0% found this document useful (0 votes)
20 views64 pages

02 Basics CFD

Uploaded by

Smita Salunkhe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views64 pages

02 Basics CFD

Uploaded by

Smita Salunkhe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 64

CFD – AN OVERVIEW

H. Klimach, harald.klimach@dlr.de
Institute of Software Methods for Product Virtualization (SP), DLR
Computational

§ Complex problems

§ No analytical solution

§ Numerical approximation

§ Using computers

2 02-Basics_CFD
Fluid

§ Continually deforms when force is applied

Images: game-icons.net, Lorc and Delapouite

3 02-Basics_CFD
Dynamics

§ Considering the forces in fluids

§ Studying the resulting fluid motion

§ May be stationary or instationary

4 02-Basics_CFD
Classes of Fluids

§ Liquids
§ Forms free surface

§ Gases
§ Freely diffuse

§ Plasma
§ Ionized, highly electrical conductive

Images: game-icons.net, Lorc and Delapouite

5 02-Basics_CFD
Some Defining Properties of Fluids

§ Viscosity
§ Relation of shear stress to speed of deformation
§ Compressibility
§ Relation of volume change under pressure
§ Heat conductivity

§ Density

Images: game-icons.net, Cathelineau, Skoll, Lorc and Delapouite

6 02-Basics_CFD
Modelling

Reality

Physical Model

Mathematical Model

Numerical Approximation

Simulation code

Usage of the simulation code

Analysis of results

7 02-Basics_CFD
Physical Model for Fluids

§ Level of detail
§ Quantum – Molecular – Continuum

§ Consideration of effects
§ Electrodynamics? Gravity? Relativity? Chemical reactions?

8 02-Basics_CFD
Continuum Assumption

§ On the considered scale:


§ Fluid covers complete space
§ Infinitisimal small decomposition possible

§ Knudsen number:

mean free path


Kn =
reference length scale

9 02-Basics_CFD
Continuum Classification

§ High Kn (>0.5):
§ (For example rarefied gases)
§ Physical model: Kinetic gas theory
§ Knudsen flow (0.01 < Kn < 0.5)

§ Low Kn (<0.01):
§ (For example air around plane)
§ Physical model: Continuum mechanics

Image: game-icons.net, Lorc

10 02-Basics_CFD
Physical Continuum Model

§ Newtonian mechanics

§ Conservation laws:
§ Conservation of mass
§ Conservation of momentum
§ Conservation of energy

11 02-Basics_CFD
Mathematical Model

§ Conservation laws yield compressible Navier-Stokes equations

§ System of partial differential equations

§ Describes evolution of state due to spatial fluid variations

12 02-Basics_CFD
Conservation Laws

§ Quantity can neither vanish nor appear


§ Observing a given volume:
§ Quantity only changed by transport through the surface

§ Mathematical: @A
<latexit sha1_base64="EMmrtiGNirWcigpvKP9xU+gRZ7c=">AAAC0nichVFLS8NAEJ7GV+uz6tFLsAieSiqCeqtPvAgVjC22RTbpti7Ni822UIsH8erRq/4v/S0e/LKmghbphs3MfjPzzcuJPBEry3rPGFPTM7Nz2dz8wuLS8kp+de06DnvS5bYbeqGsOSzmngi4rYTyeC2SnPmOx6tO9zixV/tcxiIMrtQg4k2fdQLRFi5TgG4aEZNKMM88vM0XrKKljzmulFKlQOmphPkPalCLQnKpRz5xCkhB94hRjK9OJbIoAtakITAJTWg7pweaR2wPXhweDGgX/w5e9RQN8E44Yx3tIouHKxFp0hbumWZ04J1k5dBjyE/ce411/s0w1MxJhQNIB4w5zXgBXNEdPCZF+qnnqJbJkUlXitq0r7sRqC/SSNKn+8NzAosE1tUWk061Zwccjn73MYEA0kYFyZRHDKbuuAXJtOSaJUgZGfgkZDJ91IM1l/4udVyxd4oHRetyt1A+SvedpQ3apG0sdY/KdE4VlOEiyQu90pthG0Pj0Xj6djUyacw6/TrG8xeF8pJo</latexit>

~n
<latexit sha1_base64="Eq7Ci93vl5JRywtTO6WYLfGClQo=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtkiSbuPSvNikxVoqXj161V+mv8WD366poEW6YTOz33zz7cyOHXk8TgzjPaPNzM7NL2Rz+cWl5ZXVwtr6TRz2hMNMJ/RCUbetmHk8YGbCE4/VI8Es3/ZYze4ey3itz0TMw+A6GUSs5VtuwDvcsRJAtWafOcNgdFsoGiVDLX3SKadOkdJVDQsf1KQ2heRQj3xiFFAC3yOLYnwNKpNBEbAWDYEJeFzFGY0oj9weWAwMC2gXfxenRooGOEvNWGU7uMXDFsjUaRv7TCnaYMtbGfwY9hP7QWHuvzcMlbKscABrQzGnFC+AJ3QHxrRMP2WOa5meKbtKqEMHqhuO+iKFyD6dH50TRASwrorodKqYLjRsde7jBQJYExXIVx4r6KrjNqylLFMqQapoQU/AytdHPRhz+e9QJx1zt3RYMi73ipWjdN5Z2qQt2sFQ96lC51RFGbLBF3qlN+1Ku9cetadvqpZJczbo19KevwBzzpGg</latexit>
<latexit

A
Z I
<latexit sha1_base64="PgW2ZYpeAi+iQXQqE7VSXvYchk4=">AAACyXichVFLS8NAEJ7GV1tfVY9egkXwVFIR1Ft94kGhBWMLtcgm3dalebFJi23x5NGr/jj9LR78dk0FLeKGzcx+M/PNy4k8ESeW9ZYxZmbn5heyufzi0vLKamFt/SYO+9Lltht6oWw4LOaeCLidiMTjjUhy5jserzu9E2WvD7iMRRhcJ8OIt3zWDURHuCwBVDu6KxStkqWPOa2UU6VI6amGhXe6pTaF5FKffOIUUALdI0YxviaVyaIIWIvGwCQ0oe2cHimP2D68ODwY0B7+XbyaKRrgrThjHe0ii4crEWnSNu65ZnTgrbJy6DHkB+5IY90/M4w1s6pwCOmAMacZr4AndA+P/yL91HNSy/+RqquEOnSguxGoL9KI6tP95jmFRQLraYtJZ9qzCw5HvweYQABpowI15QmDqTtuQzItuWYJUkYGPgmppo96sOby76VOK/Zu6bBk1faKleN031napC3awVL3qUIXVEUZLtI80wu9GpeGNB6M0ZerkUljNujHMZ4+AfSojqU=</latexit>
<latexit

@
u(~x, t)dA = f~(u)~nds
<latexit sha1_base64="9NLo+X4CSU5yNwb9HS+/r2YijeA=">AAADN3ichVHPaxQxGP12WrWtv1Y9egldhC3oMiuCehC6/iheChVcW+iUJZPNrmFnMkMms7QO84/13+hJT57Eq8eCh76k0xUt0gyZ78vLey9f8sV5ogobhl9bwdLytes3VlbXbt66fedu+979T0VWGiGHIksysxfzQiZKy6FVNpF7uZE8jRO5G8/euP3duTSFyvRHe5TLg5RPtZoowS2gUTuNJoaLKsq5sYon9SJjtmaR0nY0YGU3mktRHdaP7QaLrDy01bgesFfsCYsyR/kjGkDkuJO6W26cp7peaIpRuxP2Qj/Y5aTfJB1qxk7W/kYRjSkjQSWlJEmTRZ4QpwLfPvUppBzYAVXADDLl9yXVtAZtCZYEgwOd4T/Far9BNdbOs/BqgVMSTAMlo0eYW94xBtudKpEXiL8xv3hs+t8TKu/sKjxCjOG46h23gVv6DMZVyrRhXtRytdLdytKEXvjbKNSXe8TdUyx83mLHAJv5HUbvPHMKj9iv53gBjThEBe6VLxyYv/EYkfsovYtuHDn8DKJ7fdSDNvf/berlZPi097IXfnjW2Xzd9HuFHtI6ddHU57RJ72kHZQg6odNW0FoKjoPvwY/g5zk1aDWaB/TXCH6dATABuaE=</latexit>
@t A @A

13 02-Basics_CFD
Integral Conservation

Z I
@
u(~x, t)dA = f~(u) · ~nds
<latexit sha1_base64="BDlpi5LuAC0QXOZonwoq6VsDJP4=">AAADQXichVFda9RAFL2JH23Tqqs++jK4CCvokkihfRG69QNfhApuW2jKMpmd3Q6bTcJksrQN+XX+CsU/4Jv4qg+emaYrWqQTJvfOmXPO3JmbFKkqTRh+9vwbN2/dXlldC9Y37ty917n/YL/MKy3kUORprg8TXspUZXJolEnlYaElnyepPEhmr+z+wULqUuXZR3NWyOM5n2ZqogQ3gEadRTzRXNRxwbVRPG2WGTMNi1VmRgNW9eKFFPVp88w8ZbGRp6YeNwP2kj1ncW4pf0QDiCx30vQqcMU4NxdA1iyVZRAEo0437IdusKtJ1CZdasde3vlCMY0pJ0EVzUlSRgZ5SpxKfEcUUUgFsGOqgWlkyu1LaiiAtgJLgsGBzvCfYnXUohnW1rN0aoFTUkwNJaMnmG+dYwK2PVUiLxF/YZ47bPrfE2rnbCs8Q0zguOYc3wM3dALGdcp5y7ys5XqlvZWhCW272yjUVzjE3lMsfV5jRwObuR1GbxxzCo/ErRd4gQxxiArsK186MHfjMSJ3UTqXrHXk8NOI9vVRD9oc/dvUq8n+i34U9qMPm92d3bbhq/SIHlMPXd2iHXpHe6hD0FfP99a9Df+T/83/7v+4oPpeq3lIfw3/528DGLtt</latexit>
@t A @A

time t <latexit sha1_base64="Whf6eB2P1u39HRrcEMP75DgjaZo=">AAACyXichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhQeFFowt1CKbdFtD82KzLbbFk0ev+uP0t3jw2zUVtEg3bGb2m5lvXk7se4m0rPeMMTe/sLiUzeWXV1bX1gsbm7dJ1Bcut93Ij0TDYQn3vZDb0pM+b8SCs8Dxed3pnSp7fcBF4kXhjRzGvBWwbuh1PJdJQDV5XyhaJUsfc1opp0qR0lONCh90R22KyKU+BcQpJAndJ0YJviaVyaIYWIvGwAQ0T9s5PVEesX14cXgwoD38u3g1UzTEW3EmOtpFFh9XINKkXdwLzejAW2Xl0BPIT9yRxrr/ZhhrZlXhENIBY04zXgOX9ACPWZFB6jmpZXak6kpSh450Nx7qizWi+nR/eM5gEcB62mLSufbsgsPR7wEmEELaqEBNecJg6o7bkExLrlnClJGBT0Cq6aMerLn8d6nTir1fOi5ZtYNi5STdd5a2aYf2sNRDqtAlVVGGizQv9EpvxpUhjEdj9O1qZNKYLfp1jOcvbtaO2A==</latexit>


<latexit

volume/area A <latexit sha1_base64="PgW2ZYpeAi+iQXQqE7VSXvYchk4=">AAACyXichVFLS8NAEJ7GV1tfVY9egkXwVFIR1Ft94kGhBWMLtcgm3dalebFJi23x5NGr/jj9LR78dk0FLeKGzcx+M/PNy4k8ESeW9ZYxZmbn5heyufzi0vLKamFt/SYO+9Lltht6oWw4LOaeCLidiMTjjUhy5jserzu9E2WvD7iMRRhcJ8OIt3zWDURHuCwBVDu6KxStkqWPOa2UU6VI6amGhXe6pTaF5FKffOIUUALdI0YxviaVyaIIWIvGwCQ0oe2cHimP2D68ODwY0B7+XbyaKRrgrThjHe0ii4crEWnSNu65ZnTgrbJy6DHkB+5IY90/M4w1s6pwCOmAMacZr4AndA+P/yL91HNSy/+RqquEOnSguxGoL9KI6tP95jmFRQLraYtJZ9qzCw5HvweYQABpowI15QmDqTtuQzItuWYJUkYGPgmppo96sOby76VOK/Zu6bBk1faKleN031napC3awVL3qUIXVEUZLtI80wu9GpeGNB6M0ZerkUljNujHMZ4+AfSojqU=</latexit>


<latexit

location ~x <latexit sha1_base64="dXfbi5v/om81HZSSTDiowI3nSW4=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtsgm3cbQvNikpbVUvHr0qr9Mf4sHv11TQYu4YTOz33zz7cyOFXlunBjGW0abmZ2bX8jm8otLyyurhbX1mzjsCZubduiFom6xmHtuwM3ETTxejwRnvuXxmtU9lvFan4vYDYPrZBjxls+cwO24NksA1Zp9bo8G49tC0SgZaunTTjl1ipSualh4pya1KSSbeuQTp4AS+B4xivE1qEwGRcBaNAIm4LkqzmlMeeT2wOJgMKBd/B2cGika4Cw1Y5Vt4xYPWyBTp23sM6VogS1v5fBj2A/se4U5f94wUsqywiGsBcWcUrwAntAdGP9l+ilzUsv/mbKrhDp0oLpxUV+kENmn/a1zgogA1lURnU4V04GGpc59vEAAa6IC+coTBV113IZlynKlEqSKDHoCVr4+6sGYy7+HOu2Yu6XDknG5V6wcpfPO0iZt0Q6Guk8VOqcqypANPtMLvWpX2kB70B6/qFomzdmgH0t7+gSLypGq</latexit>


<latexit
surface @A
<latexit sha1_base64="08Nfkh0MR8PJwZYTgLeA/37bxbs=">AAAC1HichVFLS8NAEJ7GV1tfVY9egkXwVFIR1Ft94kWoYGyhLbJJt3VpXmy2hVp6Eq8everf0t/iwS9rKmgRN2xm9ptvvp3ZcSJPxMqy3jLGzOzc/EI2l19cWl5ZLayt38RhX7rcdkMvlHWHxdwTAbeVUB6vR5Iz3/F4zemdJPHagMtYhMG1Gka85bNuIDrCZQpQc9SMmFSCeebR+LZQtEqWXua0U06dIqWrGhbeqUltCsmlPvnEKSAF3yNGMb4GlcmiCFiLRsAkPKHjnMaUR24fLA4GA9rDv4tTI0UDnBPNWGe7uMXDlsg0aRv7XCs6YCe3cvgx7Af2vca6f94w0spJhUNYB4o5rXgJXNEdGP9l+ilzUsv/mUlXijp0oLsRqC/SSNKn+61ziogE1tMRk840swsNR58HeIEA1kYFyStPFEzdcRuWacu1SpAqMuhJ2OT1UQ/GXP491GnH3i0dlqyrvWLlOJ13ljZpi3Yw1H2q0AVVUYaLNp7phV6NmjE2HozHL6qRSXM26Mcynj4BLJqTdA==</latexit>

conserved quantity u <latexit sha1_base64="PBsR5Uk4VHE3K1Wei2UYHOBp8lY=">AAACyXichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhQeFFowt1CJJuo1L82KTFNviyaNX/XH6Wzz47ZoKWqQbNjP7zcw3LzvyeJwYxntOm5tfWFzKF4rLK6tr66WNzds4TIXDTCf0QtGyrZh5PGBmwhOPtSLBLN/2WNPun0p7c8BEzMPgJhlGrONbbsB73LESQI30vlQ2KoY6+rRSzZQyZacelj7ojroUkkMp+cQooAS6RxbF+NpUJYMiYB0aAxPQuLIzeqIiYlN4MXhYQPv4u3i1MzTAW3LGKtpBFg9XIFKnXdwLxWjDW2Zl0GPIT9yRwtx/M4wVs6xwCGmDsaAYr4En9ACPWZF+5jmpZXak7CqhHh2pbjjqixQi+3R+eM5gEcD6yqLTufJ0wWGr9wATCCBNVCCnPGHQVcddSEtJpliCjNECn4CU00c9WHP171KnFXO/clwxGgfl2km27zxt0w7tYamHVKNLqqMMB2le6JXetCtNaI/a6NtVy2UxW/TraM9fcTuO2Q==</latexit>


