0 36.7 41.6 57.3
≧ C 40/50 VRd [kN] 9.6 8.8 8.7 16.0 14.4 13.3 23.6 20.8 20.0 44.0 36.0 36.7 41.6 57.3
C 20/25 VRd [kN] 14.0 2) 8.8 2) 7.2 2) 22.4 2) 14.4 2) 13.3 2) 32.8 2) 20.8 2) 20.0 2) 52.7 2) 36.0 2) 36.7 2) 41.6 2) 57.3 2)
≧ C 40/50 VRd [kN] 14.0 2) 8.8 2) 8.7 2) 22.4 2) 14.4 2) 13.3 2) 32.8 2) 20.8 2) 20.0 2) 57.2 2) 36.0 2) 36.7 2) 41.6 2) 57.3 2)

Permissible loads 1)
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
non-cracked concrete
tension load C 20/25 Nperm [kN] 4.3 4.8 7.6 11.9 9.5 18.8 16.7 19.0 28.6
C 50/60 Nperm [kN] 6.6 7.4 11.8 18.4 14.8 29.1 25.8 29.5 44.3
shear load ≧ C 20/25 Vperm [kN] 6.9 6.3 6.2 11.4 10.3 9.5 16.9 14.9 14.3 31.4 25.7 26.2 29.7 41.0
≧ C 20/25 Vperm [kN] 10.0 2) 6.3 2) 6.2 2) 16.0 2) 10.3 2) 9.5 2) 23.4 2) 14.9 2) 14.3 2) 40.9 2) 25.7 2) 26.2 2) 29.7 2) 41.0 2)
cracked concrete
tension load C 20/25 Nperm [kN] 2.4 2.0 4.3 7.6 5.7 13.4 11.9 14.3 19.0
C 50/60 Nperm [kN] 3.7 3.1 6.6 11.8 8.9 20.8 18.4 22.1 29.5
shear load C 20/25 Vperm [kN] 6.9 6.3 5.2 11.4 10.3 9.5 16.9 14.9 14.3 31.4 25.7 26.2 29.7 41.0
≧ C 40/50 Vperm [kN] 6.9 6.3 6.2 11.4 10.3 9.5 16.9 14.9 14.3 31.4 25.7 26.2 29.7 41.0
C 20/25 Vperm [kN] 10.0 2) 6.3 2) 5.2 2) 16.0 2) 10.3 2) 9.5 2) 23.4 2) 14.9 2) 14.3 2) 37.6 2) 25.7 2) 26.2 2) 29.7 2) 41.0 2)
≧ C 40/50 Vperm [kN] 10.0 2) 6.3 2) 6.2 2) 16.0 2) 10.3 2) 9.5 2) 23.4 2) 14.9 2) 14.3 2) 40.9 2) 25.7 2) 26.2 2) 29.7 2) 41.0 2)
1)
Material safety factors γM and safety factor for load γL = 1.4 are included. Material safety factor γM depends on type of anchor.
2)
These values are valid if the shank of the cone bolt is located in the shear joint at the concrete surface. Simplifying this can be supposed for a thickness of the fixture ≧ 15 mm (size
M8), ≧ 20 mm (sizes M10 and M12) and respectively ≧ 25 mm (size M16) as well as a nominal useful length (tfix,nom) of the used anchor type not exceeding 50 mm. In general
the relevant kind of failure (thread or shank) has to be defined by the designing engineer.

Status 03/2006 49
fischer Ankerbolzen FAZ
Ankerbemessung gemäß ETA

4. Widerstände bei Zugbeanspruchung


4.1 Stahlversagen für den höchstbeanspruchten Dübel
Charakteristischer Widerstand und Bemessungswert des Widerstandes für den Einzeldübel
Dübeltyp FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
charakt. Widerstand NRk,s [kN] 16.0 17.0 16.0 27.0 25.0 41.5 39.0 37.0 66.0 73.0 74.0 95.0 128.0
Bemessungswiderstand NRd,s [kN] 10.7 11.5 11.4 18.0 18.2 17.9 27.7 26.4 44.0 52.9 63.3 91.4

4.2 Versagen durch Herausziehen/Durchziehen für den höchstbeanspruchten Dübel


0
N Rd ,p = N Rd ⋅f
, p b, N
Charakteristischer Widerstand und Bemessungswert des Widerstandes für den Einzeldübel in Beton C20/25
Dübeltyp FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
ungerissener Beton
charakt. Widerstand N0Rk,p [kN] 9.0 12.0 16.0 25.0 20.0 39.5 35.0 40.0 60.0
Bemessungswiderstand N0Rd,p [kN] 6.0 6.7 10.7 16.7 13.3 26.3 23.3 26.7 40.0
gerissener
charakt. Widerstand N0Rk,p [kN] 5.0 9.0 16.0 12.0 28.2 25.0 30.0 40.0
Bemessungswiderstand N0Rd,p [kN] 3.3 2.8 6.0 10.7 8.0 18.8 16.7 20.0 26.7
4.2
4.3 Betonausbruch und Spalten für den ungünstigsten Dübel
0 0
N Rd, c = N Rd, ⋅ f ⋅ fs ⋅ fc
c b, N N Rd, sp = N Rd, c ⋅ fb, N ⋅ fs , sp ⋅ fc , sp ⋅ fh
Charakteristischer Widerstand und Bemessungswert des Widerstandes für den Einzeldübel in Beton C20/25
Dübeltyp FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
eff. Verankerungstiefe hef [mm] 45 60 70 85 100 125
ungerissener Beton
charakt. Widerstand N0Rk,c [kN] 15.2 23.4 29.5 39.5 50.4 70.4
Bemessungswiderstand N0Rd,c [kN] 10.1 8.5 15.6 19.7 26.3 33.6 47.0
gerissener Beton
charakt. Widerstand N0Rk,c [kN] 10.9 16.7 21.1 28.2 36.0 50.3
Bemessungswiderstand N0Rd,c [kN] 7.2 6.0 11.2 14.1 18.8 24.0 33.5

4.3.1 Einfluss der Betonfestigkeit bei Zugbeanspruchung

f ck , cube ( 150 )
f b,N =
25
Betonfestigkeitsklasse Zylinderdruckfestigkeit Würfeldruckfestigkeit Einflussfaktor
fck. cyl fck. cube (150) fb.N
FAZ II gvz FAZ A4
FAZ gvz FAZ C
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00 1.00
C 25/30 25 30 1.10 -
C 30/37 30 37 1.22 1.22
C 40/50 40 50 1.41 1.41
C 45/55 45 55 1.48 -
C 50/60 50 60 1.55 1.55

50 Stand 04/2006
fischer Anchor bolt FAZ
Anchor design according to ETA

4.3.2 Concrete cone failure


4.3.2.1 Influence of spacing

⎛ s ⎞
f s = ⎜1 . 0 + ⎟ ⋅0 .5
⎜ s cr , N ⎟
⎝ ⎠
Spacing s Influence factor fs [-]
FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
35 0.63
40 0.64 0.61
45 0.66 0.63 0.61
55 0.70 0.65 0.63
60 0.71 0.67 0.64 0.62
65 0.73 0.68 0.65 0.63
75 0.77 0.71 0.68 0.64
95 0.84 0.76 0.73 0.68 0.66
120 0.93 0.83 0.79 0.73 0.70 0.66
140 1.00 0.89 0.83 0.77 0.73 0.68
160 0.94 0.88 0.81 0.77 0.71
180
210
1.00 0.93
1.00
0.85
0.90
0.80
0.85
0.74
0.78 4.2
260 1.00 0.93 0.84
300 1.00 0.89
380 1.00
smin [mm] 35 40 40 55 45 65 60 75 95 120
scr,N [mm] 140 180 210 260 300 380
Intermediate values by linear interpolation.

4.3.2.2 Influence of edge distance

c c2
f c = 0 . 35 + + 0 .6 ⋅
s cr , N s cr2 , N
Edge distance c Influence factor fc [-]
FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
40 0.68
45 0.73 0.64
50 0.78 0.67
55 0.84 0.71 0.65
65 0.94 0.79 0.72 0.64
70 1.00 0.83 0.75 0.66
90 1.00 0.89 0.77
100 0.96 0.82 0.75
105 1.00 0.85 0.77
120 0.94 0.85 0.73
130 1.00 0.90 0.76
150 1.00 0.84
190 1.00
cmin [mm] 40 45 45 55 55 65 65 100 120
ccr,N [mm] 70 90 105 130 150 190
Intermediate values by linear interpolation.

Status 03/2006 51
fischer Anchor bolt FAZ
Anchor design according to ETA

4.3.3 Concrete splitting


4.3.3.1 Influence of spacing

⎛ s ⎞
f s , sp = ⎜ 1 . 0 + ⎟ ⋅0 .5
⎜ s ⎟
⎝ cr , sp ⎠
Spacing s Influence factor fs,sp [-]
FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
35 0.63
40 0.64 0.61
45 0.66 0.63 0.61
55 0.70 0.65 0.63
60 0.71 0.67 0.64 0.62
65 0.73 0.68 0.65 0.63
75 0.77 0.71 0.68 0.64
95 0.84 0.76 0.73 0.68 0.66
120 0.93 0.83 0.79 0.73 0.70 0.66
140 1.00 0.89 0.83 0.77 0.73 0.68
160 0.94 0.88 0.81 0.77 0.71
180 1.00 0.93 0.85 0.80 0.74
4.2 210 1.00 0.90 0.85 0.78
260 1.00 0.93 0.84
300 1.00 0.89
380 1.00
smin [mm] 35 40 40 55 45 65 60 75 95 120
scr,sp [mm] 140 180 210 260 300 380
Intermediate values by linear interpolation.

4.3.3.2 Influence of edge distance

c c2
f c , sp = 0 . 35 + + 0 .6 ⋅
s cr , sp s cr2 , sp
Edge distance c Influence factor fc,sp [-]
FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
40 0.68
45 0.73 0.64
50 0.78 0.67
55 0.84 0.71 0.65
65 0.94 0.79 0.72 0.64
70 1.00 0.83 0.75 0.66
90 1.00 0.89 0.77
100 0.96 0.82 0.75
105 1.00 0.85 0.77
120 0.94 0.85 0.73
130 1.00 0.90 0.76
150 1.00 0.84
190 1.00
cmin [mm] 40 45 45 55 55 65 65 100 120
ccr,sp [mm] 70 90 105 130 150 190
Intermediate values by linear interpolation.

52 Status 03/2006
fischer Ankerbolzen FAZ
Ankerbemessung gemäß ETA

4.3.3.3 Einfluss der Bauteildicke


2
⎛ h ⎞3
f h = ⎜⎜ ⎟⎟ ≤ 1 . 5
⎝ 2 ⋅ h ef ⎠
Bauteildicke h Einflussfaktor fh [-]
[mm] FAZ II 8 + FAZ 8 FAZ II 10 + FAZ 10 FAZ II 12 + FAZ 12 FAZ II 16 + FAZ 16 FAZ 20 FAZ 24
100 1.07
120 1.21 1.00
140 1.34 1.11 1.00
150 1.41 1.16 1.05
160 1.47 1.21 1.09
170 1.50 1.26 1.14 1.00
180 1.31 1.18 1.04
200 1.41 1.27 1.11 1.00
220 1.50 1.35 1.19 1.07
250 1.47 1.29 1.16 1.00
260 1.50 1.33 1.19 1.03
300 1.46 1.31 1.13
320 1.50 1.37 1.18
380
400
1.50 1.32
1.37
4.2
460 1.50
hmin [mm] 100 120 140 170 200 250
Zwischenwerte durch lineare Interpolation.

5. Widerstände bei Querbeanspruchung


5.1 Stahlversagen für den höchstbeanspruchten Dübel
Charakteristischer Widerstand und Bemessungswert des Widerstandes für den Einzeldübel
Dübeltyp FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
charakt. Widerstand VRk,s [kN] 12.0 11.0 13.0 20.0 18.0 20.0 29.5 26.0 30.0 55.0 45.0 55.0 52.0 86.0
18.0 1) 11.01) 13.01) 28.01) 18.01) 20.01) 41.01) 26.01) 30.01) 71.51) 45.01) 55.0 52.0 86.0
Bemessungswiderstand VRd,s [kN] 9.6 8.8 8.7 16.0 14.4 13.3 23.6 20.8 20.0 44.0 36.0 36.7 41.6 57.3
14.0 1) 8.8 1) 8.7 1) 22.4 1) 14.4 1) 13.3 1) 32.8 1) 20.8 1) 20.0 1) 57.0 1) 36.0 1) 36.7 1) 41.6 1) 57.3 1)
1)
These values are valid if the shank of the cone bolt is located in the shear joint at the concrete surface. Simplifying this can be supposed for a thickness of the fixture ≧ 15 mm (size
M8), ≧ 20 mm (sizes M10 and M12) and respectively ≧ 25 mm (size M16) as well as a nominal useful length (tfix,nom) of the used anchor type not exceeding 50 mm. In general
the relevant kind of failure (thread or shank) has to be defined by the designing engineer.

5.2 Betonausbruch auf der lastabgewandten Seite

V Rd , cp = V Rd0 , cp ⋅ f b,V ⋅ f s ⋅ f c
Charakteristischer Widerstand und Bemessungswert des Widerstandes für den Einzeldübel in Beton C20/25
Dübeltyp FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
eff. Verankerungstiefe hef [mm] 45 60 70 85 100 125
ungerissener Beton
charakt. Widerstand V0Rk,cp [kN] 30.4 15.2 51.5 46.8 70.8 59.0 110.6 79.0 100.8 140.9
Bemessungswiderstand V0Rd,cp [kN] 20.3 10.1 34.4 31.2 47.2 39.4 73.7 52.7 67.2 93.9
gerissener Beton
charakt. Widerstand V0Rk,cp [kN] 21.7 10.9 36.8 33.5 50.6 42.2 79.0 56.4 72.0 100.6
Bemessungswiderstand V0Rd,cp [kN] 14.5 7.2 24.5 22.3 33.7 28.1 52.7 37.6 48.0 67.1

Stand 04/2006 53
fischer Anchor bolt FAZ
Anchor design according to ETA

5.3 Concrete edge failure for the most unfavourable anchor

V Rd , c = V Rd0 , c ⋅ f b,V ⋅ f α , V ⋅ f sc , V n
Characteristic resistance and design restance for single anchors in concrete C20/25 for edge distances cmin
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
non-cracked concrete
minimum edge distance cmin [mm] 40 50 45 55 55 65 65 85 130 150
characteristic resistance V0Rk,c [kN] 3.2 4.4 4.3 5.8 6.3 8.1 9.2 13.8 28.8 39.4
design resistance V0Rd,c [kN] 2.1 3.0 2.9 3.9 4.2 5.4 6.1 9.2 19.2 26.3
cracked concrete
minimum edge distance cmin [mm] 40 45 45 55 55 65 65 100 120
characteristic resistance V0Rk,c [kN] 2.3 2.7 3.1 4.2 4.5 5.8 6.6 13.9 20.2
design resistance V0Rd,c [kN] 1.5 1.8 2.0 2.8 3.0 3.9 4.4 9.3 13.4

5.3.1 Influence of concrete strength for shear

f ck , cube ( 150 )
f b,V =
4.2 25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck. cyl fck. cube (150) fb.V
FAZ II gvz FAZ A4
FAZ gvz FAZ C
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00 1.00
C 25/30 25 30 1.10 -
C 30/37 30 37 1.22 1.22
C 40/50 40 50 1.41 1.41
C 45/55 45 55 1.48 -
C 50/60 50 60 1.55 1.55

5.3.2 Influence of load direction


f α, V = 1.0 for 0° < α V ≤ 55°
1
f α, V = for 55° < α V ≤ 90°
cos α V + 0 . 5 ⋅ sin α V
f α, V = 2.0 for 90° < α V ≤ 180°
Angle αV Influence factor fα.V
[-] Area 2
Area 3 V
Area 1: 0° - 55° 1.00
Area 1
Area 2: 60° 1.07
Area 2: 70° 1.23 αV
Area 2: 80° 1.50
Area 2: 85° 1.71
Area 3: 90° - 180° 2.00

54 Status 03/2006
fischer Anchor bolt FAZ
Anchor design according to ETA

5.3.3 Influence of spacing and edge distance


5.3.3.1 Single anchor influenced only by one edge
for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c

h h
n =1 c c n =1 1 . 5 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min c min c min
single anchor factor fsc,Vn =1
edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
Intermediate values by linear interpolation.

5.3.3.2 Anchor pair influenced only by one edge


for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c
and spacing s ≦ 3 ∙ c and spacing s ≦ 4.5 ∙ h

h
n =2 3 ⋅c + s c n =2 2 ⋅h + s
f sc , V = ⋅ f sc , V = ⋅ 1.5
6 ⋅ c min c min 6 ⋅ c min c min
4.2
for s > 3 ∙ c for s > 4.5 ∙ h

h
n =2 c c n =2 6.5 ⋅ h 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min 6 ⋅ c min c min
spacing anchor pair factor fsc,Vn =2
s/cmin edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 5.69 60.5 6.42 6.79 7.17
10.0 6.21 6.58 6.95 7.33
11.0 7.28 7.67
12.0 8.00
Intermediate values by linear interpolation.

Status 03/2006 55
fischer Anchor bolt FAZ
Anchor design according to ETA

6. Summary of required proof:


6.1 Tension: NhSd ≦ NRd = lowest value of NRd,s ; NRd,p ; NRd,c ; NRd,sp

6.2 Shear: VhSd ≦ VRd = lowest value of VRd,s ; VRd,cp ; VRd,c

6.3 Combined tension and shear load:

N hSd V Sdh
+ ≤ 1 .2
N Rd V Rd
NhSd ; VhSd = tension/shear components of the load for single anchor
NRd ; VRd = design resistance including safety factors

7. Installation details

4.2
td
h ef t fix

Tinst

d0 df M

SW

h1

56 Status 03/2006
fischer Anchor bolt FAZ
Anchor design according to ETA

8. Anchor characteristics
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
diameter of thread M8 M 10 M 12 M 16 M 20 M 24
nominal drill hole diameter d0 [mm] 8 10 12 16 20 24
drill depth h1 [mm] 55 65 75 80 90 95 110 115 130 155
effective anchorage depth hef [mm] 45 60 70 85 100 125
drill hole depth for through fixing td [mm] td = h1 + tfix
clearance-hole in fixture to be attached df [mm] ≦9 ≦ 12 ≦ 14 ≦ 18 ≦ 22 ≦ 26
wrench size SW [mm] 13 17 19 24 30 36
required torque Tinst [Nm] 20 45 60 110 200 270
minimum thickness of concrete member hmin [mm] 100 120 140 170 200 250
non-cracked concrete 1)
minimum spacing smin [mm] 40 50 40 55 50 65 60 75 95 120
for required edge distances for c [mm] 50 50 60 70 70 100 95 120 200 200
minimum edge distances cmin [mm] 40 50 45 55 55 65 65 85 130 150
for required spacing for s [mm] 100 50 80 120 110 150 150 165 245 270
cracked concrete 1)
minimum spacing smin [mm] 35 40 40 55 45 65 60 75 95 120
for required edge distances for c [mm] 50 50 55 70 70 75 95 100 160 165
minimum edge distances
for required spacing
cmin [mm]
for s [mm]
40
70
45
60
45
80
55
90
55
110
65
100 150
65
175
65 100
220
120
220
4.2
1)
Intermediate values by linear interpolation.

9. Mechanical characteristics
Anchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz gvz
stressed cross sectional area cone bolt As [mm2] 21.1 22.9 36.3 38.5 55.4 56.7 88.3 105.7 158.4 237.8
resisting moment cone bolt W [mm3] 13.8 15.5 30.9 33.7 58.2 60.3 116.9 153.2 281.1 517.2
yield strength cone bolt fy [N/mm2] 600 600 600 600 600 600 600 600 600 600 500 600 480 500
tensile strength cone bolt fu [N/mm2] 750 740 700 750 740 700 750 740 700 750 690 700 600 540
stressed cross sectional area threaded part As [mm2] 36.6 36.6 58.0 58.0 84.3 84.3 157.0 157.0 245.0 353.0
resisting moment threaded part W [mm3] 31.2 31.2 62.3 62.3 109.2 109.2 277.5 277.5 540.9 935.0
yield strength threaded part fy [N/mm2] 560 500 600 560 500 600 560 500 600 560 460 600 480 500
tensile strength threaded part fu [N/mm2] 700 625 700 700 625 700 700 625 700 700 575 700 600 540

Status 03/2006 57
fischer Anchor bolt FAZ
Anchor design according to ETA

10. Load displacement curves for tension in non-cracked concrete (fck,cube (200) = 30 N/mm2)
Load [kN] Load [kN] Load [kN]
20 40 50

FAZ 8 FAZ 10 FAZ 12

40
15 30

30

10 20

20

5 10
10

0 0 0
0 2.5 5 7.5 10 0 5 10 15 20 25 0 2.5 5 7.5 10
Displacement[mm] Displacement[mm] Displacement [mm]

Load [kN] Load [kN] Load [kN]


60 80 150

4.2 50
FAZ 16 FAZ 20
125
FAZ 24

60

40 100

30 40 4
75

20 50

20

10 25

0 0 0
0 5 10 15 20 25 30 0 5 10 15 20 0 5 10 15 20 25
Displacement [mm] Displacement [mm] Displacement [mm]

58 Status 03/2006
Notes

4.2

Status 03/2006 59
fischer Bolt FBN
Anchor design according to ETA

1. Types

FBN – Bolt (gvz)

FBN – Bolt (A4)

FBN GS – Bolt with large washer (gvz)


(outside diameter of washer approx. 3.5 x d)

Features and Advantages


4.2 ▯

European Technical Approval option 7.
Suitable for non-cracked concrete.
▯ Long thread allows stand-off installation and variable effective lengths.
▯ 8 to 16 mm diameter also for reduced anchoring depths, e.g. for small loads or if reinforcement is encountered.
▯ Special expansion clip design gives optimal grip.