<latexit
surface normal ~n <latexit sha1_base64="Eq7Ci93vl5JRywtTO6WYLfGClQo=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtkiSbuPSvNikxVoqXj161V+mv8WD366poEW6YTOz33zz7cyOHXk8TgzjPaPNzM7NL2Rz+cWl5ZXVwtr6TRz2hMNMJ/RCUbetmHk8YGbCE4/VI8Es3/ZYze4ey3itz0TMw+A6GUSs5VtuwDvcsRJAtWafOcNgdFsoGiVDLX3SKadOkdJVDQsf1KQ2heRQj3xiFFAC3yOLYnwNKpNBEbAWDYEJeFzFGY0oj9weWAwMC2gXfxenRooGOEvNWGU7uMXDFsjUaRv7TCnaYMtbGfwY9hP7QWHuvzcMlbKscABrQzGnFC+AJ3QHxrRMP2WOa5meKbtKqEMHqhuO+iKFyD6dH50TRASwrorodKqYLjRsde7jBQJYExXIVx4r6KrjNqylLFMqQapoQU/AytdHPRhz+e9QJx1zt3RYMi73ipWjdN5Z2qQt2sFQ96lC51RFGbLBF3qlN+1Ku9cetadvqpZJczbo19KevwBzzpGg</latexit>
<latexit

flux
f~
<latexit sha1_base64="1p1sVD8rhCiT+K6mnikOpYTAs9w=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtkiSbuPSvEi2xVoqXj161V+mv8WD366poEW6YTOz33zz7cyOHXk8EYbxntFmZufmF7K5/OLS8spqYW39Jgl7scNMJ/TCuG5bCfN4wEzBhcfqUcws3/ZYze4ey3itz+KEh8G1GESs5VtuwDvcsQSgWrPPnGFndFsoGiVDLX3SKadOkdJVDQsf1KQ2heRQj3xiFJCA75FFCb4GlcmgCFiLhsBieFzFGY0oj9weWAwMC2gXfxenRooGOEvNRGU7uMXDjpGp0zb2mVK0wZa3MvgJ7Cf2g8Lcf28YKmVZ4QDWhmJOKV4AF3QHxrRMP2WOa5meKbsS1KED1Q1HfZFCZJ/Oj84JIjGwrorodKqYLjRsde7jBQJYExXIVx4r6KrjNqylLFMqQapoQS+Gla+PejDm8t+hTjrmbumwZFzuFStH6byztElbtIOh7lOFzqmKMmSDL/RKb9qVdq89ak/fVC2T5mzQr6U9fwFgnpGY</latexit>

14 02-Basics_CFD
Convective Transport

§ Quantity transported by velocity ~v


<latexit sha1_base64="AAaiiRzKLR/AmWfl79qSDc0UrKg=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtsgm3dbQvNikwVoqXj161V+mv8WD366poEW6YTOz33zz7cyOFbpOFBvGe0abmZ2bX8jm8otLyyurhbX1myjoC5ubduAGom6xiLuOz83YiV1eDwVnnuXymtU7lvFawkXkBP51PAh5y2Nd3+k4NosB1ZoJt4fJ6LZQNEqGWvqkU06dIqWrGhQ+qEltCsimPnnEyacYvkuMInwNKpNBIbAWDYEJeI6KcxpRHrl9sDgYDGgP/y5OjRT1cZaakcq2cYuLLZCp0zb2mVK0wJa3cvgR7Cf2g8K6/94wVMqywgGsBcWcUrwAHtMdGNMyvZQ5rmV6puwqpg4dqG4c1BcqRPZp/+icICKA9VREp1PF7ELDUucEL+DDmqhAvvJYQVcdt2GZslyp+Kkig56Ala+PejDm8t+hTjrmbumwZFzuFStH6byztElbtIOh7lOFzqmKMmSDL/RKb9qVdq89ak/fVC2T5mzQr6U9fwGG/pGo</latexit>
<latexit

§ Convective flux: f~ = u · ~v
<latexit sha1_base64="fAN22ThQWGn8QOVoI6cJe4XSD/s=">AAAC4XichVFLS8NAEJ7GV1tfVQ8evASL4KmkIqgHofjCi1DB2kJbSrLZ1tA0CcmmUEv/gCfx6tGr/iD9LR78dk0FLdINm5n5ZubbeViB60TCMN5T2szs3PxCOpNdXFpeWc2trd9GfhwyXmG+64c1y4y463i8Ihzh8loQcrNnubxqdU+lv9rnYeT43o0YBLzZMzue03aYKQC1cpuNPmfD9kg/1uMGs32h7P6olcsbBUMdfVIpJkqeklP2cx/UIJt8YhRTjzh5JKC7ZFKEr05FMigA1qQhsBCao/ycRpRFbowojggTaBf/Dqx6gnqwJWekshlecXFDZOq0g3uhGC1Ey1c59AjyE/deYZ1/XxgqZlnhANICY0YxXgEXdIeIaZm9JHJcy/RM2ZWgNh2qbhzUFyhE9sl+eM7gCYF1lUencxXZAYel7D4m4EFWUIGc8phBVx3bkKaSXLF4CaMJvhBSTh/1YM3Fv0udVCp7haOCcb2fL50k+07TFm3TLpZ6QCW6pDLKkKW/0Cu9abb2oD1qT9+hWirJ2aBfR3v+AggDmGk=</latexit>

15 02-Basics_CFD
Conservation in Continuum

§ Conservation law holds for infinitisimal volumes


§ Conservation in each point
Ø Differential formulation

• Continuously differentiable:
• Divergence Theorem (replace surface by volume integral)
• Leibniz Rule (exchange integration and differentiation)

16 02-Basics_CFD
Replacing Surface by Volume Integral

§ Divergence Theorem:
I Z
f~ · ~nds = r · f~dA
@A <latexit sha1_base64="zZuKSP3PK6dQurFiZUvCVyVB5xw=">AAADJnichVFLaxsxEJ5s+kjcl5seexExhZ7Mbimkl0KcR+mlkECcBLzBaGXZFZa1i1Y2SRf/n/yN/IHcSmlPvfXa3nvIJ2XTVyjRop2Zb775NNJkhVali+PPC9Hirdt37i4tN+7df/DwUfPxyn6ZT62QXZHr3B5mvJRaGdl1yml5WFjJJ5mWB9l40+cPZtKWKjd77qSQRxM+MmqoBHeA+s1emivj+lVacOsU16wzZ+lMimoIKwa5u4wMIiePXTWYl+w1S31Nh6WGZ5r/yRv+5nUa/WYrbsdhsetOUjstqtdO3vxCKQ0oJ0FTmpAkQw6+Jk4lvh4lFFMB7IgqYBaeCnlJc2qgdgqWBIMDHeM/QtSrUYPYa5ahWuAUjW1RyegZ9pugmIHtT5XwS9if2B8CNvrvCVVQ9h2ewGZQXA6K74A7eg/GTZWTmnnVy82V/laOhvQq3EahvyIg/p7il84WMhbYOGQYbQfmCBpZiGd4AQPbRQf+la8UWLjxAJYHK4OKqRU59Cysf330gzEn/w71urP/op3E7WT3ZWt9ox74Ej2lVXqOqa7ROr2lHfQh6Iy+0Xf6EZ1G59HH6NMlNVqoa57QXyv6egFYKbQv</latexit>
A
§ Incoporate in the conservation law
Z I
@
u(~x, t)dA = f~(u) · ~nds
<latexit sha1_base64="j3kCWPCeJGXE62iw5O4znMsWRQk=">AAADPnichVFda9swFL1x95F0H822x72IhUEGW7BHYX0pNPtiL4MOlrZQlyArSibi2EaSQ1vj/7a/0f2AvY297mGwHaluxlZGZeR7dXTO0ZVuUqTK2DA8awVr167fuNnurN+6fefuRvfe/T2Tl1rIkcjTXB8k3MhUZXJklU3lQaElXySp3E/mr9z+/lJqo/Lsoz0p5NGCzzI1VYJbQOOuiaeaiyouuLaKp/UqY7ZmscrseMjKfryUojqun9onLLby2FaTesi22TMW547yRzSEyHGndb8EV0xyew5k9Uppxt1eOAj9YJeTqEl61IzdvPuFYppQToJKWpCkjCzylDgZfIcUUUgFsCOqgGlkyu9Lqmkd2hIsCQYHOsd/htVhg2ZYO0/j1QKnpJgaSkaPMd96xwRsd6pEbhB/Yp56bPbfEyrv7Co8QUzg2PGO74Fb+gTGVcpFw7yo5Wqlu5WlKW352yjUV3jE3VOsfF5jRwOb+x1GbzxzBo/Er5d4gQxxhArcK184MH/jCSL3UXqXrHHk8NOI7vVRD9oc/dvUy8ne80EUDqIPm72dl03D2/SQHlEfXX1BO/SOdlGHoDP61Wq3OsHn4GvwLfh+Tg1ajeYB/TWCH78B8nG8MA==</latexit>
@t A @A

Z Z
§ Yields: @
u(~x, t)dA = r · f~(u)dA
<latexit sha1_base64="9MqeYEZvNCp84qG37vfStQsbuaA=">AAADMnichVFNa9wwEJ24X0n6tW2OvYguhS20ix1CsjkUkn7RSyGFbhKIwyJrta5YrW1keUlq/K/yN/oDmlvptbdeW+iT6g3tIURGntGbN0+jmaTQqrRh+HUpuHb9xs1byyurt+/cvXe/8+DhfplXRsihyHVuDhNeSq0yObTKanlYGMlniZYHyfSVix/MpSlVnn20p4U8nvE0UxMluAU06qTxxHBRxwU3VnHdXHjMNixWmR3tsqoXz6WoT5pn9imLrTyx9bjZZewFe76gxBlPNGexGOeWefak6VX/sEedbtgPwzCKIuacaGszhLO9PViPBixyIawutWsv75xTTGPKSVBFM5KUkYWviVOJ74giCqkAdkw1MANP+bikhlaRW4ElweBAp/inOB21aIaz0yx9tsAtGtsgk9ET7LdeMQHb3Srhl7C/sD97LL30htoruwpPYRMornjF98AtfQLjqsxZy1zUcnWme5WlCQ38axTqKzzi3ikudF4jYoBNfYTRG89MoZH48xwdyGCHqMB1eaHA/IvHsNxb6VWyVpFDz8C67qMejHkxS3a5s7/ej8J+9GGju/OyHfgyPaLH1MNUt2iH3tEe6hD0hX6i67+Ds+A8+BZ8/0sNltqcNfpvBT/+AK9JuGQ=</latexit>
@t A A
17 02-Basics_CFD
Differential Conservation Law

§ Using Leibniz's rule and pulling everything into one integral:


Z ✓ ◆
@u(~x, t)
+ r · f~(u) dA = 0
<latexit sha1_base64="MzPdq84rDAnfxkNjl5FLTCX4xi0=">AAADMXichVFNb9QwEJ2Gj37wtcCRi8UKaSvQKkFI9ILUQqm4IBWJbSs11crxOqm1XidynFVLlF/F3+APtCfEtTeu9MCLSUFQoTpyZvzmzfOMJym0Kl0YniwE167fuLm4tLxy6/adu/d69x/slHllhRyJXOd2L+Gl1MrIkVNOy73CSj5LtNxNpm/a+O5c2lLl5qM7LuTBjGdGpUpwB2jcS2Nl3HiDxVqmbsDi1HJRxwW3TnHNqkE8l6I+ap651eYP7Br2lMWGJ5qzWExyxzwtbQbVKoutyg4drJNHrp40G+wVC8e9fjgM/WKXnahz+tSt7bx3SjFNKCdBFc1IkiEHXxOnEt8+RRRSAeyAamAWnvJxSQ2tILcCS4LBgU7xz3Da71CDc6tZ+myBWzS2RSajJ9hbXjEBu71Vwi9hz7E/eSz77w21V24rPIZNoLjsFd8Dd3QIxlWZs455UcvVmW1XjlJa890o1Fd4pO1T/NbZRMQCm/oIo7eemUEj8ec5XsDAjlBB+8oXCsx3PIHl3kqvYjpFDj0L274+6sGYo3+HetnZeT6MwmH04UV//XU38CV6RI9pgKm+pHV6R9uoQ9AX+k4/6Dz4HJwEX4Nvv6jBQpfzkP5awdlPUE63Hw==</latexit>
A @t

§ Conservation holds for any volume


Ø Conservation in each point

@u(~x, t)
+ r · f~(u) = 0
<latexit sha1_base64="F9aQvZMm684jBAqUA+pn4ZElZeY=">AAADEXichVHLahRBFD1pH3n4GuPSTeEgTFCGbhHMRghRQzZCBCcJpEOorqmZNFPT3VRXD8ahv8Lf8AfciVt37ox+igtPlx1Fg6Sa6nvr3HNP3Vs3KUxaujD8uhBcunzl6uLS8sq16zdu3urcXt0t88oqPVC5ye1+Iktt0kwPXOqM3i+sltPE6L1k8qyJ7820LdM8e+1OCn04leMsHaVKOkJHna14ZKWax4W0LpVGVL14ptX8Tf3QrdV/YFeLByLOZGKkiNUwd8LTRnWvWhNPRXjU6Yb90C9x3olap4t27eSdU8QYIodChSk0Mjj6BhIlvwNECFEQO8ScmKWX+rhGjRXmVmRpMiTRCf9jng5aNOO50Sx9tuIthtsyU+A+95ZXTMhubtX0S9of3G89Nv7vDXOv3FR4QptQcdkrviTucEzGRZnTlnlWy8WZTVcOI6z7blLWV3ik6VP91nnOiCU28RGBF545pkbizzO+QEY7YAXNK58pCN/xkFZ6q71K1ipK6lna5vVZD8cc/TvU887uo34U9qNXj7sbm+3Al3AX99DjVJ9gA9vYYR0K7/EF3/A9eBd8CD4Gn35Rg4U25w7+WsHnn4Leqog=</latexit>
@t
18 02-Basics_CFD
Conservation of Mass