Materials
Cone bolt: Carbon steel, zinc plated (5 µm) and passivated (gvz)
Stainless steel 1.4401 acc. AISI 316 (A4)

2. Ultimate loads of single anchors with large spacing and edge distance
Mean values
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
tension load C 20/25 Nu [kN] 10.6*) 10.3 14.0 13.8 17.5*) 17.5 18.4 20.6 23.9
C 50/60 Nu [kN] 10.6*) 15.2*) 17.5*) 15.2 17.5*) 23.9*) 27.9*) 23.9 27.9
shear load ≧ C 20/25 Vu [kN] 9.0*) 11.3*) 15.1*) 11.3 15.1*) 16.6*) 24.0*) 16.6 24.0
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
tension load C 20/25 Nu [kN] 23.4 23.9 32.0 39.5 32.0 33.1 43.0 44.3 64.0
C 50/60 Nu [kN] 35.2*) 37.0 35.2*) 39.9*) 49.6 53.5 57.2*) 69.2*) 99.1
shear load ≧ C 20/25 Vu [kN] 27.6*) 31.6*) 27.6*) 31.6*) 44.6*) 56.5*) 44.6*) 56.5*) 71.4*)
*) Steel failure decisive

60 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

3. Characteristic, design and permissible loads of single anchors with large spacing
and edge distance
Characteristic loads
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
tension load C 20/25 NRk [kN] 6.0 7.5 12.0 9.0 12.0 16.0 12.0
C 50/60 NRk [kN] 8.5 11.6 10.7 14.0 12.8 18.6 23.0 18.6
shear load C 20/25 VRk [kN] 7.5 10.4 11.0 12.6 13.7 17.0 20.0
C 50/60 VRk [kN] 7.5 11.0 12.6 11.0 12.6 17.0 20.0 17.0 20.0
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
tension load C 20/25 NRk [kN] 16.0 25.0 25.0 20.0 30.0 38.8 40.0
C 50/60 NRk [kN] 24.8 33.0 38.7 38.7 31.0 46.5 60.1 62.0
shear load C 20/25 VRk [kN] 17.8 27.0 26.3 40.0 47.1 40.0 47.1 67.0
C 50/60 VRk [kN] 27.0 26.3 27.0 26.3 40.0 47.1 40.0 47.1 67.0

Design loads
Anchor type FBN 6
hef = 40 mm
FBN 8
hef = 35 mm *
FBN 8
hef = 48 mm
FBN 10
hef = 42 mm
FBN 10
hef = 50 mm 4.2
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
tension load C 20/25 NRd [kN] 4.0 4.2 6.7 6.0 5.7 6.7 7.6 8.0
C 50/60 NRd [kN] 5.7 6.5 5.9 9.5 8.5 8.9 10.3 11.8 12.4
shear load C 20/25 VRd [kN] 5.0 7.0 7.3 8.4 9.1 11.3 13.3
C 50/60 VRd [kN] 5.0 7.3 8.4 7.3 8.4 11.3 13.3 11.3 13.3
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
tension load C 20/25 NRd [kN] 10.7 8.9 16.7 13.9 16.7 11.1 16.7 18.5 26.7
C 50/60 NRd 18.4 16.5 13.8 23.6 21.5 25.8 17.2 25.8 28.6 41.3
shear load C 20/25 VRd [kN] 11.9 18.0 17.5 31.7 31.4 31.7 31.4 51.1
C 50/60 VRd [kN] 18.0 17.5 18.0 17.5 31.7 31.4 31.7 31.4 51.1

Permissible loads 1)
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
tension load C 20/25 Nperm [kN] 2.9 3.0 4.8 4.3 4.1 4.8 5.4 5.7
C 50/60 Nperm [kN] 4.1 4.6 4.2 6.8 6.1 6.3 7.4 8.4 8.9
shear load C 20/25 Vperm [kN] 3.6 5.0 5.2 6.0 6.5 8.1 9.5
C 50/60 Vperm [kN] 3.6 5.2 6.0 5.2 6.0 8.1 9.5 8.1 9.5
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
tension load C 20/25 Nperm [kN] 7.6 6.3 11.9 9.9 11.9 7.9 11.9 13.2 19.0
C 50/60 Nperm [kN] 11.8 9.8 16.8 15.4 18.4 12.3 18.4 20.4 29.5
shear load C 20/25 Vperm [kN] 8.5 12.9 12.5 22.7 22.4 22.7 22.4 36.5
C 50/60 Vperm [kN] 12.9 12.5 12.9 12.5 22.7 22.4 22.7 22.4 36.5
* Use restricted to anchoring of structural components which are statically indeterminate.
1)
Material safety factors γM and safety factor for load γL = 1.4 are included. Material safety factor γM depends on type of anchor.

Status 03/2006 61
fischer Bolt FBN
Anchor design according to ETA

4. Load direction: tension


4.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type FBN 6 FBN 8 FBN 10 FBN 12 FBN 16 FBN 20
A4 gvz A4 gvz A4 gzv A4 gvz A4 gvz
characteristic resistance NRk.s [kN] 10.0 14.0 17.0 23.0 27.0 33.0 40.0 55.0 69.0 101.0
design resistance NRd.s [kN] 6.2 9.5 10.8 15.5 17.1 23.6 24.7 35.0 41.6 64.3

4.2 Pull-out/pull-through failure for the highest loaded anchor


0
N Rd ,p = N Rd ⋅f
, p b, N
Characteristic resistance and design resistance for single anchors in concrete C 20/25
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
characteristic resistance N0Rk.p [kN] 6.0 7.5 12.0 9.0 12.0 16.0 12.0
design resistance N0Rd.p [kN] 4.0 4.2 6.7 6.0 5.7 6.7 7.6 8.0
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm

4.2 non-cracked concrete


gvz A4 gvz A4 gvz A4 gvz A4 gvz

characteristic resistance N0Rk.p [kN] 16.0 25.0 25.0 20.0 30.0 38.8 40.0
design resistance N0Rd.p [kN] 10.7 8.9 16.7 13.9 16.7 11.1 16.7 18.5 26.7
* Use restricted to anchoring of structural components which are statically indeterminate.

4.3 Concrete cone failure and splitting for the most unfavourable anchor
0 0
N Rd, c = N Rd, ⋅ f ⋅ fs ⋅ fc
c b, N N Rd, sp = N Rd, c ⋅ fb, N ⋅ fs , sp ⋅ fc , sp ⋅ fh
Characteristic resistance and design resistance for single anchors in concrete C 20/25
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
characteristic resistance N0Rk,c [kN] 12.8 10.4 16.8 13.7 17.8
design resistance N0Rd,c [kN] 8.5 5.8 9.3 11.2 6.5 7.6 8.5 11.9
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
characteristic resistance N0Rk,c [kN] 17.8 29.5 25.8 38.8 50.4
design resistance N0Rd,c [kN] 11.9 9.9 19.7 16.4 17.2 14.3 21.6 18.5 33.6
* Use restricted to anchoring of structural components which are statically indeterminate.

4.3.1 Influence of concrete strength for tension


Concrete Cylinder compres Cube compressive Influence factor fb.N [-]
strength classes sive strength strength FBN 6 FBN 8 FBN 10 + FBN 12 + FBN 16 FBN 20
A4 gvz A4 gvz A4 gvz
fck. cyl fck. cube (150)
[N/mm2] [N/mm2]
C 20/25 20 25 1.00 1.00 1.00 1.00
C 30/37 30 37 1.17 1.22 1.17 1.22 1.22
C 40/50 40 50 1.32 1.41 1.32 1.41 1.41
C 50/60 50 60 1.42 1.55 1.42 1.55 1.55

62 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

4.3.2 Concrete cone failure


4.3.2.1 Influence of spacing

⎛ s ⎞
f s = ⎜1 . 0 + ⎟ ⋅0 .5
⎜ s cr , N ⎟
⎝ ⎠
Spacing s Influence factor fs [-]
FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
[mm] A4 gvz A4 gvz A4 gvz A4 gvz A4
35 0.67
40 0.67 0.69
45 0.69 0.71 0.68
50 0.71 0.74 0.73 0.67 0.68 0.70 0.69
55 0.73 0.76 0.75 0.69 0.70 0.72 0.71 0.68
60 0.75 0.79 0.77 0.71 0.71 0.74 0.73 0.70
105 0.94 1.00 0.98 0.86 0.88 0.92 0.90 0.85
110 0.96 1.00 0.88 0.89 0.94 0.92 0.87
120 1.00 0.92 0.93 0.98 0.96 0.90
125 0.93 0.95 1.00 0.98 0.92
130 0.95 0.96 1.00 0.93
140
145
0.99
1.00
1.00 0.97
0.98
4.2
150 1.00
smin [mm] 40 35 50 50 45 50 55 60
scr,N [mm] 120 105 110 144 140 126 130 150
Spacing s Influence factor fs [-]
FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
[mm] gvz A4 gvz A4 gvz A4 gvz A4 gvz
75 0.68
80 0.69
90 0.71 0.74 0.68
95 0.82 0.73 0.75 0.69
100 0.83 0.74 0.76 0.70
125 0.92 0.80 0.83 0.75
140 0.97 0.83 0.86 0.87 0.78
150 1.00 0.86 0.89 0.89 0.80
170 0.90 0.94 0.95 0.84 0.78
175 0.92 0.96 0.96 0.85 0.79
190 0.95 0.99 1.00 0.88 0.82
210 1.00 0.92 0.85
250 1.00 0.92
275 0.96
300 1.00
smin [mm] 100 95 75 80 140 90 90 100 170
scr,N [mm] 150 210 192 190 252 250 300
* Use restricted to anchoring of structural components which are statically indeterminate.

Status 03/2006 63
fischer Bolt FBN
Anchor design according to ETA

4.3.2.2 Influence of edge distances

c c2
f c = 0 . 35 + + 0 .6 ⋅
s cr , N s cr2 , N
Edge distance c Influence factor fc [-]
FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
[mm] A4 gvz A4 gvz A4 gvz A4 gvz A4
35 0.69 0.75 0.64
40 0.75 0.82 0.68
45 0.81 0.89 0.86 0.73
50 0.87 0.96 0.93 0.77 0.78
55 0.93 1.00 0.82 0.84 0.90 0.80
60 1.00 0.87 0.89 0.96 0.94 0.85
65 0.92 0.94 1.00 0.90 0.90
70 0.98 1.00 0.95 0.95
75 1.00 1.00
cmin [mm] 35 35 45 50 35 55 60 65 55
ccr,N [mm] 60 53 55 72 70 63 65 75
Edge distance c
4.2 FBN 12
hef = 50 mm
FBN 12
hef = 70 mm
FBN 16
hef = 64 mm
FBN 16
hef = 84 mm
FBN 20
hef = 100 mm
[mm] gvz A4 gvz A4 gvz A4 gvz A4 gvz
75 0.78
80 0.82 0.88
85 0.85 0.92
90 0.89 0.96
95 1.00 0.93 1.00
100 1.00 0.96 1.00 0.85
105 1.00 0.87 0.88
125 0.99 1.00
150 1.00
cmin [mm] 100 95 90 75 100 80 105 100 150
ccr,N [mm] 75 105 96 95 126 125 150
* Use restricted to anchoring of structural components which are statically indeterminate.

64 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

4.3.3 Concrete splitting


4.3.3.1 Influence of spacing

⎛ s ⎞
f s , sp = ⎜ 1 . 0 + ⎟ ⋅0 .5
⎜ s ⎟
⎝ cr , sp ⎠
Spacing s Influence factor fs,sp [-]
FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
[mm] A4 gvz A4 gvz A4 gvz A4 gvz A4
35 0.58
40 0.60 0.60
45 0.61 0.61 0.59
50 0.63 0.62 0.64 0.63 0.60 0.60 0.62
55 0.64 0.63 0.65 0.64 0.61 0.61 0.63 0.61
60 0.65 0.64 0.67 0.66 0.63 0.62 0.64 0.62
80 0.70 0.69 0.72 0.71 0.67 0.66 0.69 0.66
100 0.75 0.74 0.78 0.76 0.71 0.70 0.74 0.70
125 0.81 0.80 0.85 0.83 0.76 0.75 0.80 0.75
150 0.88 0.86 0.92 0.89 0.81 0.80 0.86 0.80
180 0.95 0.93 1.00 0.97 0.88 0.86 0.93 0.86
190
200
0.98
1.00
0.95
0.98
0.99 0.90
0.92
0.88
0.90
0.95
0.98
0.88
0.90
4.2
210 1.00 0.94 0.92 1.00 0.92
240 1.00 0.98 0.98
250 1.00 1.00
smin [mm] 40 35 50 50 45 50 55 60
scr,sp [mm] 200 210 180 192 240 252 210 250
Spacing s Influence factor fs,sp [-]
FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
[mm] gvz A4 gvz A4 gvz A4 gvz A4 gvz
75 0.60
80 0.61 0.61
90 0.62 0.63 0.64 0.59
95 0.69 0.63 0.64 0.65 0.59
100 0.67 0.70 0.63 0.64 0.66 0.60 0.62
140 0.73 0.78 0.69 0.70 0.72 0.64 0.67
170 0.78 0.84 0.73 0.74 0.77 0.67 0.70 0.67
200 0.83 0.90 0.77 0.79 0.81 0.70 0.74 0.70
225 0.88 0.95 0.80 0.82 0.85 0.72 0.77 0.73
250 0.92 1.00 0.84 0.86 0.89 0.75 0.80 0.75
275 0.96 0.87 0.89 0.93 0.77 0.83 0.78
300 1.00 0.90 0.93 0.97 0.80 0.86 0.80
320 0.93 0.96 1.00 0.82 0.88 0.82
350 0.97 1.00 0.85 0.92 0.85
370 1.00 0.87 0.94 0.87
420 0.92 1.00 0.92
500 1.00 1.00
smin [mm] 100 95 75 80 140 90 90 100 170
scr,sp [mm] 300 250 372 350 320 504 420 500
* Use restricted to anchoring of structural components which are statically indeterminate.

Status 03/2006 65
fischer Bolt FBN
Anchor design according to ETA

4.3.3.2 Influence of edge distances

c c2
f c , sp = 0 . 35 + + 0 .6 ⋅
s cr , sp s cr2 , sp
Edge distance c Influence factor fc,sp [-]
FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
[mm] A4 gvz A4 gvz A4 gvz A4 gvz A4
35 0.54 0.53 0.51
45 0.61 0.59 0.64 0.56
50 0.64 0.62 0.67 0.65 0.58
55 0.67 0.65 0.71 0.69 0.61 0.60 0.60
60 0.70 0.68 0.75 0.72 0.64 0.62 0.68 0.62
65 0.74 0.72 0.79 0.76 0.66 0.65 0.72 0.65
75 0.81 0.78 0.87 0.83 0.72 0.70 0.78 0.70
80 0.85 0.82 0.91 0.87 0.75 0.73 0.82 0.73
90 0.92 0.89 1.00 0.95 0.81 0.78 0.89 0.79
95 0.96 0.93 0.99 0.84 0.81 0.93 0.82
100 1.00 0.96 0.87 0.84 0.96 0.85
105 1.00 0.90 0.87 1.00 0.88
4.2 110
120
0.93
1.00
0.90
0.96
0.91
0.97
125 0.99 1.00
cmin [mm] 35 35 45 50 35 55 60 65 55
ccr,sp [mm] 100 105 90 96 120 126 105 125
Edge distance c Influence factor fc,sp [-]
FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
[mm] gvz A4 gvz A4 gvz A4 gvz A4 gvz
75 0.59
80 0.61 0.64
90 0.63 0.65 0.68
95 0.82 0.64 0.67 0.70
100 0.75 0.85 0.66 0.68 0.72 0.62
105 0.77 0.88 0.68 0.70 0.74 0.58 0.64
125 0.87 1.00 0.75 0.78 0.83 0.63 0.70
150 1.00 0.85 0.89 0.95 0.70 0.78 0.70
160 0.89 0.93 1.00 0.73 0.82 0.73
175 0.95 1.00 0.77 0.87 0.77
185 1.00 0.80 0.91 0.80
200 0.84 0.96 0.85
210 0.87 1.00 0.88
225 0.92 0.92
250 0.99 1.00
cmin [mm] 100 95 90 75 100 80 105 100 150
ccr,sp [mm] 150 125 186 175 160 252 210 250
* Use restricted to anchoring of structural components which are statically indeterminate.

66 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

4.3.3.3 Influence of concrete thickness


2
⎛ h ⎞3
f h = ⎜⎜ ⎟⎟ ≤ 1 . 5
⎝ 2 ⋅ h ef ⎠
Thickness h Influence factor fh [-]
FBN 6 FBN 8 FBN 8 FBN 10 FBN 10 FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
[mm] hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
100 1.16 1.27 1.03 1.12 1.00 1.00
120 1.31 1.43 1.16 1.27 1.13 1.13
130 1.38 1.50 1.22 1.34 1.19 1.19 1.01
140 1.45 1.29 1.41 1.25 1.25 1.00 1.06
150 1.50 1.35 1.47 1.31 1.31 1.05 1.11
160 1.41 1.50 1.37 1.37 1.09 1.16
170 1.46 1.42 1.42 1.14 1.21 1.01
180 1.50 1.48 1.48 1.18 1.26 1.05
190 1.50 1.50 1.23 1.30 1.09
200 1.27 1.35 1.12 1.00
240 1.43 1.50 1.27 1.13
260 1.50 1.34 1.19
310
370
1.50 1.34
1.50 4.2
hmin [mm] 100 100 100 100 100 100 140 130 170 200
Intermediate values by linear interpolation.
* Use restricted to anchoring of structural components which are statically indeterminate.

5. Load direction: shear


5.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type FBN 6 FBN 8 FBN 10 FBN 12 FBN 16 FBN 20
A4 gvz A4 gvz A4 gzv A4 gvz A4 gvz
characteristic resistance VRk,s [kN] 8.0 11.0 13.0 17.0 20.0 27.0 26.0 40.0 47.0 67.0
design resistance VRd,s [kN] 5.0 7.3 8.4 11.3 13.3 18.0 17.5 31.7 31.0 51.1

5.2 Pryout-failure for the most unfavourable anchor

V Rd , cp = V Rd0 , cp ⋅ f b,V ⋅ f s ⋅ f c
Characteristic resistance and design resistance for single anchors in concrete C 20/25
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
characteristic resistance V0Rk,cp [kN] 12.8 10.4 16.8 13.7 17.8 35.6
design resistance V0Rd,cp [kN] 8.5 7.0 11.2 9.1 11.9 23.8
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
characteristic resistance V0Rk,cp [kN] 17.8 59.0 51.6 77.6 100.8
design resistance V0Rd,cp [kN] 11.9 39.4 34.4 51.7 67.2
* Use restricted to anchoring of structural components which are statically indeterminate.

Status 03/2006 67
fischer Bolt FBN
Anchor design according to ETA

5.3 Concrete edge failure for the most unfavourable anchor

V Rd , c = V Rd0 , c ⋅ f b,V ⋅ f α , V ⋅ f sc , V n
Characteristic resistance and design resistance for single anchors in concrete C 20/25 for edge distances cmin
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
non-cracked concrete
minimum edge distance cmin [mm] 35 35 45 50 35 55 6.0 65 55
characteristic resistance V0Rk,c [kN] 2.3 2.5 3.6 4.5 2.6 5.4 6.2 7.2 5.6
design resistance V0Rd,c [kN] 1.6 1.7 2.4 3.0 1.8 3.6 4.1 4.8 3.7
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
non-cracked concrete
minimum edge distance cmin [mm] 100 95 90 75 100 80 105 100 150
characteristic resistance V0Rk,c [kN] 14.5 13.4 13.3 10.1 16.6 11.9 18.9 17.6 35.7
design resistance V0Rd,c [kN] 9.7 9.0 8.8 6.7 11.1 7.9 12.6 11.7 23.8
* Use restricted to anchoring of structural components which are statically indeterminate.

4.2 5.3.1 Influence of concrete strength for shear

f ck , cube ( 150 )
f b,V =
25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck, cyl fck, cube (150) fb,V
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00
C 30/37 30 37 1.22
C 40/50 40 50 1.41
C 50/60 50 60 1.55

5.3.2 Influence of load direction


f α, V = 1.0 for 0° < α V ≤ 55°
1
f α, V = for 55° < α V ≤ 90°
cos α V + 0 . 5 ⋅ sin α V
f α, V = 2.0 for 90° < α V ≤ 180°
Angle αV Influence factor fα,V
[-] Area 2
Area 3 V
Area 1: 0° - 55° 1.00
Area 1
Area 2: 60° 1.07
Area 2: 70° 1.23 αV
Area 2: 80° 1.50
Area 2: 85° 1.71
Area 3: 90° - 180° 2.00

68 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

5.3.3 Influence of spacing and edge distance


5.3.3.1 Single anchor influenced only by one edge
for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c

h h
n =1 c c n =1 1 . 5 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min c min c min
single anchor factor fsc,Vn =1
edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
Intermediate values by linear interpolation.