§ Conserved: Mass density ⇢


<latexit sha1_base64="2VVbe9OvnocbBJaY+KdA4G5dZmg=">AAACzHichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRexgrGFtsgm3aahebFJCrX06tGr/jX9LR78dk0FLdINm5n95ptvZ3asyHPjxDDec9rC4tLySr5QXF1b39gsbW0/xGEqbG7aoReKpsVi7rkBNxM38XgzEpz5lscb1uBcxhtDLmI3DO6TUcQ7PnMCt+faLJFQW/TDx1LZqBhq6bNONXPKlK16WPqgNnUpJJtS8olTQAl8jxjF+FpUJYMiYB0aAxPwXBXnNKEiclOwOBgM6AB/B6dWhgY4S81YZdu4xcMWyNRpH/tKKVpgy1s5/Bj2E/tJYc6/N4yVsqxwBGtBsaAUb4An1AdjXqafMae1zM+UXSXUoxPVjYv6IoXIPu0fnQtEBLCBiuh0qZgONCx1HuIFAlgTFchXniroquMuLFOWK5UgU2TQE7Dy9VEPxlz9O9RZxzysnFaMu6Ny7Sybd552aY8OMNRjqtE11VGGjaZf6JXetFst1cba5Juq5bKcHfq1tOcvvQ2QJw==</latexit>

§ Changed by:
§ Convection f~ = ⇢~v
<latexit sha1_base64="pQ85aWSlg2t7+I0nm6EnhkGpIZ0=">AAAC4XichVHLSsNAFD2N7/qqCm7cBIvgqiQi6EYQX7gRKtgqWCnJOK2haRImaUFrP8CduHXnVn9Iv8WFJ2MUtIgTJvfec+89cx9u5HtxYlmvOWNoeGR0bHwiPzk1PTNbmJuvxmFHCVkRoR+qM9eJpe8FspJ4iS/PIiWdtuvLU7e1m/pPu1LFXhicJNeRvGg7zcBreMJJCNULi7WuFL1G39wya+oqNLXZ7dcLRatk6WMOKnamFJGdclh4Qw2XCCHQQRsSARLqPhzE/M5hw0JE7AI9Yoqap/0SfeSZ22GUZIRDtMV/k9Z5hga0U85YZwu+4vMqZppY4T3QjC6j01cl9ZjynfdGY80/X+hp5rTCa0qXjBOa8Yh4gitG/JfZziK/avk/M+0qQQObuhuP9UUaSfsU3zx79ChiLe0xsa8jm+Rwtd3lBALKCitIp/zFYOqOLykdLaVmCTJGh3yKMp0+6+Ga7d9LHVSqayXbKtnH68XtnWzh41jCMla51Q1s4xBl1iFwiyc848UQxp1xbzx8hhq5LGcBP47x+AHADpfW</latexit>

Z I
@
§ Integral form: ⇢(~x, t)dA = ⇢~v · ~nds
<latexit sha1_base64="ZfF3d8RxMkioXr94/t0BvEej6Ls=">AAADRHichVFNaxRBEK2ZGPOhJms8emlchAi6zATBXIRs/MCLEMFNApmw9PT2bpqd7R56epdshvl7/ge9+Ae8iTcR33QmKxokPfRU1at6r6u70jxThYuiz0G4dGv59srq2vqdu/c2Nlv3tw4LM7VC9oTJjD1OeSEzpWXPKZfJ49xKPkkzeZSOX9X5o5m0hTL6o5vn8nTCR1oNleAOUL81T4aWizLJuXWKZ9XCY65iidKu32WJPTPbyUyK8rx66p6wxMlzVw6qLnvJnrHE1FV/eN3KE5gnzBCIgXGXka4W3IL1W+2oE/nFrjtx47SpWQem9YUSGpAhQVOakCRNDn5GnAp8JxRTRDmwUyqBWXjK5yVVtA7uFFUSFRzoGP8RopMG1YhrzcKzBU7JsC2YjB5jv/WKKarrUyX8AvYn9oXHRv89ofTKdYdz2BSKa17xPXBHZ6i4iTlpKq96uZlZ38rRkHb9bRT6yz1S31MsdF4jY4GNfYbRG185gkbq4xleQMP20EH9ylcKzN94AMu9lV5FN4oceha2fn30gzHH/w71unO404mjTvzheXtvvxn4Kj2kR7SNqb6gPXpHB+hD0NdgOdgINsNP4bfwe/jjsjQMGs4D+muFv34Dc0a9zA==</latexit>
@t A @A

@⇢(~x, t)
§ Differential form: + r · (⇢~v ) = 0
<latexit sha1_base64="oxXpGUn0yjzKWV+C1UkZ2EgcPxs=">AAADInichVFNaxsxEJ1sv5L0y22PvYiagkOL2Q2F5hII/SKXQgJxHIhC0MryWljeXbSyaWr23/Rv9A/0Vnpq6S3X5h/kkCdl09KGEi3aGb2Z9zSjSUujKxfH3xeia9dv3Ly1uLR8+87de/dbDx7uVsXUStWThSnsXioqZXSuek47o/ZKq8QkNaqfjl/7eH+mbKWLfMcdlepgIrJcD7UUDtBhq8+HVsg5L4V1WhjG7ajo8JmS8w/1c7dS/4m4mj1jPBepEYzLQeEYN2roOp4RCLOaW52N3ApbZ/Fhqx1347DYZSdpnDY1a6to/SBOAypI0pQmpCgnB9+QoArfPiUUUwnsgObALDwd4opqWgZ3iiyFDAF0jH+G036D5jh7zSqwJW4x2BZMRk+x3wXFFNn+VgW/gj3F/hiw7L83zIOyr/AINoXiUlB8D9zRCBlXMSdN5kUtVzN9V46GtBa60aivDIjvU/7WeYOIBTYOEUZvQ2YGjTScZ3iBHLaHCvwrXyiw0PEAVgSrgkreKAroWVj/+qgHY07+HeplZ3e1m8TdZPtFe+NVM/BFekxPqIOpvqQN2qQt1CHpMx3TLzqJPkVfoq/Rt/PUaKHhPKK/VvTzDLA9siM=</latexit>
@t
19 02-Basics_CFD
Conservation of Momentum

§ Conserved: Momentum density m


~ = ⇢~v
<latexit sha1_base64="iXSJnWB0WSLA9h4B6B+ZkMi6hdA=">AAAC33ichVFLS8NAEJ7GV1tfUfHkJVgETyUVQT0IxRdehArGFtpSsum2hubFJg3U0rsn8erRq/4i/S0e/LKmghbphs3MfDPz7TxY4NhhpOvvGWVmdm5+IZvLLy4tr6yqa+u3od8XFjcs3/FFjZkhd2yPG5EdObwWCG66zOFV1jtN/NWYi9D2vZtoEPCma3Y9u2NbZgSopW42Ym4N3ZF2rDXEnS+teNRSC3pRl0ebVEqpUqD0VHz1gxrUJp8s6pNLnDyKoDtkUoivTiXSKQDWpCEwAc2Wfk4jyiO3jyiOCBNoD/8urHqKerATzlBmW3jFwRXI1GgH90IyMkQnr3LoIeQn7r3Euv++MJTMSYUDSAbGnGS8Ah7RHSKmZbpp5LiW6ZlJVxF16FB2Y6O+QCJJn9YPzxk8AlhPejQ6l5FdcDBpx5iAB2mggmTKYwZNdtyGNKXkksVLGU3wCchk+qgHay79XeqkYuwVj4r69X6hfJLuO0tbtE27WOoBlemSKijDQjMv9EpvClMelEfl6TtUyaQ5G/TrKM9fu/2Xhg==</latexit>

§ Changed by:

§ Convection
<latexit sha1_base64="VJqePWp/i8emM1OE1f2yhMcTut0=">AAAC+XichVFdTxNBFD1dEVsUrPLoy4bGxKe6JSTqgwlRMbyQ1MRCkxab3em0TLpfmd02wbo/gz/Ak/HVR17lR8Bv4YEzwwJRYpjN7D1z7r1n7p0bpKHKcs87qzgPFh4uPqrWlh4/WV55Wn/2fDdLplrIjkjCRHcDP5OhimUnV3kou6mWfhSEci+YfDT+vZnUmUrir/lhKvcjfxyrkRJ+TmpQf91P6DbZ81s0+iaKwn3v9mdSzKOiL5QWFs+KQb3hNT273LugVYIGytVO6ufoY4gEAlNEkIiRE4fwkfHroQUPKbl9zMlpImX9EgWWmDtllGSET3bC/5inXsnGPBvNzGYL3hJya2a6eMn92SoGjDa3SuKM9oL7u+XG/71hbpVNhYe0ARVrVnGHfI4DRtyXGZWR17Xcn2m6yjHCW9uNYn2pZUyf4kbnEz2a3MR6XGzZyDE1Anue8QVi2g4rMK98reDajoe0vrXSqsSlok89TWten/VwzK1/h3oXdNab75rel43G5ody3lW8wBpecahvsIlttFmGwBFO8Aenzg/n2Pnp/LoKdSplzir+Ws7vSzSoo3k=</latexit>
fc = m
~ ~v (Dyadic product)

§ Surface forces

§ pressure <latexit sha1_base64="9MSHD+dgRVHsQ7KVAbetj6vf8YY=">AAAC/3ichVHLSsNAFD2Nz9ZX1aWbYBFclVQUdSGIL3QhVLAq2CpJnNbQNAlJKmjJxt/wB1yJW5du9Qv0W1x4ZoyKL5wwuXfOvefMvXOtwHWi2DCeMlpXd09vX382NzA4NDySHx3bi/x2aIuK7bt+eGCZkXAdT1RiJ3bFQRAKs2W5Yt9qrsr4/pkII8f3duPzQNRaZsNz6o5txoSO83NVn2HJ7nx69aMgSfQlPdB/i24lyXG+YBQNtfSfTil1CkhX2c8/o4oT+LDRRgsCHmL6LkxE/A5RgoGAWA0dYiE9R8UFEuTIbTNLMMMk2uS/wdNhino8S81IsW3e4nKHZOqY4t5Qihaz5a2CfkT7wn2hsMafN3SUsqzwnNaiYlYpbhOPccqM/5itNPO9lv+ZsqsYdSyobhzWFyhE9ml/6KwxEhJrqoiOdZXZoIalzmd8AY+2wgrkK78r6KrjE1pTWaFUvFTRpF5IK1+f9XDMpe9D/elUZoqLRWNntrC8ks67HxOYxDSHOo9lbKLMMmxc4R4PeNQutWvtRrt9S9UyKWccX5Z29wodmaYH</latexit>


f p = pI (Identity tensor)

§ friction
<latexit sha1_base64="lvsXcN9dSNlyr80WxZOS6B5XbkE=">AAADAnichVFNT9tAEH24pXwUSihHLhYREhciB1UCDkiIAuJSCSTcRCKA1s4mteLYlr2OBJGP/Rv8AU6IK0eu7b39LT3wdmtaFYqy1npm38x7O7PjJWGQKcf5MWa9ej3+ZmJyavrtzOy7ucr8+89ZnKe+dP04jNOmJzIZBpF0VaBC2UxSKfpeKBte76OONwYyzYI4OlYXiTzti24UdAJfKELnlY1WzLBmD/96nbNBUdhb9qr9v2hLibwozitVp+aYZT936qVTRbkO48pPtNBGDB85+pCIoOiHEMj4naAOBwmxUwyJpfQCE5coME1uzizJDEG0x3+Xp5MSjXjWmplh+7wl5E7JtLHMvW8UPWbrWyX9jPYX96XBui/eMDTKusILWo+KU0bxE3GFL8wYxeyXmY+1jGbqrhQ62DDdBKwvMYju0/+js8tISqxnIjb2TGaXGp45D/gCEa3LCvQrPyrYpuM2rTBWGpWoVBTUS2n167Mejrn+dKjPHXettllzjj5Ut3fKeU9iEUtY4VDXsY0DHLIMH1e4xzd8t75a19aNdfs71RorOQv4Z1l3D32Rp0U=</latexit>
fv = ⌧ (Stress deviator tensor)

§ Possible volume forces (gravity, electromagnetism) F~ e


<latexit sha1_base64="BfNl1uD+Emd5/xE4WXiFze8Qiaw=">AAAC0XichVFLS8NAEJ7GV1tfVY9egkXwFFJR1FvxUbwIFRpbaats0m0MzYskLbSlIF49etUfpr/Fg9+uqSBS3LD5Zr+Z+XZmxwxdJ050/T2jzM0vLC5lc/nlldW19cLG5k0c9COLG1bgBlHDZDF3HZ8biZO4vBFGnHmmy+tm70z46wMexU7g15JhyNses32n61gsAXXbGnBrXJnc8ftCUdcOdbHUv0ZJk6gXKV3VoPBBLepQQBb1ySNOPiWwXWIU42tSiXQKwbVpDC6C5Ug/pwnlkdtHFEcEA9vD38apmbI+zkIzltkWbnGxI2SqtItdkYomosWtHHYM/MQeSc6eecNYKosKh0ATijmpeAU+oQdE/JfppZHTWv7PFF0l1KVj2Y2D+kLJiD6tH51zeCJwPelR6UJG2tAw5XmAF/CBBioQrzxVUGXHHSCTyKWKnyoy6EVA8fqoB2OezlKdbRj72ommXx8Uy6fpvLO0TTu0h6EeUZkuqYoyLBTyQq/0ptSUkfKoPH2HKpk0Z4t+LeX5C1unkl4=</latexit>

20 02-Basics_CFD
Conservation of Momentum

§ Integral form:
pres. fri.
Z I ⇣
convect.
⌘ Z
@
m(~
~ x, t)dA = m
~ ~v + pI ⌧ ~nds + F~ e dA
<latexit sha1_base64="ZPbYC2WH0+ZFFx6rXUL3Q93ideg=">AAADq3ichVHLbhMxFL3T4dGWV4AlG4sIKRUQTRASsEBqeBRYIBWpoRV1qTyOk1qZlzxOaBn5Q2HHf7DgjJkkQITqkece33vP8bEdF4kubRR9C9bCCxcvXV7f2Lxy9dr1G62btz6W+dRINZB5kpuDWJQq0ZkaWG0TdVAYJdI4Ufvx5GVd358pU+o827NnhTpKxTjTIy2FReq49YOPjJAVL4SxWiRugZh1jOvMHvcZnylZpa7j46l7wOwW41ad2mro+uw5e8h4XncuuX1wEzWynTmXS22kxzPH7rMCDLiqTVdL9M45r7Va4VZMUeRGj0/sltfJ3MJDCcU/re64z2pp8LjVjrqRH2wV9BrQpmbs5q3vxGlIOUmaUkqKMrLACQkq8R1SjyIqkDuiCjkDpH1dkaNNcKfoUugQyE7wH2N12GQzrGvN0rMldkkwDZiM7mHueMUY3fWuCrhE/In51efG/92h8sq1wzPEGIobXvE98pZO0HEeM206517OZ9ansjSip/40Gv4Kn6nPKRc6r1AxyE18hdFr3zmGRuzXM9xAhjiAg/qW5wrMn3iIKHxUXiVrFAX0DGJ9+/CDZ+79+6irYPCo+6wbfXjc3n7RvPc63aG71MGjPqFteku7sCGDN0EazIIvYTfcCz+F/HfrWtBwbtNfI1S/ANht45Q=</latexit>
@t A @A A
§ Differential form:

convect. pres. fric.