5.3.3.2 Anchor pair influenced only by one edge


for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c
and spacing s ≦ 3 ∙ c and spacing s ≦ 4.5 ∙ h

h
n =2 3 ⋅c + s c n =2 2 ⋅h + s
f sc , V = ⋅ f sc , V = ⋅ 1.5
6 ⋅ c min c min 6 ⋅ c min c min
4.2
for s > 3 ∙ c for s > 4.5 ∙ h

h
n =2 c c n =2 6.5 ⋅ h 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min 6 ⋅ c min c min
spacing anchor pair factor fsc,Vn =2
s/cmin edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 5.69 6.05 6.42 6.79 7.17
10.0 6.21 6.58 6.95 7.33
11.0 7.28 7.67
12.0 8.00
Intermediate values by linear interpolation.

Status 03/2006 69
fischer Bolt FBN
Anchor design according to ETA

6. Summary of required proof:


6.1 Tension: NhSd ≦ NRd = lowest value of NRd,s ; NRd,p ; NRd,c ; NRd,sp

6.2 Shear: VhSd ≦ VRd = lowest value of VRd,s ; VRd,cp ; VRd,c

6.3 Combined tension and shear load:

N hSd V Sdh
+ ≤ 1 .2
N Rd V Rd
NhSd ; VhSd = tension/shear components of the load for single anchor
NRd ; VRd = design resistance including safety factors

7. Installation details

4.2
td
h ef t fix

Tinst

d0 df M

SW

h1

70 Status 03/2006
fischer Bolt FBN
Anchor design according to ETA

8. Anchor characteristics
Anchor type FBN 6 FBN 8 FBN 8 FBN 10 FBN 10
hef = 40 mm hef = 35 mm * hef = 48 mm hef = 42 mm hef = 50 mm
A4 gvz A4 gvz A4 gvz A4 gvz A4
diameter of thread M6 M8 M8 M 10 M 10
nominal drill hole diameter d0 [mm] 6 8 8 10 10
drill depth h1 [mm] 55 43 63 51 68
effective anchorage depth hef [mm] 40 35 48 42 50
drill hole depth for through fixing td [mm] td = h1 + tfix
clearance-hole in fixture to be attached df [mm] ≦7 ≦9 ≦9 ≦ 12 ≦ 12
wrench size SW [mm] 10 13 13 17 17
required torque Tinst [Nm] 7.5 15 15 30 30
minimum thickness of concrete member hmin [mm] 100 100 100 100 100
minimum spacing smin [mm] 40 35 50 50 45 50 55 60
minimum edge distances cmin [mm] 35 35 45 50 35 55 60 65 55
Anchor type FBN 12 FBN 12 FBN 16 FBN 16 FBN 20
hef = 50 mm hef = 70 mm hef = 64 mm hef = 84 mm hef = 100 mm
gvz A4 gvz A4 gvz A4 gvz A4 gvz
diameter of thread M 12 M 12 M 16 M 16 M 20
nominal drill hole diameter d0 [mm] 12 12 16 16 20
drill depth
effective anchorage depth
h1
hef
[mm]
[mm]
61
50
90
70
79
64
108
84
131
100
4.2
drill hole depth for through fixing td [mm] td = h1 + tfix
clearance-hole in fixture to be attached df [mm] ≦ 14 ≦ 14 ≦ 18 ≦ 18 ≦ 22
wrench size SW [mm] 19 19 24 24 30
required torque Tinst [Nm] 50 50 100 100 200
minimum thickness of concrete member hmin [mm] 100 140 130 170 200
minimum spacing smin [mm] 100 95 75 80 140 90 90 100 170
minimum edge distances cmin [mm] 100 95 90 75 100 80 105 100 150
* Use restricted to anchoring of structural components which are statically indeterminate.

9. Mechanical characteristics
Anchor type FBN 6 FBN 8 FBN 10 FBN 12 FBN 16 FBN 20
A4 gvz A4 gvz A4 gvz A4 gvz A4 A4
stressed cross sectional area 2
reduced part of the cone bolt As [mm ] 13.2 23.8 37.4 54.1 103.9 188.7

resisting moment 3
reduced part of the cone bolt W [mm ] 6.8 16.3 32.3 56.1 149.3 365.6

yield strength reduced part of the cone bolt fy [N/mm2] 625 520 600 520 600 580 575 420 500 420
tensile strength reduced part of the cone bolt fu [N/mm2] 840 640 790 640 790 650 775 550 690 550
stressed cross sectional area 2
threaded part As [mm ] 20.1 36.6 58.0 84.3 157.0 245.0

resisting moment 3
threaded part W [mm ] 12.7 31.2 62.3 109.2 277.5 540.9

yield strength threaded part fy [N/mm2] 625 520 600 520 600 580 575 420 500 420
tensile strength threaded part fu [N/mm2] 750 600 690 600 690 650 625 530 600 550

Status 03/2006 71
fischer Bolt FBN
Anchor design according to ETA

10. Load displacement curves for tension in non-cracked concrete (fck,cube (200) = 30 N/mm2)
Load [kN] Load [kN] Load [kN]
20 40 50

40
15 30

30

10 20

20

5 10
10

FBN 8 (hef = 48 mm) FBN 10 (hef = 50 mm) FBN 12 (hef = 70 mm)


0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Displacement [mm] Displacement [mm] Displacement [mm]

Load [kN] Load [kN]


80 80

4.2
1

60 60

40 40

20 20

FBN 16 (hef = 84 mm) FBN 20 (hef = 100 mm)


0 0
0 5 10 15 20 25 30 0 5 10 15 20 25
Displacement [mm] Displacement [mm]

72 Status 03/2006
Notes

4.2

Status 03/2006 73
Upat EXA Express-anchor
Anchor design according to ETA

1. Types

EXA - Express anchor (gvz)

Features and Advantages


▯ European Technical Approval option 7.
▯ Suitable for non-cracked concrete.
▯ Double-clip method tried and tested gives double security.
▯ Minimum installation slippage gives powerful torque and rapid grip after just a few turns.

4.2 Materials
Cone bolt: zinc plated (5 µm) and passivated (gvz)

2. Ultimate loads of single anchors with large spacing and edge distance
Mean values
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
non-cracked concrete
tension load C 20/25 Nu [kN] 16.0 22.0 35.0 52.9 70.6
C 50/60 Nu [kN] 22.8*) 34.2 47.7*) 62.2*) 107.9*)
shear load ≧ C 20/25 Vu [kN] 15.8*) 23.3*) 32.9*) 58.7*) 82.9*)
*) Steel failure decisive

74 Status 03/2006
Upat EXA Express-anchor
Anchor design according to ETA

3. Characteristic, design and permissible loads of single anchors with large spacing
and edge distance
Characteristic loads
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
non-cracked concrete
tension load C 20/25 NRk [kN] 12.0 16.0 25.0 35.0 52.0
C 50/60 NRk [kN] 18.6 24.8 38.7 54.2 80.6
shear load C 20/25 VRk [kN] 13.0 17.3 23.0 51.0 75.0
≧ C 30/37 VRk [kN] 13.0 19.0 23.0 51.0 75.0

Design loads
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
non-cracked concrete
tension load C 20/25 NRd [kN] 5.7 8.9 13.9 23.3 34.7
C 50/60 NRd [kN] 8.9 13.8 21.5 36.1 53.7
shear load C 20/25 VRd [kN] 8.7 11.5 15.3 38.9 57.3
≧ C 30/37 VRd [kN] 8.7 12.7 15.3 38.9 57.3

Permissible loads 1)
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
4.2
gvz gvz gvz gvz gvz
non-cracked concrete
tension load C 20/25 Nperm [kN] 4.1 6.3 9.9 16.7 24.8
C 50/60 Nperm [kN] 6.3 9.8 15.4 25.8 38.4
shear load C 20/25 Vperm [kN] 6.2 8.2 11.0 27.8 40.9
≧ C 30/37 Vperm [kN] 6.2 9.0 11.0 27.8 40.9
1)
Material safety factors γM and safety factor for load γL = 1.4 are included. Material safety factor γM depends on type of anchor.

Status 03/2006 75
Upat EXA Express-anchor
Anchor design according to ETA

4. Load direction: tension


4.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
characteristic resistance NRk,s [kN] 23.0 35.0 48.0 62.0 108.0
design resistance NRd,s [kN] 15.5 24.3 34.3 39.5 68.8

4.2 Pull-out/pull-through failure for the highest loaded anchor


0
N Rd ,p = N Rd ⋅f
, p b, N
Characteristic resistance and design resistance for single anchors in concrete C20/25
Anchor type EXA8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
non-cracked concrete
characteristic resistance N0Rk,p [kN] 12.0 16.0 25.0 35.0 52.0
design resistance N0Rd,p [kN] 5.7 8.9 13.9 23.3 34.7

4.2
4.3 Concrete cone failure and splitting for the most unfavourable anchor
0 0
N Rd, c = N Rd, ⋅ f ⋅ fs ⋅ fc
c b, N N Rd, sp = N Rd, c ⋅ fb, N ⋅ fs , sp ⋅ fc , sp ⋅ fh
Characteristic resistance and design resistance for single anchors in concrete C20/25
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
eff. anchorage depth hef [mm] 47 49 67 85 103
non-cracked concrete
characteristic resistance N0Rk,c [kN] 16.2 17.3 27.6 39.5 52.7
design resistance N0Rd,c [kN] 7.7 9.6 15.4 26.3 35.1

4.3.1 Influence of concrete strength for tension

f ck , cube ( 150 )
f b,N =
25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck, cyl fck, cube (150) fb,N
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00
C 25/30 25 30 1.10
C 30/37 30 37 1.22
C 40/50 40 50 1.41
C 45/55 45 55 1.48
C 50/60 50 60 1.55

76 Status 03/2006
Upat EXA Express-anchor
Anchor design according to ETA

4.3.2 Concrete cone failure


4.3.2.1 Influence of spacing

⎛ s ⎞
f s = ⎜1 . 0 + ⎟ ⋅0 .5
⎜ s cr , N ⎟
⎝ ⎠
Spacing s Influence factor fs [-]
EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
[mm] gvz gvz gvz gvz gvz
45 0.66
50 0.68 0.67
75 0.77 0.76 0.69
85 0.80 0.79 0.71 0.67
105 0.87 0.86 0.76 0.71 0.67
120 0.93 0.91 0.80 0.74 0.69
140 1.00 0.98 0.85 0.77 0.73
145 0.99 0.86 0.78 0.73
170 0.92 0.83 0.78
200 1.00 0.89 0.82
220 0.93 0.86
255
280
1.00 0.91
0.95 4.2
310 1.00
smin [mm] 45 50 75 85 105
scr,N [mm] 141 147 202 255 309
Intermediate values by linear interpolation.

4.3.2.2 Influence of edge distance

c c2
f c = 0 . 35 + + 0 .6 ⋅
s cr , N s cr2 , N
Edge distance c Influence factor fc [-]
EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
[mm] gvz gvz gvz gvz gvz
40 0.68
45 0.73
50 0.78
55 0.83
60 0.88
65 0.94 0.91
70 0.99 0.96
75 1.00
90 0.91 0.78
95 0.95 0.81
100 0.99 0.83 0.74
115 0.92 0.81
130 1.00 0.88
155 1.00
cmin [mm] 40 65 90 90 100
ccr,N [mm] 71 74 101 128 155
Intermediate values by linear interpolation.

Status 03/2006 77
Upat EXA Express-anchor
Anchor design according to ETA

4.3.3 Concrete splitting


4.3.3.1 Influence of spacing

⎛ s ⎞
f s , sp = ⎜ 1 . 0 + ⎟ ⋅0 .5
⎜ s ⎟
⎝ cr , sp ⎠
Spacing s Influence factor fs,sp [-]
EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
[mm] gvz gvz gvz gvz gvz
45 0.57
50 0.58 0.57
75 0.61 0.61 0.59
85 0.63 0.63 0.60 0.60
105 0.66 0.65 0.62 0.62 0.60
150 0.73 0.72 0.68 0.68 0.65
200 0.80 0.79 0.74 0.74 0.69
250 0.88 0.87 0.79 0.79 0.74
300 0.95 0.94 0.85 0.85 0.79
330 1.00 0.99 0.89 0.89 0.82
340 1.00 0.90 0.90 0.83
350 0.91 0.91 0.84
4.2 400 0.97 0.97 0.89
425 1.00 1.00 0.91
450 0.94
515 1.00
smin [mm] 45 50 75 85 105
scr,sp [mm] 330 340 425 425 515
Intermediate values by linear interpolation.

4.3.3.2 Influence of edge distance

c c2
f c , sp = 0 . 35 + + 0 .6 ⋅
s cr , sp s cr2 , sp
Edge distance c Influence factor fc,sp [-]
EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
[mm] gvz gvz gvz gvz gvz
40 0.48
50 0.52
65 0.57 0.56
90 0.67 0.66 0.59 0.59
100 0.71 0.70 0.62 0.62 0.57
120 0.79 0.78 0.68 0.68 0.62
140 0.88 0.86 0.74 0.74 0.67
165 1.00 0.98 0.83 0.83 0.73
170 1.00 0.85 0.85 0.75
200 0.95 0.95 0.83
215 1.00 1.00 0.87
240 0.95
260 1.00
cmin [mm] 40 65 90 90 100
ccr,sp [mm] 165 170 215 215 260
Intermediate values by linear interpolation.

78 Status 03/2006
Upat EXA Express-anchor
Anchor design according to ETA

4.3.3.3 Influence of concrete thickness


2
⎛ h ⎞3
f h = ⎜⎜ ⎟⎟ ≤ 1 . 5
⎝ 2 ⋅ h ef ⎠
Thickness h Influence factor fh [-]
[mm] EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
100 1.04 1.01
120 1.18 1.14
140 1.30 1.27 1.03
150 1.37 1.33 1.08
170 1.48 1.44 1.17 1.00
180 1.50 1.50 1.22 1.04
200 1.31 1.11
210 1.35 1.15 1.01
220 1.39 1.19 1.04
250 1.50 1.29 1.14
280 1.39 1.23
300 1.46 1.28
320 1.50 1.34
350
380
1.42
1.50
4.2
hmin [mm] 100 100 135 170 205
Intermediate values by linear interpolation.

5. Load direction: shear


5.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
characteristic resistance VRk,s [kN] 13.0 19.0 23.0 51.0 75.0
design resistance VRd,s [kN] 8.7 12.7 15.3 38.9 57.3

5.2 Pryout - failure for the most unfavourable anchor

V Rd , cp = V Rd0 , cp ⋅ f b,V ⋅ f s ⋅ f c
Characteristic resistance and design resistance for single anchors in concrete C20/25
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
eff. anchorage depth hef [mm] 47 49 67 85 103
non-cracked concrete
characteristic resistance V0Rk,cp [kN] 16.2 17.3 55.3 79.0 105.4
design resistance V0Rd,cp [kN] 10.8 11.5 36.9 52.7 70.2

Status 03/2006 79
Upat EXA Express-anchor
Anchor design according to ETA

5.3 Concrete edge failure for the most unfavourable anchor

V Rd , c = V Rd0 , c ⋅ f b,V ⋅ f α , V ⋅ f sc , V n
Characteristic resistance and design resistance for single anchors in concrete C20/25 for edge distances cmin
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
non-cracked concrete
minimum edge distance cmin [mm] 40 65 90 90 100
characteristic resistance V0Rk,c [kN] 3.2 7.2 13.1 15.0 19.6
design resistance V0Rd,c [kN] 2.1 4.8 8.8 10.0 13.0

5.3.1 Influence of concrete strength for shear

f ck , cube ( 150 )
f b,V =
25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck, cyl fck, cube (150) fb,V
[N/mm2] [N/mm2] [-]
4.2 C 20/25
C 25/30
20
25
25
30
1.00
1.10
C 30/37 30 37 1.22
C 40/50 40 50 1.41
C 45/55 45 55 1.48
C 50/60 50 60 1.55

5.3.2 Influence of load direction


f α, V = 1.0 for 0° < α V ≤ 55°
1
f α, V = for 55° < α V ≤ 90°
cos α V + 0 . 5 ⋅ sin α V
f α, V = 2.0 for 90° < α V ≤ 180°
Angle αV Influence factor fα,V
[-] Area 2
Area 3 V
Area 1: 0° - 55° 1.00
Area 1
Area 2: 60° 1.07
Area 2: 70° 1.23 αV
Area 2: 80° 1.50
Area 2: 85° 1.71
Area 3: 90° - 180° 2.00

80 Status 03/2006
Upat EXA Express-anchor
Anchor design according to ETA

5.3.3 Influence of spacing and edge distance


5.3.3.1 Single anchor influenced only by one edge
for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c

h h
n =1 c c n =1 1 . 5 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min c min c min
single anchor factor fsc,Vn =1
edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
Intermediate values by linear interpolation.

5.3.3.2 Anchor pair influenced only by one edge


for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c
and spacing s ≦ 3 ∙ c and spacing s ≦ 4.5 ∙ h

h
n =2 3 ⋅c + s c n =2 2 ⋅h + s
f sc , V = ⋅ f sc , V = ⋅ 1.5
6 ⋅ c min c min 6 ⋅ c min c min
4.2
for s > 3 ∙ c for s > 4.5 ∙ h

h
n =2 c c n =2 6.5 ⋅ h 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min 6 ⋅ c min c min
spacing anchor pair factor fsc,Vn =2
s/cmin edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 5.69 6.05 6.42 6.79 7.17
10.0 6.21 6.58 6.95 7.33
11.0 7.28 7.67
12.0 8.00
Intermediate values by linear interpolation.

Status 03/2006 81
Upat EXA Express-anchor
Anchor design according to ETA

6. Summary of required proof:


6.1 Tension: NhSd ≦ NRd = lowest value of NRd,s ; NRd,p ; NRd,c ; NRd,sp

6.2 Shear: VhSd ≦ VRd = lowest value of VRd,s ; VRd,cp ; VRd,c

6.3 Combined tension and shear load:

N hSd V Sdh
+ ≤ 1 .2
N Rd V Rd
NhSd ; VhSd = tension/shear components of the load for single anchor
NRd ; VRd = design resistance including safety factors

7. Installation details

4.2
td
h ef t fix

Tinst

d0 df M

SW

h1

8. Anchor characteristics
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
M8 M 10 M 12 M 16 M 20
nominal drill hole diameter d0 [mm] 8 10 12 16 20
drill depth h1 [mm] 65 70 90 110 130
eff. anchorage depth hef [mm] 47 49 67 85 103
drill hole depth for through fixing td [mm] td = h1 + tfix
clearance-hole in fixture to be attached df [mm] ≦9 ≦ 12 ≦ 14 ≦ 18 ≦ 22
wrench size SW [mm] 13 17 19 24 30
required torque Tinst [Nm] 14 45 65 110 230
minimum thickness of concrete member hmin [mm] 100 100 135 170 205
minimum spacing smin [mm] 45 50 75 85 105
for required edge distances for c [mm] 60 85 90 145 170
minimum edge distances cmin [mm] 40 65 90 90 100
for required spacing for s [mm] 100 100 75 145 170

82 Status 03/2006
Upat EXA Express-anchor
Anchor design according to ETA

9. Mechanical characteristics
Anchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20
gvz gvz gvz gvz gvz
stressed cross sectional area reduced part As [mm2] 28.5 44.8 63.6 113.0 196.1
resisting moment reduced part W [mm3] 15.5 33.7 60.3 153.2 281.1
yield strength reduced part fy [N/mm²] 650 650 650 420 420
tensile strength reduced part fu [N/mm²] 800 780 750 550 550
stressed cross sectional area threaded part As [mm2] 36.6 58.0 84.3 157.0 245.0
resisting moment threaded part W [mm3] 31.2 62.3 109.2 277.5 540.9
yield strength threaded part fy [N/mm²] 650 650 650 420 420
tensile strength threaded part fu [N/mm²] 800 780 750 550 550

4.2

Status 03/2006 83
fischer Zykon anchor FZA
Anchor design according to ETA

1. Types

size of anchor in
FZA – Bolt anchor (gvz)
accordance with
fire regulations

FZA – Bolt anchor (A4)

Report-No. 4931 from thread M 10


(April 1992)

FZA – Bolt anchor (C)

4.2 Features and Advantages


▯ European Technical Approval option 1.
▯ Suitable for cracked and non-cracked concrete.
▯ Positive fit in the undercut gives additional security.
▯ Almost expansion-free operation allows cost-efficient fixing with very small edge and axial spacing.
▯ Single-step drilling process simultaneously produces the undercut, saving installation time.
▯ Immediate load-bearing capability avoids installation interruptions (no interruption for resin curing times, unlike
chemical anchors).
▯ Simple visual inspection of the green ring mark ensures 100% function.