@ m(~
~ x, t)
~ ~v + pI) = r · ⌧ + F~ e
+ r · (m
<latexit sha1_base64="8egCZ387UNG/pQHMxeeSa6yD4E4=">AAADcXichVFdaxQxFL2z40dbq13tk/gSughbKstMERRaofhR9EGo4LaFppZMNruGnS8y2aV1mL/jf9K/4asPnsSppVZphsy9Offcc29ykzLVlY2ib0EnvHHz1u2FxaU7y3fvrXTvP9ivipmRaiiLtDCHiahUqnM1tNqm6rA0SmRJqg6S6SsXP5grU+ki/2jPSnWciUmux1oKC+ik+5WPjZA1L4WxWqSMz5Wss6bv7WnzhNn15iJqG7bBeC6SVDAuR4Vl/TaBS22k9+eOUzJeoKzrqr7w3jXNOntxWeBfPG7FrPGlnOBu80mddHvRIPKLXXXi1ulRu/aK7nfiNKKCJM0oI0U5WfgpCarwHVFMEZXAjqkGZuBpH1fU0BJyZ2ApMATQKf4TnI5aNMfZaVY+W6JKim2Qyegx9q5XTMB2VRX8CvYn9hePTf5bofbKrsMz2ASKi17xPXBLn8G4LjNrmee9XJ/pbmVpTM/9bTT6Kz3i7in/6LxGxACb+gijN545gUbiz3O8QA47RAfulc8VmL/xCFZ4q7xK3ioK6BlY9/roB2OO/x7qVWd/cxBHg/jD097Oy3bgC/SI1qiPqT6jHXpLe+hDBsvBZrAVbHd+hA9DFq79pnaCNmeVLq1w4xeARMvR</latexit>
@t

21 02-Basics_CFD
Stress Deviator Tensor

@vj @vi
§ Deformation tensor: (def ~v )ij = +
@xi @xj
<latexit sha1_base64="TZiVHrXYterEWILoWQytOGeUdRI=">AAADLXichVFda9RAFD1N/Wjr11offQkuQkVYsiKoiFD8wpdCBdcWmhIms7Pb2c0mYTIbWkP+k3/DPyAo4quPvlbwwZMxVeoinTC5d84998y9c+M80YUNgk9L3vK58xcurqyuXbp85eq1zvX1t0U2N1INZJZkZjcWhUp0qgZW20Tt5kaJWZyonXj6rInvlMoUOkvf2KNc7c/EONUjLYUlFHXkRmjVoa2GalSHj/2wVLIq6ztRpSe1/8QPR0bIKsyFsVokfhlN6r+nw0jX/t1Fjj7FmdRRpxv0Arf8RaffOl20azvrfEaIITJIzDGDQgpLP4FAwW8PfQTIie2jImboaRdXqLHG3DlZigxBdMr/mKe9Fk15bjQLly15S8JtmOnjNvdLpxiT3dyq6Be0P7nfOWz83xsqp9xUeEQbU3HVKW4Rtzgg46zMWcs8qeXszKYrixEeum4068sd0vQp/+g8Z8QQm7qIjxeOOaZG7M4lXyClHbCC5pVPFHzX8ZBWOKucStoqCuoZ2ub1WQ/H3P93qIvO4F7vUS94fb+7+bSd9wpu4hY2ONQH2MQrbLMMiQ/4jmP88N57H70v3tffVG+pzbmBU8v79gttgrhF</latexit>

§ Stress tensor in Navier-Stokes equations:

<latexit sha1_base64="+yWBNmpEaKJutJurEj5oUlYc3Qs=">AAADSHichVFda9RAFL1J1Xbr19o+9mVwESrCkhRBoQjFL/RBqOC2hU4pk2Q2HXbyQTJZrCF/0H/QvvoHfCuCD54Zs6JW6YTJvXPuPWfunRuVWtUmCM48f+na9RvLK4PVm7du37k7vLe2VxdNFctJXOiiOohELbXK5cQoo+VBWUmRRVruR7MXNr4/l1WtivyDOS3lUSbSXE1VLAyg42HHC4Qtu/3NM6LpOvaMcQ2lRHAtp2aT5yLSgvE4KQzjcxm3845XKj0xD9m/VN5C4hHjWeMY3MiPpk3ktOPbCzY7Ho6CceAWu+yEvTOifu0Ww3PilFBBMTWUkaScDHxNgmp8hxRSQCWwI2qBVfCUi0vqaBXcBlkSGQLoDP8Up8MezXG2mrVjx7hFY1dgMnqA/dopRsi2t0r4Nex37E8OS/97Q+uUbYWnsBEUB07xHXBDJ8i4ipn1mYtarmbargxN6anrRqG+0iG2z/iXzktEKmAzF2H0ymWm0IjceY4XyGEnqMC+8kKBuY4TWOGsdCp5ryigV8Ha10c9GHP491AvO3tb4zAYh+8fj3ae9wNfoQ26T5uY6hPaoTe0izpi+uINvDVv3f/sf/Uv/G8/U32v56zTH2vJ/wG0EMAX</latexit>
⌧= (r · ~v ) I + µ · def ~v
volume viscosity <latexit sha1_base64="PIHiYjtRbyl3D43sABfVUEC44Wo=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRehirGFtsgm3dbQzYNNWqxF8erRq/4y/S0e/HZNBS3ihs3MfvPNtzM7TiS8OLGst4wxNT0zO5fN5ecXFpeWCyurV3HYly633VCEsu6wmAsv4HbiJYLXI8mZ7whec3qHKl4bcBl7YXCZDCPe8lk38DqeyxJAtaYAtc2uC0WrZOllTjrl1ClSuqph4Z2a1KaQXOqTT5wCSuALYhTja1CZLIqAtWgETMLzdJzTPeWR2weLg8GA9vDv4tRI0QBnpRnrbBe3CGyJTJM2sU+0ogO2upXDj2E/sO801v3zhpFWVhUOYR0o5rTiGfCEbsD4L9NPmeNa/s9UXSXUoT3djYf6Io2oPt1vnSNEJLCejph0rJldaDj6PMALBLA2KlCvPFYwdcdtWKYt1ypBqsigJ2HV66MejLn8e6iTjr1d2i9Z5zvFykE67yyt0wZtYai7VKFTqqIM1eAzvdCrcWHcGg/G4xfVyKQ5a/RjGU+f0vCRXQ==</latexit>

dynamic shear viscosity µ


<latexit sha1_base64="e5Qhbnbiq3ISDZRXSTPE4soANOc=">AAACy3ichVFLS8NAEJ7GV1tfVY9egkXwVFIR1FvxhRelorGFtkiSbuPSvNhsCm316NGr/jb9LR78sqaCFnHDZma/+ebbmR078ngsDeMtp83Mzs0v5AvFxaXlldXS2vptHCbCYaYTeqFo2lbMPB4wU3LpsWYkmOXbHmvY/eM03hgwEfMwuJHDiHV8yw14jzuWBHTd9pO7UtmoGGrp0041c8qUrXpYeqc2dSkkhxLyiVFAEr5HFsX4WlQlgyJgHRoDE/C4ijN6pCJyE7AYGBbQPv4uTq0MDXBONWOV7eAWD1sgU6dt7DOlaIOd3srgx7Af2COFuX/eMFbKaYVDWBuKBaV4AVzSPRj/ZfoZc1LL/5lpV5J6dKC64agvUkjap/Otc4KIANZXEZ1OFdOFhq3OA7xAAGuigvSVJwq66rgLaynLlEqQKVrQE7Dp66MejLn6e6jTjrlbOawYV3vl2lE27zxt0hbtYKj7VKNzqqMMB8U90wu9apea1EbawxdVy2U5G/RjaU+fn1ePtg==</latexit>

22 02-Basics_CFD
Newtonian Fluids

§ Newtonian fluid:
§ Viscosity independent of shear rate
§ Still may depend on thermodynamic quantities (often temperature)

§ Non-Newtonian fluids:
§ Viscosity varies with shear rate
§ Rheology

23 02-Basics_CFD
Conservation of Energy


§ Conserved: Energy density e = ⇢" + ~v · ~v +⇢gh
2
<latexit sha1_base64="4pfnvAV7vtsiB9V/bfAoalC5uiw=">AAADA3ichVFNaxRBEH0Zv5L4tYlHL4OLIAjLbAhoDoFgongRIrgmkAmhp7d30+zs9NDTOxCHvfo38gc8iVePXvWsv8WDr9tZQYOkh56qelX1uj6yMteVS5LvS9GVq9eu31heWb156/adu5219beVmVmpBtLkxh5molK5LtTAaZerw9IqMc1ydZBNdr3/oFa20qZ4485KdTwV40KPtBSO0ElnS8XbcWpPTVoLq8pK56aIH8fpyArZeHzebMzjtFayqeepHBq3ME463aSXhBNfVPqt0kV79k3nB1IMYSAxwxQKBRz1HAIVvyP0kaAkdoyGmKWmg19hjlXmzhilGCGITvgf0zpq0YK256xCtuQrOa9lZoyHvC8CY8Zo/6qiXlH+5H0XsPF/X2gCs6/wjDIj40pgfEXc4ZQRl2VO28hFLZdn+q4cRngautGsrwyI71P+4dmjxxKbBE+M5yFyTI4s2DUnUFAOWIGf8oIhDh0PKUWQKrAULaMgn6X002c9XHP/36VeVAYbva1e8nqzu/Os3fcy7uMBHnGpT7CDl9hnGRLn+IKv+Ba9jz5EH6NPv0OjpTbnHv460edfYOimaw==</latexit>
<latexit sha1_base64="3pMCeBW0qhBVxGGXqfv0YbDLKS4=">AAAC0nichVFLS8NAEJ7GV1tfVY9egkUQhJKKot6KL7wIFYwttkWSdJuG5sVmW6jFg3j16FX/l/4WD367poJI6YbNzH4z883Ljn0vEYbxkdFmZufmF7K5/OLS8spqYW39Non63GGmE/kRr9tWwnwvZKbwhM/qMWdWYPusZvdOpb02YDzxovBGDGPWCiw39DqeYwlAd7t6k3cj3dW794WiUTow5NH/K+WSkkaR0lONCp/UpDZF5FCfAmIUkoDuk0UJvgaVyaAYWItGwDg0T9kZPVIesX14MXhYQHv4u3g1UjTEW3ImKtpBFh+XI1KnbdwLxWjDW2Zl0BPIL9wHhbkTM4wUs6xwCGmDMacYr4AL6sJjWmSQeo5rmR4puxLUoSPVjYf6YoXIPp1fnjNYOLCesuh0rjxdcNjqPcAEQkgTFcgpjxl01XEb0lKSKZYwZbTAxyHl9FEP1jzepT5ZMfdKxyXjer9YOUn3naVN2qIdLPWQKnRJVZThIMkrvdG7Zmoj7Ul7/nHVMmnMBv052ss3CimRzA==</latexit>

§ Changed by:
§ Convection f~c = e · ~v
<latexit sha1_base64="WzVKHjfjf3kn8dlxRgzK1XHc128=">AAAC43ichVFNS8NAEH2N3/Wr6km8BIvgqaQiqAeh+IUXQcFawaok220NTZOQbAtain/Ak3j16FV/j/4WD76sqaAibtjM7Js3b2d2nNBzY2VZrxljYHBoeGR0LDs+MTk1nZuZPYmDdiRkWQReEJ06diw915dl5SpPnoaRtFuOJytOczuJVzoyit3AP1bXoTxv2Q3frbvCVoQuc/PVjhTdeu9CmJumrIpaoDTS6V3m8lbB0sv87RRTJ490HQa5N1RRQwCBNlqQ8KHoe7AR8ztDERZCYufoEovouTou0UOWuW2yJBk20Sb/DZ7OUtTnOdGMdbbgLR53xEwTS9x7WtEhO7lV0o9p37lvNNb484auVk4qvKZ1qDimFQ+IK1yR8V9mK2X2a/k/M+lKoY513Y3L+kKNJH2KL50dRiJiTR0xsauZDWo4+tzhC/i0ZVaQvHJfwdQd12htbaVW8VNFm3oRbfL6rIdjLv4c6m+nvFLYKFhHq/nSVjrvUSxgEcsc6hpK2MchyxC4xROe8WLUjTvj3nj4pBqZNGcO35bx+AENtpku</latexit>

§ Work of surface forces


f~s = p · ~v ⌧~v
§ Heat conduction
<latexit sha1_base64="jSUjI23YN1LpsU6jllfFpV4/aRg=">AAADB3ichVHLTttAFD2Y97MBlt1YREjdEDkIibKIhCigbpBAIgWJABpPJsGKY1v2JBKN/AP8Rn+gq6pblt2WFXwLC85MDeKhirHG98655565d66fhEGmPe92yBkeGR0bn5icmp6ZnftQml/4lsW9VKq6jMM4PfZFpsIgUnUd6FAdJ6kSXT9UR37ni4kf9VWaBXF0qC8TddoV7ShoBVJoQuelWqOv5KCVn2VuzU0ashlri/Rzd8VtxEw1yoNnnha9PC8456WyV/Hsct861cIpo1j7cekODTQRQ6KHLhQiaPohBDJ+J6jCQ0LsFANiKb3AxhVyTDG3R5YiQxDt8N/m6aRAI56NZmazJW8JuVNmuljm3rWKPtnmVkU/o73n/m6x9n9vGFhlU+ElrU/FSau4R1zjgoz3MrsF87GW9zNNVxotfLbdBKwvsYjpUz7pbDOSEuvYiIsdy2xTw7fnPl8goq2zAvPKjwqu7bhJK6xVViUqFAX1Ulrz+qyHY66+Hupbp75a2ah4B2vlza1i3hP4iCV84lDXsYmv2GcZEj/wB39x41w5P51fzu9/VGeoyFnEi+VcPwDRyak8</latexit>

f~h = rT
<latexit sha1_base64="E3omCHUqin0LLY0WeQoMP4kZIEU=">AAAC5XichVFNS8NAEH2Nn/Wz6rGXYBG8WFIR1INQ/MKLoNBaoVXZxG0bmiYhSQu1ePAPeBKvHr3qz9Hf4sGXNRW0iBs2M/vmzduZHdN37DAyjLeUNjI6Nj4xmZ6anpmdm88sLJ6FXiewZNnyHC84N0UoHduV5ciOHHnuB1K0TUdWzNZeHK90ZRDanluKer68aIuGa9dtS0SErjLZWlda/frtZVPf0ddqLeH7ouYK0xF66SqTM/KGWvqwU0icHJJ14mXeUcM1PFjooA0JFxF9BwIhvyoKMOATu0CfWEDPVnGJW0wxt0OWJEMQbfHf4KmaoC7PsWaosi3e4nAHzNSxwn2oFE2y41sl/ZD2g/tGYY0/b+gr5bjCHq1JxbRSPCYeoUnGf5nthDmo5f/MuKsIdWypbmzW5ysk7tP61tlnJCDWUhEdB4rZoIapzl2+gEtbZgXxKw8UdNXxNa1QVioVN1EU1Ato49dnPRxz4fdQh53yen47b5xu5Iq7ybwnkcUyVjnUTRRxhBOWYeEOz3jBq9bU7rUH7fGLqqWSnCX8WNrTJ1GzmTg=</latexit>

§ Possible work by volume forces; Heat sources (e.g. chemical reactions,


radiation) e
F~ · ~v + Q
<latexit sha1_base64="A5XuKZB3qB3crcd9duTbBIjX2Jk=">AAAC5XichVFNSxtRFD0Z22rSr2iX2TwaCoVCmBSLugvaSjdCAqYGEiszL884ZDIzzLwEYsiif8CVdNulW/tz9Le48LznRChF8oY3995z7z3vfvhJGGTadW8Kzsqz5y9W14qll69ev3lbXt/4kcXjVKq2jMM47fhepsIgUm0d6FB1klR5Iz9UR/5wz/iPJirNgjg61NNEHY+8QRScBtLThE7Kld5Eydn+/KcSPdmPtbD2ZC4+idZJuerWvrjmiP+Ves1Kt4r8NOPyLXroI4bEGCMoRNDUQ3jI+HVRh4uE2DFmxFJqgfUrzFFi7phRihEe0SH/A1rdHI1oG87MZku+EvKmzBT4wLtvGX1Gm1cV9YzyjvfcYoMnX5hZZlPhlNInY9EyHhDXOGPEssxRHrmoZXmm6UrjFNu2m4D1JRYxfcpHnq/0pMSG1iPwzUYOyOFbe8IJRJRtVmCmvGAQtuM+pWelsixRzuiRL6U002c9XPNil+Jppf25tlNzW5vVxm6+7zVU8B4fudQtNPAdTZYh8QtXuMZf58y5cC6d3w+hTiHPeYd/jvPnHodOmU0=</latexit>

24 02-Basics_CFD
Conservation of Energy

§ Integral form:

Z I conv pres. fric. heat Z


@ .
e(~x, t)dA = (e · ~v + p · ~v ⌧~v rT )~nds + (F~ e · ~v + Q)dA
<latexit sha1_base64="kX7/hO/F7/LJ+WZ4mArj9oKMCsU=">AAADsnichVHbbhMxEJ3tcmnLLdBHXiwipCBotEEg2gekhkvFC6iVGlopLpHXccIqzu5q14narsx/whfwETxw7G7TlgrVK++Mz8ycOfbEuU5KE0U/g6Xwxs1bt5dXVu/cvXf/QePho69lNiuk6slMZ8VBLEqlk1T1TGK0OsgLJaaxVvvx5L2L789VUSZZumeOc3U4FeM0GSVSGECDxm8+KoSseC4KkwhtFx4zlvEkNYMuUy0+V7I6si/MM8aNOjLV0HbZW7bOM5dxXtO1rKW4HGbGV8wte87yS+d1xjPocXKrC54RM2sXOXwi8lwwnopYC7aHpi6S2kVzVoK4Vncqbtt+U8x3Yuetdy/IHTSaUTvyi111OrXTpHrtZI1fxGlIGUma0ZQUpWTgaxJU4utThyLKgR1SBayAl/i4IkurqJ0hSyFDAJ3gP8apX6Mpzo6z9NUSXTR2gUpGT7G3PWOMbNdVwS9h/2CfeGz83w6VZ3YKj2FjMK54xs/ADX1HxnWV0zrzTMv1le5Whka04W+TQF/uEXdPueD5gEgBbOIjjD76zDE4Yn+e4wVS2B4UuFc+Y2D+xkNY4a3yLGnNKMBXwLrXhx6MufPvUK86vZftzXa0+6q59a6e9zI9pifUwlDf0BZ9oh3IkMGXwAQ2+BG+DvuhCOVp6lJQ16zRpRXqv7K65Co=</latexit>
@t A @A A

§ Differential form:

@e(~x, t)
+ r(e + p)~v = r · ⌧~v + r · (rT ) + F~ e · ~v + Q
<latexit sha1_base64="kCx+ycdvWqnGqE4PXSbZr8seTpI=">AAADjnichVFdb9MwFL1Z+NjGV4BHXiwqpFZFVTIh4GVi4mPaC2KT1q1oGZOTuplVN4kct2JE+XX8CvgtPHDiuWMwoTly7vXxOede20mpZGXC8Ie34t+4eev26tr6nbv37j8IHj46qIq5TsUwLVShRwmvhJK5GBpplBiVWvBZosRhMn3X7h8uhK5kke+bs1Icz3iWy4lMuQF0EnyPJ5qndVxybSRXTHTjhUjrr81z02v+wKZhfRbnPFGcdUW/7FnWomGbzMFxOi5MrMTEdOMCFduG6kuZ4fOmcapYy+zU9FjfOV7WTnlZ8mWp/Qsms9Lt5os4Z7NlA322dxJ0wkFoB7uaRC7pkBu7RfCTYhpTQSnNaUaCcjLIFXGq8B1RRCGVwI6pBqaRSbsvqKF1aOdgCTA40Cn+GVZHDs2xbj0rq05RRWFqKBk9w9y2jgnYbVWBvEL8hfnNYtl/K9TWue3wDDGB45p1/Ajc0CkY1ylnjrns5XpleypDE3ptTyPRX2mR9pzphc977GhgU7vD6INlZvBI7HqBG8gRh+igveWlA7MnHiNyG4V1yZ0jh59GbG8f/eCZo38f9WpysDGIwkG096Kz9dY9+Co9oafUxau+oi3aoV30kXo975M38j77gf/S3/TfnFNXPKd5TH8Nf+c3KHbVHA==</latexit>
@t

25 02-Basics_CFD
Equation of State

§ Relation of thermodynamic quantities density, pressure and temperature

§ Simplest thermodynamic model is the ideal gas assumption:


p
=R·T
<latexit sha1_base64="dQj/6lPy/oWqEB7XkJmP5lEiHSU=">AAAC5HichVHPSxtBFP5c+yNJa031ppelQfAUNlKoPRSkavEixGKMYCTMTibrks3uMjsRbAj4D3gSrz322v479W/x4LfjRqhSMsvse/O9733z3jw/jcLMeN7fOWf+xctXr0vlypu3C+8Wq++XjrJkpKVqySRK9LEvMhWFsWqZ0ETqONVKDP1Itf3Bdh5vnyudhUl8aC5SdToUQRz2QykMoW51pdPXQo7Tybijz5KJ+8X97nZkLzHuYbda8+qeXe5zp1E4NRSrmVRv0UEPCSRGGEIhhqEfQSDjd4IGPKTETjEmpumFNq4wQYW5I7IUGYLogP+Ap5MCjXnONTObLXlLxK2Z6WKN+5tV9MnOb1X0M9o77h8WC/57w9gq5xVe0PpULFvFfeIGZ2TMyhwWzGktszPzrgz62LTdhKwvtUjep3zU2WFEExvYiItdywyo4dvzOV8gpm2xgvyVpwqu7bhHK6xVViUuFAX1NG3++qyHY248Hepzp7VR/1xvHHysbX0t5l3CKj5gnUP9hC3sockyJC7xC7/xxwmcK+fauXmgOnNFzjL+Wc7Pe6ERmPY=</latexit>

gas constant

26 02-Basics_CFD
Calorically Perfect Gas

§ Specific heat capacity assumed to be constant


cv
§ Direct proportional relation between inner energy and temperature:
<latexit sha1_base64="ATH5YTbohKPfBf9nYm3l6FTEfSE=">AAACy3ichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhRelorGFWkqSbuPSvNhsC2316NGr/jb9LR78sqaCFnHDZma/+ebbmR0n9nkiDeMtp83Mzs0v5AvFxaXlldXS2vptEvWFyyw38iPRcOyE+TxkluTSZ41YMDtwfFZ3esdpvD5gIuFReCOHMWsFthfyLndtCejabQ/apbJRMdTSpx0zc8qUrVpUeqc76lBELvUpIEYhSfg+2ZTga5JJBsXAWjQGJuBxFWf0SEXk9sFiYNhAe/h7ODUzNMQ51UxUtotbfGyBTJ22sc+UogN2eiuDn8B+YI8U5v15w1gppxUOYR0oFpTiBXBJ92D8lxlkzEkt/2emXUnq0oHqhqO+WCFpn+63zgkiAlhPRXQ6VUwPGo46D/ACIayFCtJXnijoquMOrK0sUyphpmhDT8Cmr496MGbz91CnHWu3clgxr/bK1aNs3nnapC3awVD3qUrnVEMZLop7phd61S41qY20hy+qlstyNujH0p4+AZFLj7E=</latexit>

§ Together with the ideal gas model:


" = cv · T
<latexit sha1_base64="zFdh/AmwISgSQrC86ibtDnKbX5c=">AAAC43ichVFBaxNBFP6y1TaJWmM9SS+LQfAUdqVgeyiEVqUXIYWkLTQlzE4m65DN7jI7CdRS+gc8lV49erW/R3+LB78dtwUt0llm35vvfe+b9+ZFeaILGwQ/at7Sg4fLK/VG89HjJ6tPW8/WDopsbqQayCzJzFEkCpXoVA2stok6yo0SsyhRh9F0t4wfLpQpdJb27WmuTmYiTvVES2EJjVovhgthVF7oJEv9bV+OFv5QjjPr90etdtAJ3PLvOmHltFGtXtb6iSHGyCAxxwwKKSz9BAIFv2OECJATO8EZMUNPu7jCOZrMnZOlyBBEp/zHPB1XaMpzqVm4bMlbEm7DTB+vuD84xYjs8lZFv6D9xf3ZYfF/bzhzymWFp7QRFRtO8SNxi09k3Jc5q5g3tdyfWXZlMcGm60azvtwhZZ/yVucdI4bY1EV8vHfMmBqROy/4AintgBWUr3yj4LuOx7TCWeVU0kpRUM/Qlq/Pejjm8N+h3nUGbzpbnXB/o93dqeZdxzpe4jWH+hZd7KHHMiQu8A3fce1NvC/epXf1h+rVqpzn+Gt5X38DTpqYdA==</latexit>

p
"= with as ratio
⇢( 1)
<latexit sha1_base64="I1qkR3bW80V4Tti5nHlWFwuIess=">AAACznichVFNS8NAEH2NX239qnr0EiyCp5KKoN6KX3gRWjAqtCKbuI2x+SJJFS3Fq0ev+s/0t3jwZY2CinTDZmbfvHk7s2NFnpukhvFa0MbGJyaniqXy9Mzs3HxlYfEkCfuxLU079ML4zBKJ9NxAmqmbevIsiqXwLU+eWr3dLH56I+PEDYPj9C6S575wArfr2iIldNJxhO+Li0rVqBlq6X+deu5Uka9mWHlDB5cIYaMPHxIBUvoeBBJ+bdRhICJ2jgGxmJ6r4hJDlJnbJ0uSIYj2+Hd4audowHOmmahsm7d43DEzdaxyHyhFi+zsVkk/oX3nvleY8+8NA6WcVXhHa1GxpBSPiKe4ImNUpp8zv2oZnZl1laKLLdWNy/oihWR92t86e4zExHoqomNfMR1qWOp8wxcIaE1WkL3yl4KuOr6kFcpKpRLkioJ6MW32+qyHY67/Hupfx1yvbdfqrY1qYyefdxHLWMEah7qJBg7RZBk2rvGEZ7xoLe1WG2oPn1StkOcs4cfSHj8AyemQ9g==</latexit>

of specific
<latexit sha1_base64="3yup0ZTg3Y8cPel8azHrt9cxnaM=">AAAC83ichVFNSxxBEH2OiV+JuurRS+MS0IPLjAjqQRCjIZeAgquCI9Iz9o7Nzhc9swu67G/IH/AkueboNf6O5LfkkDedUUhE7KGnql+9el3VFeSxLkrX/TnijL55OzY+MTn17v30zGxjbv64yHomVO0wizNzGshCxTpV7VKXsTrNjZJJEKuToPuxip/0lSl0lh6V17k6T2SU6o4OZUnoorHi96VReaHjLBXbwu8YGQ7y4cA3V5lY9iOZJFKsCm9leNFoui3XLvHc8WqniXodZI1f8HGJDCF6SKCQoqQfQ6LgdwYPLnJi5xgQM/S0jSsMMcXcHlmKDEm0y3/E01mNpjxXmoXNDnlLzG2YKfCB+5NVDMiublX0C9rf3DcWi168YWCVqwqvaQMqTlrFL8RLXJHxWmZSMx9reT2z6qpEB5u2G836cotUfYZPOnuMGGJdGxHYt8yIGoE99/kCKW2bFVSv/KggbMeXtNJaZVXSWlFSz9BWr896OGbv/6E+d9prra2Wd7je3Nmt5z2BRSxhmUPdwA4+44BlhPiKe/zAg9N3bp0759tfqjNS5yzgn+V8/wPeQp6t</latexit>

heats

27 02-Basics_CFD
Real Gas

§ Usually ideal gas sufficient

§ More complex models required for


§ close to phase changes
§ close to critical points
§ high pressures
§ low temperatures
§ Compressibility factor as measure