Materials
Bolt: Carbon steel, zinc plated (5 µm) and passivated (gvz)
Stainless steel 1.4401 acc. AISI 316 (A4)
Highly corrosion-resistant steel 1.4529 (C)

2. Ultimate loads of single anchors with large spacing and edge distance
Mean values
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
tension load C 20/25 Nu [kN] 16.1*) 14.1*) 17.1 17.1 23.9 31.4 48.3 67.5 94.3
C 50/60 Nu [kN] 16.1*) 14.1*) 26.4 26.4 29.3*) 25.6*) 46.4*) 40.6*) 67.4*) 59.0*) 104.6 125.6*) 110.0*)
shear load ≧ C 20/25 Vu [kN] 9.6*) 8.4*) 17.6*) 15.4*) 27.8*) 24.4*) 17.6*) 15.4*) 27.8*) 24.4*) 40.5*) 35.4*) 75.4*) 65.9*) 75.4*) 65.9*)
cracked concrete
tension load C 20/25 Nu [kN] 12.0 12.0 12.0 16.7 22.0 33.8 47.2 66.0
C 50/60 Nu [kN] 16.1*) 14.1*) 18.5 18.5 25.9 25.6*) 34.1 52.3 73.1 102.2
shear load C 20/25 Vu [kN] 9.6*) 8.4*) 15.5 15.4*) 15.5 17.6*) 15.4*) 27.8*) 24.4*) 40.5*) 35.4*) 75.4*) 65.9*) 75.4*) 65.9*)
*) Steel failure decisive

84 Status 03/2006
fischer Zykon anchor FZA
Anchor design according to ETA

3. Characteristic, design and permissible loads of single anchors with large spacing
and edge distance
Characteristic loads
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
tension load C 20/25 NRk [kN] 9.0 9.0 9.0 12.0 20.0 30.0 40.0 40.0
C 50/60 NRk [kN] 13.9 13.9 13.9 18.6 31.0 46.5 62.0 62.0
shear load C 20/25 VRk [kN] 8.0 7.0 14.7 12.8 16.6 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0
≧ C 40/50 VRk [kN] 8.0 7.0 14.7 12.8 23.2 20.3 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0
cracked concrete
tension load C 20/25 NRk [kN] 6.0 6.0 6.0 9.0 12.0 20.0 36.0 40.0
C 50/60 NRk [kN] 9.3 9.3 9.3 13.9 18.6 31.0 55.8 62.0
shear load C 20/25 VRk [kN] 8.0 7.0 11.8 11.8 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0
C 50/60 VRk [kN] 8.0 7.0 14.7 12.8 18.3 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0

Design loads
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
tension load C 20/25 NRd [kN] 5.0 5.0 5.0 8.0 13.3 20.0 26.7 26.7
4.2
C 50/60 NRd [kN] 7.7 7.5 7.7 7.7 7.7 12.4 20.7 31.0 41.3 41.3
shear load C 20/25 VRd [kN] 6.4 4.5 5.6 11.1 8.2 10.2 11.1 11.8 8.2 10.2 18.6 13.0 16.2 27.0 18.9 23.6 50.2 35.3 44.0 50.2 35.3 44.0
C 50/60 VRd [kN] 6.4 4.5 5.6 11.8 8.2 10.2 17.1 13.0 16.2 11.8 8.2 10.2 18.6 13.0 16.2 27.0 18.9 23.6 50.2 35.3 44.0 50.2 35.3 44.0
cracked concrete
tension load C 20/25 NRd [kN] 3.3 3.3 3.3 6.0 8.0 13.3 24.0 26.7
C 50/60 NRd [kN] 5.2 5.2 5.2 9.3 12.4 20.7 37.2 41.3
shear load C 20/25 VRd [kN] 6.4 4.5 5.6 7.9 7.9 11.0 8.2 10.2 18.6 13.0 16.2 27.0 18.9 23.6 48.0 35.3 44.0 50.2 35.3 44.0
C 50/60 VRd [kN] 6.4 4.5 5.6 11.8 8.2 10.2 12.2 11.8 8.2 10.2 18.6 13.0 16.2 27.0 18.9 23.6 50.2 35.3 44.0 50.2 35.3 44.0

Permissible loads 1)
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
tension load C 20/25 Nperm [kN] 3.6 3.6 3.6 5.7 9.5 14.3 19.0 19.0
C 50/60 Nperm [kN] 5.5 5.4 5.5 5.5 5.5 8.9 14.8 22.1 29.5 29.5
shear load C 20/25 Vperm [kN] 4.6 3.2 4.0 7.9 5.9 7.3 7.9 8.4 5.9 7.3 13.3 9.3 11.6 19.3 13.5 16.9 35.9 25.2 31.4 35.9 25.2 31.4
C 50/60 Vperm [kN] 4.6 3.2 4.0 8.4 5.9 7.3 12.2 9.3 11.6 8.4 5.9 7.3 13.3 9.3 11.6 19.3 13.5 16.9 35.9 25.2 31.4 35.9 25.2 31.4
cracked concrete
tension load C 20/25 Nperm [kN] 2.4 2.4 2.4 4.3 5.7 9.5 17.1 19.0
C 50/60 Nperm [kN] 3.7 3.7 3.7 6.6 8.9 14.8 26.6 29.5
shear load C 20/25 Vperm [kN] 4.6 3.2 4.0 5.6 5.6 7.9 5.9 7.3 13.3 9.3 11.6 19.3 13.5 16.9 34.3 25.2 31.4 35.9 25.2 31.4
C 50/60 Vperm [kN] 4.6 3.2 4.0 8.4 5.9 7.3 8.7 8.4 5.9 7.3 13.3 9.3 11.6 19.3 13.5 16.9 35.9 25.2 31.4 35.9 25.2 31.4
1)
Material safety factors γM and safety factor for load γL = 1.4 are included. Material safety factor γM depends on type of anchor.

Status 03/2006 85
fischer Zykon anchor FZA
Anchor design according to ETA

4. Load direction: tension


4.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
characteristic resistance NRk,s [kN] 16.0 14.0 29.0 26.0 46.0 41.0 29.0 26.0 46.0 41.0 67.0 59.0 126.0 110.0 126.0 110.0
design resistance NRd,s [kN] 10.7 7.5 9.4 19.5 13.7 17.1 30.9 21.7 27.1 19.5 13.7 17.1 30.9 21.7 27.1 44.9 31.6 39.3 84.0 58.8 73.3 84.0 58.8 73.3

4.2 Pull-out/pull-through failure for the highest loaded anchor


0
N Rd ,p = N Rd ⋅f
, p b, N
Characteristic resistance and design resistance for single anchors in concrete C20/25
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
characteristic resistance N0Rk,p [kN] 9.0 9.0 9.0 12.0 20.0 30.0 40.0 40.0
design resistance N0Rd,p [kN] 5.0 5.0 5.0 8.0 13.3 20.0 26.7 26.7
cracked concrete
characteristic resistance N0Rk,p [kN] 6.0 6.0 6.0 9.0 12.0 20.0 40.0 40.0
4.2 design resistance N0Rd,p [kN] 3.3 3.3 3.3 6.0 8.0 13.3 26.7 26.7

4.3 Concrete cone failure and splitting for the most unfavourable anchor
0 0
N Rd, c = N Rd, ⋅ f ⋅ fs ⋅ fc
c b, N N Rd, sp = N Rd, c ⋅ fb, N ⋅ fs , sp ⋅ fc , sp ⋅ fh
Characteristic resistance and design resistance for single anchors in concrete C20/25
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
eff. anchorage depth hef [mm] 40 40 40 50 60 80 100 125
non-cracked concrete
characteristic resistance N0Rk,c [kN] 12.8 12.8 12.8 17.8 23.4 36.1 50.4 70.4
design resistance N0Rd,c [kN] 7.1 7.1 7.1 11.9 15.6 24.0 33.6 47.0
cracked concrete
characteristic resistance N0Rk,c [kN] 9.1 9.1 9.1 12.7 16.7 25.8 36.0 50.3
design resistance N0Rd,c [kN] 5.1 5.1 5.1 8.5 11.2 17.2 24.0 33.5

4.3.1 Influence of concrete strength for tension

f ck , cube ( 150 )
f b,N =
25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck, cyl fck, cube (150) fb,N
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00
C 25/30 25 30 -
C 30/37 30 37 1.22
C 40/50 40 50 1.41
C 45/55 45 55 -
C 50/60 50 60 1.55

86 Status 03/2006
fischer Zykon anchor FZA
Anchor design according to ETA

4.3.2 Concrete cone failure


4.3.2.1 Influence of spacing
⎛ s ⎞
f s = ⎜1 . 0 + ⎟ ⋅0 .5
⎜ s ⎟
⎝ cr ,N ⎠
Spacing s Influence factor fs [-]
FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
40 0.67 0.67
45 0.69 0.69
50 0.71 0.71 0.67
55 0.73 0.73 0.68
60 0.75 0.75 0.70 0.67
70 0.79 0.79 0.79 0.73 0.69
80 0.83 0.83 0.83 0.77 0.72 0.67
100 0.92 0.92 0.92 0.83 0.78 0.71 0.67
120 1.00 1.00 1.00 0.90 0.83 0.75 0.70
125 0.92 0.85 0.76 0.71 0.67
150 1.00 0.92 0.81 0.75 0.70
180
200
1.00 0.88
0.92
0.80
0.83
0.74
0.77
4.2
240 1.00 0.90 0.82
300 1.00 0.90
375 1.00
smin [mm] 40 40 70 50 60 80 100 125
scr,N [mm] 120 120 120 150 180 240 300 375
Intermediate values by linear interpolation.

4.3.2.2 Influence of edge distance

c c2
f c = 0 . 35 + + 0 .6 ⋅
s cr , N s cr2 , N
Edge distance c Influence factor fc [-]
FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
35 0.69
40 0.75 0.75
45 0.81 0.81 0.70
55 0.93 0.93 0.80 0.71
60 1.00 1.00 0.85 0.75
70 1.00 0.95 0.83 0.69
75 1.00 0.87 0.72
90 1.00 0.81
100 0.87 0.75
120 1.00 0.85
125 0.87 0.75
150 1.00 0.85
190 1.00
cmin [mm] 35 40 70 45 55 70 100 125
ccr,N [mm] 60 60 60 75 90 120 150 190
Intermediate values by linear interpolation.