28 02-Basics_CFD
Real Gas Models

§ Virial model: Series of perturbative terms

§ Van der Waals: Most prominent 2 term model

§ Redlich-Kwong: 2 term model often more accurate than van der Waals

§ Many more of varying complexity

29 02-Basics_CFD
Compressible Navier-Stokes Equations

@⇢(~x, t)
+ r · (⇢~v ) = 0
<latexit sha1_base64="I/v/rYzbRvQcBiWjR59nNn3x5MQ=">AAADIXichVFNaxRBEK2MX0n8WvXopXERNijLTBDMJRD8wosQwd0E0iH09PbONts7M/T0LsZlfo1/wz/gTbypN6/6Ezz4ppwoGiQ99FT1q1evq7rS0tkqxPGnlejc+QsXL62urV++cvXa9c6Nm8OqmHttBrpwhd9PVWWczc0g2ODMfumNmqXO7KXTx018b2F8ZYv8VTguzeFMZbkdW60CoKPOUI690ktZKh+sckL6SdGTC6OXr+v7YaP+Ewm1uCdkrlKnpB4VQTozDj1OYP6ilt5mk7AhtkV81OnG/ZiXOO0krdOldu0Wnc8kaUQFaZrTjAzlFOA7UlThO6CEYiqBHdISmIdnOW6opnXkzsEyYCigU/wznA5aNMe50aw4W+MWh+2RKegu9jNWTMFubjXwK9gf2G8Yy/57w5KVmwqPYVMorrHiC+CBJmCclTlrmSe1nJ3ZdBVoTFvcjUV9JSNNn/q3zhNEPLApRwQ9ZWYGjZTPC7xADjtABc0rnygI7ngEq9gaVslbRQU9D9u8PurBmJN/h3raGW72k7ifvHzQ3XnUDnyVbtMd6mGqD2mHntMu6tD0jr7SN/oevY3eRx+ij7+o0Uqbc4v+WtGXnyaKsfk=</latexit>
@t
@ m(~
~ x, t)
+ r · (m~ ~v + pI) = r · ⌧
<latexit sha1_base64="Ls/XFY5rmRVMBqEU0IioS4xjM8U=">AAADY3ichVHbahRBEK3ZUXPzsom+idC4ChuMy0wIxBcheEMfhAhuEkiH0NPbu2l2bvT0LsZh/sNf03f/QsTT7cQQo6SHnqo+depUdVdSprqyUfQ16ITXrt9YWFxaXrl56/ad7uraXlXMjFRDWaSFOUhEpVKdq6HVNlUHpVEiS1K1n0xfuvj+XJlKF/lHe1qqo0xMcj3WUlhAx90vfGyErHkpjNUiZXyuZJ01fW8/NRvMrjfnUduwJ4znIkkFl6PCsn7L51Ib6f25o5SMF6jqmqrPvXdNs86eX8j/F41bMWua424vGkR+sctO3Do9atdu0f1GnEZUkKQZZaQoJws/JUEVvkOKKaIS2BHVwAw87eOKGlpG7gwsBYYAOsV/gtNhi+Y4O83KZ0tUSbENMhk9xn7jFROwXVUFv4L9gf3ZY5P/Vqi9suvwFDaB4pJXfA/c0gkYV2VmLfOsl6sz3a0sjemZv41Gf6VH3D3lH51XiBhgUx9h9NozJ9BI/HmOF8hhh+jAvfKZAvM3HsEKb5VXyVtFAT0D614f/WDM8d9DvezsbQ7iaBB/2OrtvGgHvkj36SH1MdVt2qG3tIs+JP0MHgVPg0Hne7gSroX3flM7QZtzly6s8MEvJvDH/g==</latexit>
@t
@e(~x, t)
+ r · (e + p)~v = r · ⌧~v + r · (rT )
@t
<latexit sha1_base64="NAVN81d/WWE6cw4xo55oS7Z/cE8=">AAADXXichVFdaxNBFL2bbe2HtY364INQBoOYEAm7IuiLUPzCF6FC0xa6pcxOJnHIZneYnQTrsn/Cf6cv/g0ffPDMuNHWIp1l9t4599xz78xNdaZKG0Vfg1a4snpjbX1j8+bWre2d9u07h2UxN0IORZEV5jjlpcxULodW2UweayP5LM3kUTp95eJHC2lKVeQH9lzL0xmf5GqsBLeAztpfkrHhoko0N1bxjMluspCi+lQ/tr36L2xr1mdJztOMJ2JUWNaVfd3z1EXNXrCLsaRAQddPdcGzfF7XS37/klIy5VrzRoEd9M7anWgQ+cWuOnHjdKhZ+0X7GyU0ooIEzWlGknKy8DPiVOI7oZgi0sBOqQJm4Ckfl1TTJnLnYEkwONAp/hOcTho0x9lplj5boEqGbZDJ6CH2W6+Ygu2qSvgl7E/szx6b/LdC5ZVdh+ewKRQ3vOJ74JY+gnFd5qxhLnu5PtPdytKYnvvbKPSnPeLuKf7ovEbEAJv6CKM3njmBRurPC7xADjtEB+6VlwrM33gEy72VXiVvFDn0DKx7ffSDMcf/DvWqc/hkEEeD+MPTzt7LZuDrdJ8eUBdTfUZ79I720YegH8Fu8Cjotr6Hq+FWuP2b2gqanLt0aYX3fgFKiMPT</latexit>

+Equation of state
⇣ ⇢ 2 ⌘
- Perfect gas: p=( 1) · e |~v |
<latexit sha1_base64="862CZ2La2n//u0GmF+mfhJ8AU6U=">AAADCXichVHLahRBFD1pX0l8jbp00zgIk4VD9xBQF2KIGtwIERwTSMdQXVPTU0y/qK4ZSDrzB/6GP+BK3GbpVhf6LS48XXYEDZJqqu+tc889dW/duEx1ZYPg+5J34eKly1eWV1avXrt+42bn1u23VTEzUg1lkRZmNxaVSnWuhlbbVO2WRoksTtVOPH3WxHfmylS6yN/Yw1LtZyLJ9VhLYQkddJ6W/hO/FyUiy4T/wA/XIjkqbJSqse0pAtHYCFlHZlIs6sHiOJorWc8Xx+8GkdHJxK4ddLpBP3DLP+uErdNFu7aLzg9EGKGAxAwZFHJY+ikEKn57CBGgJLaPmpihp11cYYFV5s7IUmQIolP+E572WjTnudGsXLbkLSm3YaaP+9xbTjEmu7lV0a9of3IfOSz57w21U24qPKSNqbjiFF8Rt5iQcV5m1jJPazk/s+nKYoxHrhvN+kqHNH3KPzrPGTHEpi7i44VjJtSI3XnOF8hph6ygeeVTBd91PKIVziqnkreKgnqGtnl91sMxh/8O9awzHPQf98PX692NzXbey7iLe+hxqA+xgZfYZhkSH/AFX/HNe+999D55n39TvaU25w7+Wt7JL9N+pzY=</latexit>
2 Image: game-icons.net, Lorc

30 02-Basics_CFD
Nondimensionalization

§ Introduce suitable reference values

§ Define all quantities in relation to reference values

§ Useful for classification of flows

§ Helps to limit value range

31 02-Basics_CFD
Reference Values

§ Choose a characteristic length, pressure, density and velocity


L, pref , ⇢ref , vref
<latexit sha1_base64="6dM+ytWP+QNumT2l793bIY4Q2P4=">AAAC73ichVHLSsNAFD3G97vq0k2wCC6kpCL4WBVfuFBQsCpYKUmctqFpEiZpoRa/wB9wJW5dutUv0W9x4ZlpqqiIEyb3zLn3nrl3rhP5XpxY1muf0T8wODQ8Mjo2PjE5NZ2ZmT2Nw6Z0RdEN/VCeO3YsfC8QxcRLfHEeSWE3HF+cOfVt5T9rCRl7YXCStCNx2bCrgVfxXDshVc4sHiyXNs2o3JGicqNgSdbCr1OrC8uZrJWz9DJ/g3wKskjXUZh5QwlXCOGiiQYEAiTEPmzE/C6Qh4WI3CU65CSRp/0CNxhjbpNRghE22Tr/VZ4uUjbgWWnGOtvlLT63ZKaJRe49regwWt0qiGPad+5rzVX/vKGjlVWFbVqHiqNa8ZB8ghoj/stspJG9Wv7PVF0lqGBdd+Oxvkgzqk/3U2eHHkmurj0mdnVklRqOPrf4AgFtkRWoV+4pmLrjK1pbW6FVglTRpp6kVa/Pejjm/M+h/gbFldxGLn+8mi1spfMewTwWsMShrqGAfRyxDBe3eMIzXgxp3Bn3xkM31OhLc+bwbRmPH9G0nTc=</latexit>

§ Accordingly you get a characteristic time scale, speed of sound and


temperature
r
L pref pref
tref = , cref = , Tref =
<latexit sha1_base64="v4nSApn3KgGcNUdozHgfd8iyLE4=">AAADQ3ichVFdSxtBFL27rTZJW5PWR18WQ6EPJWxEaCsUQj/EB4W0GBVcCbPjZF2yX85OAumSv+d/aF/6B/pUfFTw7GSStoo4y+y9c+65Z+6d62dRmCvX/WHZjx4vLT+pVGtPnz1fqTdevDzI05HkosfTKJVHPstFFCaip0IViaNMChb7kTj0h5/K+OFYyDxMk301ycRJzIIkHIScKUD9xkT1CykGU+eD4w0k48XutBjPoOkbb8vhf8P5uVSFF7A4ZjNqZniFJ89S4+uk/VuaC+K3f5j9RtNtuXo5d522cZpkVjdt/CSPTiklTiOKSVBCCn5EjHJ8x9QmlzJgJ1QAk/BCHRc0pRpyR2AJMBjQIf4BTscGTXAuNXOdzXFLhC2R6dAr7G2t6INd3irg57BX2N81Ftx7Q6GVywonsD4Uq1pxD7iiMzAeyowNc17Lw5llV4oG9E53E6K+TCNln3yh8xkRCWyoIw590cwAGr4+j/ECCWwPFZSvPFdwdMensExboVUSo8igJ2HL10c9GHP79lDvOr2N1vtW++tms/PRzLtCa7ROrzHUt9ShHeqiDE6/rCVrxarbF/Zv+499OaPalslZpf+WfX0DDie/wg==</latexit>
vref ⇢ref R⇢ref
§ Normalize all quantities with the references

32 02-Basics_CFD
Similarity Parameters

§ Ratios of flow effects, experiments with the same parameters show same
behavior

v Flow velocity
§ Mach number Ma =
c <latexit sha1_base64="rTSLhJeiZm7wLmLiPaVGzg47UnQ=">AAAC2nichVFNS8NAEJ3Gr7Z+RT16CRbBU0lFUA9C8QsvhQrWFtpSNtttDU2TsEkLNfTkSbx69Kr/SX+LB1/WVNAi3bCZ2Tdv3s7sWL5jB6Fpvqe0ufmFxaV0Jru8srq2rm9s3gbeQHJR4Z7jyZrFAuHYrqiEduiImi8F61uOqFq9szheHQoZ2J57E4580eyzrmt3bM5CQC1dLzHjxGh0JOPRcBzxcUvPmXlTLWPaKSROjpJV9vQPalCbPOI0oD4JcimE7xCjAF+dCmSSD6xJETAJz1ZxQWPKIncAlgCDAe3h38WpnqAuzrFmoLI5bnGwJTIN2sW+VIoW2PGtAn4A+4l9r7DuvzdESjmucARrQTGjFEvAQ7oDY1ZmP2FOapmdGXcVUoeOVDc26vMVEvfJf3TOEZHAeipi0IVidqFhqfMQL+DCVlBB/MoTBUN13IZlygql4iaKDHoSNn591IMxF/4Oddqp7OeP84Xrg1zxNJl3mrZph/Yw1EMq0hWVUQZHSS/0Sm9aU3vQHrWnb6qWSnK26NfSnr8AeVOVGA==</latexit>
Speed of sound

⇢vL Fictitious force


§ Reynolds number Re = Friction
µ <latexit sha1_base64="DPOeNlxaJ3+EaiXOkH+rtw3SRac=">AAAC43ichVHLSsNAFD3GV+uz6krcBIvgqqQiqAtBfOFCQcWqYEUmcdqG5sUkLWgp/oArcevSrX6PfosLT8YoqIgTJvfOueeeuXeuHXlunFjWS4/R29c/MJjLDw2PjI6NFyYmj+OwpRxZcUIvVKe2iKXnBrKSuIknTyMlhW978sRubqTxk7ZUsRsGR8lVJM99UQ/cmuuIhNBFYfpQmqtmtaaE06mqRmi2zd1up+q3uheFolWy9DJ/O+XMKSJb+2HhFVVcIoSDFnxIBEjoexCI+Z2hDAsRsXN0iCl6ro5LdDHE3BZZkgxBtMl/naezDA14TjVjne3wFo9bMdPEHPe2VrTJTm+V9GPaN+5rjdX/vKGjldMKr2htKua14h7xBA0y/sv0M+ZnLf9npl0lqGFZd+OyvkgjaZ/Ol84mI4pYU0dMbGlmnRq2Prf5AgFthRWkr/ypYOqOL2mFtlKrBJmioJ6iTV+f9XDM5Z9D/e1UFkorpfLBYnFtPZt3DjOYxTyHuoQ17GCfZTi4wSOe8GzUjFvjzrj/oBo9Wc4Uvi3j4R1vQZiH</latexit>

§ Prandtl number
µcp Momentum diff.
Pr = Thermal diff.

<latexit sha1_base64="AA9Woflz6aac7AmX2awXRddnqvM=">AAAC5XichVHLSgNBECzX9zvq0ctiEDyFjQjqQQi+8CJEMCoYCbPjJC7ZF7MbQUMO/oAn8erRq36OfosHa8dVUBFnme2e6uqa7mk39r0kdZyXPqt/YHBoeGR0bHxicmq6MDN7lEQdLVVNRn6kT1yRKN8LVS31Ul+dxFqJwPXVsdveyuLHl0onXhQeplexOgtEK/SanhQpoUZhvqrtDbve1EJ260HHlo241623RRyLXqNQdEqOWfZvp5w7ReSrGhVeUcc5Ikh0EEAhRErfh0DC7xRlOIiJnaFLTNPzTFyhhzHmdshSZAiibf5bPJ3maMhzppmYbMlbfG7NTBuL3LtG0SU7u1XRT2jfuK8N1vrzhq5Rziq8onWpOGoU94mnuCDjv8wgZ37W8n9m1lWKJtZMNx7riw2S9Sm/dLYZ0cTaJmJjxzBb1HDN+ZIvENLWWEH2yp8Ktun4nFYYq4xKmCsK6mna7PVZD8dc/jnU305tubReKh+sFCub+bxHMI8FLHGoq6hgD1WWIXGDRzzh2bqwbq076/6DavXlOXP4tqyHd4Bzmbo=</latexit>

33 02-Basics_CFD
Nondimensional Navier-Stokes Equations

§ Similarity parameters of reference, perfect gas:

@⇢(~x, t)
+ r · (⇢~v ) = 0
@t <latexit sha1_base64="rIqKqDdB5/3K6TvRh3MndGQBJak=">AAADFnichVHLahRBFD1pH3n4GnXppnAQJihDtwhmIwRfCCJEcJJAOoTqmppJMT3dTXXNYBz6P/wNf8CduHUnutL/cOGpsqNokFRTfW+de+6pe+tmVW5qF8dflqIzZ8+dX15ZXbtw8dLlK52r17brcmaVHqgyL+1uJmudm0IPnHG53q2sltMs1zvZ5JGP78y1rU1ZvHJHld6fynFhRkZJR+ig8zwdWakWaSWtMzIXqT0se+lcq8Xr5o5bb/5EXCNui7SQWS5TNSyd6HluoM6bdfFAxAedbtyPwxInnaR1umjXVtn5ihRDlFCYYQqNAo5+Doma3x4SxKiI7WNBzNIzIa7RYI25M7I0GZLohP8xT3stWvDsNeuQrXhLzm2ZKXCL+2lQzMj2t2r6Ne0P7jcBG//3hkVQ9hUe0WZUXA2KL4g7HJJxWua0ZR7Xcnqm78phhI3QjWF9VUB8n+q3zmNGLLFJiAg8CcwxNbJwnvMFCtoBK/CvfKwgQsdDWhmsDipFqyipZ2n967Mejjn5d6gnne27/STuJy/vdTcftgNfwQ3cRI9TvY9NPMMW61B4h8/4hu/R2+h99CH6+IsaLbU51/HXij79BF5lrQo=</latexit>

@ m(~
~ x, t) p r·⌧
+ r · (m
~ ~v + 2
I) =
@t Ma Re
✓ ◆
<latexit sha1_base64="bsiy69AHna5A1y0LsIkvNlv5uw8=">AAADg3ichVFdaxQxFL3TsdrWr1UfCxJchC2VZWYp6EuhaCv6sFLFbQudWjLZ7Bh2vshkF+uQ/9W/Un+LD57JTi1apRky9+bcc0/uzY3LVFUmCC68Jf/W8u07K6trd+/df/Cw8+jxQVXMtJAjUaSFPop5JVOVy5FRJpVHpZY8i1N5GE/fNPHDudSVKvLP5qyUJxlPcjVRghtAp53zaKK5qKOSa6N4yqK5FHVme85+sy+Y2bBXUWPZJotyHqc8EuPCsF7Lj4TSwvlzR3GiJTITnmWcDfmXgWVRgUqaQusr7721G2y7TVgos4X0v9iR4TNrbf1J2tNON+gHbrHrTtg6XWrXftH5QRGNqSBBM8pIUk4GfkqcKnzHFFJAJbATqoFpeMrFJVlaQ+4MLAkGBzrFP8HpuEVznBvNymUL3JJia2Qyeo791inGYDe3SvgV7E/s7w5L/ntD7ZSbCs9gYyiuOsUhcENfwbgpM2uZl7XcnNl0ZWhCr1w3CvWVDmn6FL91dhHRwKYuwmjPMRNoxO48xwvksCNU0LzypQJzHY9hubPSqeStIoeehm1eH/VgzOHfQ73uHAz6YdAPP251d163A1+hdXpGPUz1Je3QO9pHHcJ76u16Q++Dv+xv+gN/a0Fd8tqcJ/TH8rd/AWJT06Q=</latexit>

@e(~x, t) p 1 T
+ r · (e + )~v = r · ⌧~v +
<latexit sha1_base64="Bcd6OwoFn4HxIF5UA6hBsuZddXA=">AAADmXichVHbbtNAEB3XXNpyC/DYlxURUqJAZFeV4AWpQEEVUqUATVtRl2q92bhWfNN6E1Gs/UXe4Vt44HjtAKVCXWs9s2fmnJndCYskLrXnfXdW3GvXb9xcXVu/dfvO3Xud+w8OynyuhByLPMnVUchLmcSZHOtYJ/KoUJKnYSIPw9nrOn64kKqM82xfnxfyJOVRFk9jwTWg0863YKq4qIKCKx3zhMlesJCi+mKe6L75A2vDBizIeJjwQExyzXpy0DALZEU8TTnb4583Td/SF4a9YE3cN9UHaViQyKnuXZAIcjRW91395Wk+N2apMWg1gh2ZaM72TdVraj31+3U11giNFPRVHJ3p/mmn6w09u9hlx2+dLrVrlHd+UEATyknQnFKSlJGGnxCnEt8x+eRRAeyEKmAKXmzjkgytgztHlkQGBzrDP8LpuEUznGvN0rIFqiTYCkxGj7HfWsUQ2XVVCb+E/Yn91WLRfytUVrnu8Bw2hOKaVdwDrukMGVcx0zZz2cvVzPpWmqb03N4mRn+FRep7it86O4goYDMbYfTGZkbQCO15gRfIYMfooH7lpQKzN57AcmulVclaRQ49BVu/PvrBmP1/h3rZOdgc+t7Qf7/V3X7VDnyVNugR9TDVZ7RNuzRCH8LZcj45wpm4G+5Ld9d916SuOC3nIV1Y7sdfLEHZwg==</latexit>
@t M a2 Re ( 1)M a2 · P r
⇣ ⇢ 2⌘
p=( 1) · e |~v | M a2
<latexit sha1_base64="lxkHshMg7oSze4dmpE3hHgteDiY=">AAADFHichVHLahRBFD1pX0l8jbp00zgIk4VD9xDQLALBFyIEIjgmkE5CdU1NTzH9orpmIHbmO/wNf8CVuHUp6EY/xIWny46gQVJN9b117rmn7q0bl6mubBB8XfIuXLx0+cryyurVa9dv3Ozcuv2mKmZGqqEs0sLsxaJSqc7V0Gqbqr3SKJHFqdqNp0+a+O5cmUoX+Wt7XKqDTCS5HmspLKGjzsvS3/R7USKyTPgP/HAtkqPCRqka254iEI2NkHVkJsWiHixOormS9XxxcjiIjE4mdq3N3BaHg6NON+gHbvlnnbB1umjXTtH5hggjFJCYIYNCDks/hUDFbx8hApTEDlATM/S0iysssMrcGVmKDEF0yn/C036L5jw3mpXLlrwl5TbM9HGf+7lTjMlublX0K9qf3G8dlvz3htopNxUe08ZUXHGK28QtJmScl5m1zNNazs9surIY45HrRrO+0iFNn/KPzlNGDLGpi/h45pgJNWJ3nvMFctohK2he+VTBdx2PaIWzyqnkraKgnqFtXp/1cMzhv0M96wwH/Y1++Gq9u/W4nfcy7uIeehzqQ2zhBXZYhsR7fMF3/PDeeR+8j96n31Rvqc25g7+W9/kXdsGrYQ==</latexit>
2 Image: game-icons.net, Lorc

34 02-Basics_CFD
Other Similarity Parameters

§ Depending on the problem


§ Some examples:
§ Péclet number Pe (transport)
§ Froude number Fr (gravitation)
§ Richardson number Ri (weather)
§ Rayleigh number Ra (free convection)
§ Strouhal number St (vortex shedding)

35 02-Basics_CFD
Simplifications

§ Two important simplifications often deployed:

§ Inviscous flows: Euler equations


§ Neglecting diffusive processes

§ Incompressible flows
§ Density independent of pressure
§ Infinite speed of sound

36 02-Basics_CFD
Simplification Overview

Compressible Navier-Stokes equations


include friction and thermal conduction

hyperbolic – parabolic

Re ! 1
<latexit sha1_base64="I5luM6vLngbZrl954Tr/g73LDLE=">AAAC33ichVFLS8NAEJ7GV31XxZOXYBE8lVQE9VZ84UWoYrTQlrJJt3FpXmy2lSrePYlXj171F+lv8eCXNQpaxA2bmf3mm29ndpzYF4myrNecMTI6Nj6Rn5yanpmdmy8sLJ4nUU+63HYjP5I1hyXcFyG3lVA+r8WSs8Dx+YXT3UvjF30uExGFZ2oQ82bAvFB0hMsUoFZh+ZSbDSm8S8WkjK7Mhgg7atAqFK2SpZc57JQzp0jZqkaFN2pQmyJyqUcBcQpJwfeJUYKvTmWyKAbWpBtgEp7QcU63NIXcHlgcDAa0i7+HUz1DQ5xTzURnu7jFx5bINGkN+1ArOmCnt3L4Cew79rXGvD9vuNHKaYUDWAeKk1rxGLiiSzD+ywwy5lct/2emXSnq0LbuRqC+WCNpn+63zj4iElhXR0w60EwPGo4+9/ECIayNCtJX/lIwdcdtWKYt1yphpsigJ2HT10c9GHP591CHHXujtFMqn2wWK7vZvPO0Qqu0jqFuUYWOqIoyXDTzRM/0YjjGnXFvPHxSjVyWs0Q/lvH4Aaqel4A=</latexit>
Ma ! 0
<latexit sha1_base64="HqS3/c/EXuJETRyDySrCTRr3Ki8=">AAAC2nichVFLS8NAEB7jq/UZ9eglWARPJRVBvRVfeCkoGC20pWzimi7Ni81W0eLJk3j16FX/k/4WD35ZU0GLdMNmZr/55tuZHTcJRKps+33MGJ+YnJouFGdm5+YXFs2l5fM07kmPO14cxLLuspQHIuKOEirg9URyFroBv3C7+1n84prLVMTRmbpNeCtkfiSuhMcUoLZp1pjVlMLvKCZlfGPZbbNkl229rGGnkjslytdJbH5Qky4pJo96FBKniBT8gBil+BpUIZsSYC3qA5PwhI5zuqcZ5PbA4mAwoF38fZwaORrhnGmmOtvDLQG2RKZF69hHWtEFO7uVw09hP7HvNOb/e0NfK2cV3sK6UCxqxRpwRR0wRmWGOXNQy+jMrCtFV7SjuxGoL9FI1qf3o3OAiATW1RGLDjXTh4arz9d4gQjWQQXZKw8ULN3xJSzTlmuVKFdk0JOw2eujHoy58neow46zWd4tV063StW9fN4FWqU12sBQt6lKx3SCMjyU9EKv9Ga0jAfj0Xj6phpjec4K/VrG8xccIpTv</latexit>

Incompressible Navier-
Euler equations
Stokes
Gas dynamics
equations
hyperbolic
parabolic - elliptic

37 02-Basics_CFD
Flow Regimes

§ Different classes of PDEs

ØDifferent numerical methods

Image: game-icons.net, Lorc

38 02-Basics_CFD
Simplification to Euler Equations

Compressible Navier-Stokes equations


include friction and thermal conduction

hyperbolic – parabolic

Re ! 1
<latexit sha1_base64="I5luM6vLngbZrl954Tr/g73LDLE=">AAAC33ichVFLS8NAEJ7GV31XxZOXYBE8lVQE9VZ84UWoYrTQlrJJt3FpXmy2lSrePYlXj171F+lv8eCXNQpaxA2bmf3mm29ndpzYF4myrNecMTI6Nj6Rn5yanpmdmy8sLJ4nUU+63HYjP5I1hyXcFyG3lVA+r8WSs8Dx+YXT3UvjF30uExGFZ2oQ82bAvFB0hMsUoFZh+ZSbDSm8S8WkjK7Mhgg7atAqFK2SpZc57JQzp0jZqkaFN2pQmyJyqUcBcQpJwfeJUYKvTmWyKAbWpBtgEp7QcU63NIXcHlgcDAa0i7+HUz1DQ5xTzURnu7jFx5bINGkN+1ArOmCnt3L4Cew79rXGvD9vuNHKaYUDWAeKk1rxGLiiSzD+ywwy5lct/2emXSnq0LbuRqC+WCNpn+63zj4iElhXR0w60EwPGo4+9/ECIayNCtJX/lIwdcdtWKYt1yphpsigJ2HT10c9GHP591CHHXujtFMqn2wWK7vZvPO0Qqu0jqFuUYWOqIoyXDTzRM/0YjjGnXFvPHxSjVyWs0Q/lvH4Aaqel4A=</latexit>
Ma ! 0
<latexit sha1_base64="bbp4zPa1w+EGLIwnaTnIEJcG+fA=">AAAC2nichVFLS8NAEJ7GV1tfUY9egkXwVFLxeSu+8FKoYG1BS9mk27g0TcJmW6nFkyfx6tGr/if9LR78sqaCiDhhM7PfzHw7DyfyRaxs+y1jTExOTc9kc/nZufmFRXNp+SIO+9LlNTf0Q9lwWMx9EfCaEsrnjUhy1nN8Xne6h4m/PuAyFmFwroYRb/aYF4iOcJkC1DLNCrOupPCuFZMyvLHsllmwizvbNsT6bZSKtpYCpVINzXe6ojaF5FKfesQpIAXbJ0YxvksqkU0RsCaNgElYQvs53VEeuX1EcUQwoF38PdwuUzTAPeGMdbaLV3wciUyL1nFONKOD6ORVDjuG/sC51Zj35wsjzZxUOIR2wJjTjBXgiq4R8V9mL40c1/J/ZtKVog7t6W4E6os0kvTpfvMcwSOBdbXHomMd6YHD0fcBJhBA11BBMuUxg6U7bkMzrblmCVJGBj4JnUwf9WDN411afxu1zeJ+sXS2VSgfpPvO0iqt0QaWuktlOqUqynBR0jO90KvRNO6NB+PxK9TIpDkr9EOMp09pKZUQ</latexit>

Incompressible Navier-
Euler equations
Stokes
Gas dynamics
equations
hyperbolic
parabolic - elliptic

39 02-Basics_CFD
Neglect Friction and Heat Transport

§ Compressible Navier-Stokes -> Euler equations

@⇢(~x, t)
+ r · (⇢~v ) = 0
@t <latexit sha1_base64="I/v/rYzbRvQcBiWjR59nNn3x5MQ=">AAADIXichVFNaxRBEK2MX0n8WvXopXERNijLTBDMJRD8wosQwd0E0iH09PbONts7M/T0LsZlfo1/wz/gTbypN6/6Ezz4ppwoGiQ99FT1q1evq7rS0tkqxPGnlejc+QsXL62urV++cvXa9c6Nm8OqmHttBrpwhd9PVWWczc0g2ODMfumNmqXO7KXTx018b2F8ZYv8VTguzeFMZbkdW60CoKPOUI690ktZKh+sckL6SdGTC6OXr+v7YaP+Ewm1uCdkrlKnpB4VQTozDj1OYP6ilt5mk7AhtkV81OnG/ZiXOO0krdOldu0Wnc8kaUQFaZrTjAzlFOA7UlThO6CEYiqBHdISmIdnOW6opnXkzsEyYCigU/wznA5aNMe50aw4W+MWh+2RKegu9jNWTMFubjXwK9gf2G8Yy/57w5KVmwqPYVMorrHiC+CBJmCclTlrmSe1nJ3ZdBVoTFvcjUV9JSNNn/q3zhNEPLApRwQ9ZWYGjZTPC7xADjtABc0rnygI7ngEq9gaVslbRQU9D9u8PurBmJN/h3raGW72k7ifvHzQ3XnUDnyVbtMd6mGqD2mHntMu6tD0jr7SN/oevY3eRx+ij7+o0Uqbc4v+WtGXnyaKsfk=</latexit>

@ m(~
~ x, t)
+ r · (m ~ ~v + pI) = r · ⌧
@t
<latexit sha1_base64="Ls/XFY5rmRVMBqEU0IioS4xjM8U=">AAADY3ichVHbahRBEK3ZUXPzsom+idC4ChuMy0wIxBcheEMfhAhuEkiH0NPbu2l2bvT0LsZh/sNf03f/QsTT7cQQo6SHnqo+depUdVdSprqyUfQ16ITXrt9YWFxaXrl56/ad7uraXlXMjFRDWaSFOUhEpVKdq6HVNlUHpVEiS1K1n0xfuvj+XJlKF/lHe1qqo0xMcj3WUlhAx90vfGyErHkpjNUiZXyuZJ01fW8/NRvMrjfnUduwJ4znIkkFl6PCsn7L51Ib6f25o5SMF6jqmqrPvXdNs86eX8j/F41bMWua424vGkR+sctO3Do9atdu0f1GnEZUkKQZZaQoJws/JUEVvkOKKaIS2BHVwAw87eOKGlpG7gwsBYYAOsV/gtNhi+Y4O83KZ0tUSbENMhk9xn7jFROwXVUFv4L9gf3ZY5P/Vqi9suvwFDaB4pJXfA/c0gkYV2VmLfOsl6sz3a0sjemZv41Gf6VH3D3lH51XiBhgUx9h9NozJ9BI/HmOF8hhh+jAvfKZAvM3HsEKb5VXyVtFAT0D614f/WDM8d9DvezsbQ7iaBB/2OrtvGgHvkj36SH1MdVt2qG3tIs+JP0MHgVPg0Hne7gSroX3flM7QZtzly6s8MEvJvDH/g==</latexit>