Status 03/2006 87
fischer Zykon anchor FZA
Anchor design according to ETA

4.3.3 Concrete splitting


4.3.3.1 Influence of spacing

⎛ s ⎞
f s , sp = ⎜ 1 . 0 + ⎟ ⋅0 .5
⎜ s ⎟
⎝ cr , sp ⎠
Spacing s Influence factor fs,sp [-]
FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
40 0.67 0.67
45 0.69 0.69
50 0.71 0.71 0.67
55 0.73 0.73 0.68
60 0.75 0.75 0.70 0.67
70 0.79 0.79 0.79 0.73 0.69
80 0.83 0.83 0.83 0.77 0.72 0.67
100 0.92 0.92 0.92 0.83 0.78 0.71 0.67
120 1.00 1.00 1.00 0.90 0.83 0.75 0.70
125 0.92 0.85 0.76 0.71 0.67
150 1.00 0.92 0.81 0.75 0.70
4.2 180
200
1.00 0.88
0.92
0.80
0.83
0.74
0.77
240 1.00 0.90 0.82
300 1.00 0.90
375 1.00
smin [mm] 40 40 70 50 60 80 100 125
scr,sp [mm] 120 120 120 150 180 240 300 375
Intermediate values by linear interpolation.

4.3.3.2 Influence of edge distance

c c2
f c , sp = 0 . 35 + + 0 .6 ⋅
s cr , sp s cr2 , sp
Edge distance c Influence factor fc,sp [-]
FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
[mm] gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
35 0.69
40 0.75 0.75
45 0.81 0.81 0.70
55 0.93 0.93 0.80 0.71
60 1.00 1.00 0.85 0.75
70 1.00 0.95 0.83 0.69
75 1.00 0.87 0.72
90 1.00 0.81
100 0.87 0.75
120 1.00 0.85
125 0.87 0.75
150 1.00 0.85
190 1.00
cmin [mm] 35 40 70 45 55 70 100 125
ccr,sp [mm] 60 60 60 75 90 120 150 190
Intermediate values by linear interpolation.

88 Status 03/2006
fischer Zykon anchor FZA
Anchor design according to ETA

4.3.3.3 Influence of concrete thickness


2
⎛ h ⎞3
f h = ⎜⎜ ⎟⎟ ≤ 1 . 5
⎝ 2 ⋅ h ef ⎠
Thickness h Influence factor fh [-]
[mm] FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
100 1.16 1.16 1.16
110 1.24 1.24 1.24 1.07
130 1.38 1.38 1.38 1.19 1.05
150 1.50 1.50 1.50 1.31 1.16
160 1.37 1.12 1.00
190 1.50 1.36 1.12
200 1.41 1.16 1.00
220 1.50 1.24 1.07
250 1.35 1.16 1.00
300 1.50 1.31 1.13
350 1.45 1.25
370 1.50 1.30
1.37
400
460 1.50 4.2
hmin [mm] 100 100 100 110 130 160 200 250
Intermediate values by linear interpolation.

5. Load direction: shear


5.1 Steel failure for the highest loaded anchor
Characteristic resistance and design resistance for single anchors
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
characteristic resistance VRk,s [kN] 8.0 7.0 14.7 13.0 23.2 20.0 14.7 13.0 23.2 20.0 34.0 30.0 63.0 55.0 63.0 55.0
design resistance VRd,s [kN] 6.4 4.5 5.6 11.8 8.2 10.2 18.6 13.0 16.2 11.8 8.2 10.2 18.6 13.0 16.2 27.0 18.9 23.6 50.2 35.3 44.0 50.2 35.3 44.0

5.2 Pryout-failure for the most unfavourable anchor

V Rd , cp = V Rd0 , cp ⋅ f b,V ⋅ f s ⋅ f c
Characteristic resistance and design restance for single anchors in concrete C20/25
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
eff. anchorage depth hef [mm] 40 40 40 50 60 80 100 125
non-cracked concrete
characteristic resistance V0Rk,cp [kN] 16.6 16.6 16.6 23.2 46.8 72.1 100.8 140.9
design resistance V0Rd,cp [kN] 11.1 11.1 11.1 15.4 31.2 48.1 67.2 93.9
cracked concrete
characteristic resistance V0Rk,cp [kN] 11.8 11.8 11.8 16.5 33.5 51.5 72.0 100.6
design resistance V0Rd,cp [kN] 7.9 7.9 7.9 11.0 22.3 34.3 48.0 67.1

Status 03/2006 89
fischer Zykon anchor FZA
Anchor design according to ETA

5.3 Concrete edge failure for the most unfavourable anchor

V Rd , c = V Rd0 , c ⋅ f b,V ⋅ f α , V ⋅ f sc , V n
Characteristic resistance and design restance for single anchors in concrete C20/25 for edge distances cmin
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
non-cracked concrete
minimum edge distance cmin [mm] 35 40 70 45 55 70 100 125
characteristic resistance V0Rk,c [kN] 2.7 3.5 8.5 4.4 6.4 10.5 20.0 29.2
design resistance V0Rd,c [kN] 1.8 2.3 5.7 2.9 4.3 7.0 13.3 19.5
cracked concrete
minimum edge distance cmin [mm] 35 40 70 45 55 70 100 125
characteristic resistance V0Rk,c [kN] 1.9 2.5 6.1 3.1 4.6 7.5 14.3 20.9
design resistance V0Rd,c [kN] 1.3 1.7 4.1 2.1 3.1 5.0 9.5 13.9

5.3.1 Influence of concrete strength for shear

f ck , cube ( 150 )
f b,V =
4.2 25
Concrete strength classes Cylinder compressive strength Cube compressive strength Influence factor
fck, cyl fck, cube (150) fb,V
[N/mm2] [N/mm2] [-]
C 20/25 20 25 1.00
C 25/30 25 30 -
C 30/37 30 37 1.22
C 40/50 40 50 1.41
C 45/55 45 55 -
C 50/60 50 60 1.55

5.3.2 Influence of load direction


f α, V = 1.0 for 0° < α V ≤ 55°
1
f α, V = for 55° < α V ≤ 90°
cos α V + 0 . 5 ⋅ sin α V
f α, V = 2.0 for 90° < α V ≤ 180°
Angle αV Influence factor fα,V
[-] Area 2
Area 3 V
Area 1: 0° - 55° 1.00
Area 1
Area 2: 60° 1.07
Area 2: 70° 1.23 αV
Area 2: 80° 1.50
Area 2: 85° 1.71
Area 3: 90° - 180° 2.00

90 Status 03/2006
fischer Zykon anchor FZA
Anchor design according to ETA

5.3.3 Influence of spacing and edge distance


5.3.3.1 Single anchor influenced only by one edge
for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c

h h
n =1 c c n =1 1 . 5 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min c min c min
single anchor factor fsc,Vn =1
edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
Intermediate values by linear interpolation.

5.3.3.2 Anchor pair influenced only by one edge


for concrete thickness h ≧ 1.5 ∙ c for concrete thickness h < 1.5 ∙ c
and spacing s ≦ 3 ∙ c and spacing s ≦ 4.5 ∙ h

h
n =2 3 ⋅c + s c n =2 2 ⋅h + s
f sc , V = ⋅ f sc , V = ⋅ 1.5
6 ⋅ c min c min 6 ⋅ c min c min
4.2
for s > 3 ∙ c for s > 4.5 ∙ h

h
n =2 c c n =2 6.5 ⋅ h 1 .5
f sc , V = ⋅ f sc , V = ⋅
c min c min 6 ⋅ c min c min
spacing anchor pair factor fsc,Vn =2
s/cmin edge distance = c/cmin or (h/1.5)/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2,89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 5.05 5.40 5.75 6.10 6.47 6.83
9.0 5.20 5.55 5.90 6.26 6.63 7.00
9.5 5.69 6.05 6.42 6.79 7.17
10.0 6.21 6.58 6.95 7.33
11.0 7.28 7.67
12.0 8.00
Intermediate values by linear interpolation.

Status 03/2006 91
fischer Zykon anchor FZA
Anchor design according to ETA

6. Summary of required proof:


6.1 Tension: NhSd ≦ NRd = lowest value of NRd,s ; NRd,p ; NRd,c ; NRd,sp

6.2 Shear: VhSd ≦ VRd = lowest value of VRd,s ; VRd,cp ; VRd,c

6.3 Combined tension and shear load:

N hSd V Sdh
+ ≤ 1 .2
N Rd V Rd
NhSd ; VhSd = tension/shear components of the load for single anchor
NRd ; VRd = design resistance including safety factors

7. Installation details

4.2
hef tfix

Tinst

do df M

SW

ho

8. Anchor characteristics
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
diameter of thread M6 M8 M 10 M8 M 10 M 12 M 16 M 16
nominal drill hole diameter d0 [mm] 10 12 14 12 14 18 22 22
drill depth h0 [mm] 43 44 45 54 65 85 105 130
effective anchorage depth hef [mm] 40 40 40 50 60 80 100 125
clearance-hole in fixture to be attached df [mm] ≦7 ≦9 ≦ 12 ≦9 ≦ 12 ≦ 14 ≦ 18 ≦ 18
wrench size SW [mm] 10 13 17 13 17 19 24 24
required torque Tinst [Nm] 8.5 20 20 20 40 60 100 100
minimum thickness of concrete member hmin [mm] 100 100 100 110 130 160 200 250
minimum spacing smin [mm] 40 40 70 50 60 80 100 125
minimum edge distances cmin [mm] 35 40 70 45 55 70 100 125

92 Status 03/2006
fischer Zykon anchor FZA
Anchor design according to ETA

9. Mechanical characteristics
Anchor type FZA 10x40 FZA 12x40 FZA 14x40 FZA 12x50 FZA 14x60 FZA 18x80 FZA 22x100 FZA 22x125
M6 M8 M 10 M8 M 10 M 12 M 16 M 16
gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C
stressed cross sectional area cone bolt As [mm2] 20.1 36.6 58.0 36.6 58.0 84.3 157 157
resisting moment cone bolt W [mm3] 12.7 31.2 62.3 31.2 62.3 109 278 278
yield strength cone bolt fy [N/mm2] 640 450 560 640 450 560 640 450 560 640 450 560 640 450 560 640 450 560 640 450 560 640 450 560
tensile strength cone bolt fu [N/mm2] 800 700 800 700 800 700 800 700 800 700 800 700 800 700 800 700

10. Load displacement curves for tension in non-cracked concrete (fck,cube (200) = 30 N/mm2)
Load [kN] Load [kN] Load [kN]
20 40 50
FZA 10x40 M6 FZA 12x50 M8 FZA 14x60 M10

40
15 30

30

10 20

20 4.2
5 10
10

0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Displacement [mm] Displacement [mm] Displacement [mm]

Load [kN] Load [kN] Load [kN]


80 80 150
FZA 18x80 M12 FZA 22x100 M16 FZA 22x125 M16

125

60 60

100

40 40 75

50

20 20

25

0 0 0
0 5 10 15 20 0 5 10 15 20 25 0 10 20 30 40 50
Displacement [mm] Displacement [mm] Displacement [mm]

Status 03/2006 93

You might also like