@e(~x, t)
+ r · (e + p)~v = r · ⌧~v + r · (rT )
<latexit sha1_base64="NAVN81d/WWE6cw4xo55oS7Z/cE8=">AAADXXichVFdaxNBFL2bbe2HtY364INQBoOYEAm7IuiLUPzCF6FC0xa6pcxOJnHIZneYnQTrsn/Cf6cv/g0ffPDMuNHWIp1l9t4599xz78xNdaZKG0Vfg1a4snpjbX1j8+bWre2d9u07h2UxN0IORZEV5jjlpcxULodW2UweayP5LM3kUTp95eJHC2lKVeQH9lzL0xmf5GqsBLeAztpfkrHhoko0N1bxjMluspCi+lQ/tr36L2xr1mdJztOMJ2JUWNaVfd3z1EXNXrCLsaRAQddPdcGzfF7XS37/klIy5VrzRoEd9M7anWgQ+cWuOnHjdKhZ+0X7GyU0ooIEzWlGknKy8DPiVOI7oZgi0sBOqQJm4Ckfl1TTJnLnYEkwONAp/hOcTho0x9lplj5boEqGbZDJ6CH2W6+Ygu2qSvgl7E/szx6b/LdC5ZVdh+ewKRQ3vOJ74JY+gnFd5qxhLnu5PtPdytKYnvvbKPSnPeLuKf7ovEbEAJv6CKM3njmBRurPC7xADjtEB+6VlwrM33gEy72VXiVvFDn0DKx7ffSDMcf/DvWqc/hkEEeD+MPTzt7LZuDrdJ8eUBdTfUZ79I720YegH8Fu8Cjotr6Hq+FWuP2b2gqanLt0aYX3fgFKiMPT</latexit>
@t

40 02-Basics_CFD
Gas Dynamics: The Euler Equations

§ Hyperbolic system (wave transport)

@⇢(~x, t)
+ r · (⇢~v ) = 0
<latexit sha1_base64="rIqKqDdB5/3K6TvRh3MndGQBJak=">AAADFnichVHLahRBFD1pH3n4GnXppnAQJihDtwhmIwRfCCJEcJJAOoTqmppJMT3dTXXNYBz6P/wNf8CduHUnutL/cOGpsqNokFRTfW+de+6pe+tmVW5qF8dflqIzZ8+dX15ZXbtw8dLlK52r17brcmaVHqgyL+1uJmudm0IPnHG53q2sltMs1zvZ5JGP78y1rU1ZvHJHld6fynFhRkZJR+ig8zwdWakWaSWtMzIXqT0se+lcq8Xr5o5bb/5EXCNui7SQWS5TNSyd6HluoM6bdfFAxAedbtyPwxInnaR1umjXVtn5ihRDlFCYYQqNAo5+Doma3x4SxKiI7WNBzNIzIa7RYI25M7I0GZLohP8xT3stWvDsNeuQrXhLzm2ZKXCL+2lQzMj2t2r6Ne0P7jcBG//3hkVQ9hUe0WZUXA2KL4g7HJJxWua0ZR7Xcnqm78phhI3QjWF9VUB8n+q3zmNGLLFJiAg8CcwxNbJwnvMFCtoBK/CvfKwgQsdDWhmsDipFqyipZ2n967Mejjn5d6gnne27/STuJy/vdTcftgNfwQ3cRI9TvY9NPMMW61B4h8/4hu/R2+h99CH6+IsaLbU51/HXij79BF5lrQo=</latexit>
@t
@ m(~
~ x, t)
+ r · (m~ ~v + pI) = 0
<latexit sha1_base64="oQO8+ji2GV7U1LvvppEyUgrjk+E=">AAADPnichVFNaxRBEK0do+4mfqx69NJkCWxQlhkRzCUQjIo5CAm4SSATQk9v79pszwc9vYtxmP+WvxF/gDfJNQchvu5MDBokPfRU9atXr6q7kkKr0obhaSu4s3D33v12Z3HpwcNHj7tPnu6W+cwIORS5zs1+wkupVSaHVlkt9wsjeZpouZdMN118by5NqfLssz0u5GHKJ5kaK8EtoKNuGY8NF1VccGMV1yyeS1Gldd/br/VLZlfr66it2QsWZzzRPBaj3LJ+w4+FMsL7c0cpWJyjqmuquva26nqVrbPwqNsLB6Ff7KYTNU6PmrWdd79TTCPKSdCMUpKUkYWviVOJ74AiCqkAdkgVMANP+bikmhaROwNLgsGBTvGf4HTQoBnOTrP02QJVNLZBJqMV7A9eMQHbVZXwS9hf2N88Nvlvhcoruw6PYRModrziJ+CWvoBxW2baMK96uT3T3crSmNb8bRT6Kzzi7in+6LxDxACb+gij9545gUbiz3O8QAY7RAfula8UmL/xCJZ7K71K1ihy6BlY9/roB2OO/h3qTWf31SAKB9HO697G22bgbXpOy9THVN/QBn2kbfQh6JQuWu1WJzgJfgQ/g7NLatBqcp7RXys4/w3nX7wh</latexit>
@t
@e(~x, t)
+ r(e + p)~v = 0
@t
<latexit sha1_base64="5+0Kqp636VyWrt6Z1WTVQJXcXjE=">AAADDHichVHLahRBFD1pX0l8jWbppnAQJkSGHhHUhRDig2wCERwTSIdQXakZi6npbqprBuPQ3+Bv5AdciVuXbk3yLVl4uuwoGiTVVN9b55576t66aWFN6eP4eC66dPnK1WvzC4vXb9y8dbt15+67Mp84pfsqt7nbTmWprcl03xtv9XbhtBynVm+loxd1fGuqXWny7K0/KPTuWA4zMzBKekJ7rbVk4KSaJYV03kgrdCeZajX7UD30y9Uf2FdiRSSZTK0UHb1SLAfWtBLPRbzXasfdOCxx3uk1ThvN2sxbJ0iwjxwKE4yhkcHTt5Ao+e2ghxgFsV3MiDl6JsQ1Kiwyd0KWJkMSHfE/5GmnQTOea80yZCveYrkdMwUecL8OiinZ9a2afkl7yv0xYMP/3jALynWFB7QpFReC4gZxj/dkXJQ5bphntVycWXflMcDT0I1hfUVA6j7Vb52XjDhioxAReBWYQ2qk4TzlC2S0fVZQv/KZgggd79PKYHVQyRpFST1HW78+6+GYe/8O9bzTf9R91u29edxeXWvmPY97uI8Oh/oEq1jHJstQOMR3/MBR9Cn6HH2Jvv6iRnNNzhL+WtG3n/cGqJk=</latexit>

+Equation of state (usually ideal gas)


Image: game-icons.net, Lorc

41 02-Basics_CFD
Gas Dynamics

§ Nonlinear transport problem


§ State travels along characteristics
§ Formation of discontinuities (shocks)

Schlieren image
of supersonic
aircraft with
shock waves.
Image: NASA Photo

42 02-Basics_CFD
Vectorial Notation (1D, Perfect Gas)
2 3
⇢(x, t)
§ Gather state in one vector:
~u(x, t) = 4m(x, t)5
e(x, t)
2 3
<latexit sha1_base64="F16TeNiI9lJEoBpVJDLtfVd3ahQ=">AAADE3ichVFNaxRBEK2MX8n4teoxl8FFiCDLrAjqQQh+hHgIRHBNIBNC92xl0uxMz9DTuyQu+zf8G/4BT+LVo4d4SP5IDr6pTAIaJD301OtXVa+runSVm9rH8eFccOXqtes35hfCm7du37nbuXf/U12OXcqDtMxLt6lVzbmxPPDG57xZOVaFznlDj940/o0Ju9qU9qM/qHi7UJk1uyZVHtRO530y4XQ6ni3tP/GPo1dRojkzdqoL5Z3Zn4WJ2ytPfUkSFoIAWECYsB2eh+50unEvlhVdBP0WdKld62XnNyU0pJJSGlNBTJY8cE6Kanxb1KeYKnDbNAXngIz4mWYUIneMKEaEAjvCP8Npq2Utzo1mLdkpbsmxHTIjeoS9Iooa0c2tDFzDnmB/Fi777w1TUW4qPIDVUFwQxTXwnvYQcVlm0Uae1XJ5ZtOVp116Id0Y1FcJ0/SZnuu8hceBG4knoncSmUFDy3mCF7CwA1TQvPKZQiQdD2GVWBYV2yoq6DnY5vVRD8bc/3eoF8Hgae9lr//hWXf5dTvveVqkh7SEoT6nZVqldZSR0lf6RUd0HHwJvgXfgx+nocFcm/OA/lrBzz93HKqP</latexit>

m
6 (3 )m2 7
~
f (~u) = 4 ⇣2⇢ + ( 1)e 5
§ Also the flux: ⌘
m (1 )m2
⇢ e+ 2⇢
<latexit sha1_base64="fEItiQTB3iK4k7vdgzGyd/limQ8=">AAADdXichVHbbtNAEB0nXFpzaQqPSGhFACVCDXZaqfCAFK7iBalIhFbqlmrtrJ1VfInWm4hi+Yv4IvgSHnjgeOsUQUFdaz2zZ86cndkJ5okqjOd9c1rtS5evXF1bd69dv3Fzo7N562ORL3Qox2Ge5PogEIVMVCbHRplEHsy1FGmQyP1g9rKO7y+lLlSefTAnc3mUijhTkQqFAXTc+cqXMiyjqmftouqzZ4wHMlZZGaTCaPW5clPGucsjLcKyt73FY5Gmos/ST8OqHDKup3nFHrHeKc62mN9n8iwhrUrL4ImMzIojwW/0/H/qca3iqem7XGaT33Ucd7rewLOLnXf8xulSs/byznfiNKGcQlpQSpIyMvATElTgOySfPJoDO6ISmIanbFxSRS5yF2BJMATQGf4xTocNmuFcaxY2O8QtCbZGJqMH2G+sYgB2fauEX8D+xP5isfi/N5RWua7wBDaA4rpVfAfc0BSMizLThrmq5eLMuitDET2x3SjUN7dI3Wd4pvMKEQ1sZiOMXltmDI3Anpd4gQx2jArqV14pMNvxBFZYK61K1igK6GnY+vVRD8bs/z3U8854OHg68N/vdEcvmnmv0R26Rz0MdZdG9Jb2UEbobDq7zsh53vrRvtu+3354Sm05Tc5t+mO1H/8C9U/Ifw==</latexit>

§ (Equation of state for perfect gas in flux)


43 02-Basics_CFD
Compact Notation of the System with Vectors

@~u(x, t) @ f~(~u)
§ First order, nonlinear PDE system + =0
<latexit sha1_base64="EEMC+rIG3g3DAYh7BkZWgcrygB0=">AAADJXichVFNTxRBEH0MioAIKx69dNyYLNFsZg2JcDAh+BEvJpi4QrJLSE/Tu3Z2dmbS07sBNvN//Bv+AU/GBC4everdg2/aAVQg9KSnql+9el3VFWWxyV0YHk8F0zduztyanZu/vXBncal2d/l9no6s0m2VxqndiWSuY5PotjMu1juZ1XIYxXo7Gjwv49tjbXOTJu/cYaZ3h7KfmJ5R0hHaq3W6PSvVpJtJ64yMRXes1WRUNA4eu5XiHHaFeCQuo/aKRpXyN/2gEM9EuFerh83QL3HRaVVOHdXaSmsn6GIfKRRGGEIjgaMfQyLn10ELITJiu5gQs/SMj2sUmGfuiCxNhiQ64L/PU6dCE55LzdxnK94Sc1tmCjzkfuUVI7LLWzX9nPYX95HH+lfeMPHKZYWHtBEV57ziG+IOH8i4LnNYMU9ruT6z7MqhhzXfjWF9mUfKPtWZzgtGLLGBjwi89Mw+NSJ/HvMFEto2Kyhf+VRB+I73aaW32qsklaKknqUtX5/1cMyt/4d60Wk/aa43W29X6xub1bxncR8P0OBQn2IDr7HFMhQ+4Tt+4GfwMfgcfAm+/qEGU1XOPfyzgm+/AXRNtFI=</latexit>
@t @x
§ Conservative variables ~u
<latexit sha1_base64="Wwpj/O9+Fo4JNQ7fK8cxYmUTpFA=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhRehirGFtkiSbmNoXiSbYi0Vrx696i/T3+LBb9dU0CLdsJnZb775dmbHijw34Zr2nlNmZufmF/KF4uLS8spqaW39JgnT2GaGHXph3LDMhHluwAzuco81opiZvuWxutU7FvF6n8WJGwbXfBCxtm86gdt1bZMDqrf6zB6mo9tSWatocqmTjp45ZcpWLSx9UIs6FJJNKfnEKCAO3yOTEnxN0kmjCFibhsBieK6MMxpREbkpWAwME2gPfwenZoYGOAvNRGbbuMXDjpGp0jb2mVS0wBa3MvgJ7Cf2g8Scf28YSmVR4QDWgmJBKl4A53QHxrRMP2OOa5meKbri1KUD2Y2L+iKJiD7tH50TRGJgPRlR6VQyHWhY8tzHCwSwBioQrzxWUGXHHVhTWiZVgkzRhF4MK14f9WDM+t+hTjrGbuWwol/ulatH2bzztElbtIOh7lOVzqmGMkSDL/RKb8qVcq88Kk/fVCWX5WzQr6U8fwGE6pGo</latexit>
<latexit

§ Compact notation shows structure of the PDEs

44 02-Basics_CFD
More Spatial Dimensions

§ Space coordinate becomes a vector ~x


<latexit sha1_base64="N2UDge5oZSLGseC+byq3NkA0EzA=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhRehirGFtsgm3daleZGkpbVUvHr0qr9Mf4sHv11TQYu4YTOz33zz7cyOHboiTgzjLaPNzM7NL2Rz+cWl5ZXVwtr6TRz0IodbTuAGUc1mMXeFz61EJC6vhRFnnu3yqt09lvFqn0exCPzrZBjypsc6vmgLhyWAqo0+d0aD8W2haJQMtfRpx0ydIqWrEhTeqUEtCsihHnnEyacEvkuMYnx1MsmgEFiTRsAieELFOY0pj9weWBwMBrSLfweneor6OEvNWGU7uMXFjpCp0zb2mVK0wZa3cvgx7Af2vcI6f94wUsqywiGsDcWcUrwAntAdGP9leilzUsv/mbKrhNp0oLoRqC9UiOzT+dY5QSQC1lURnU4VswMNW537eAEf1kIF8pUnCrrquAXLlOVKxU8VGfQiWPn6qAdjNn8PddqxdkuHJfNyr1g+SuedpU3aoh0MdZ/KdE4VlCEbfKYXetWutIH2oD1+UbVMmrNBP5b29AmMHJGr</latexit>
<latexit

§ Momentum becomes a vector m


~
<latexit sha1_base64="rgIfylbXV5m83alFjs1BiX4GSkY=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhRehirGFtsgm3daleZGkxVoqXj161V+mv8WD366poEW6YTOz33zz7cyOHboiTgzjPaPNzM7NL2Rz+cWl5ZXVwtr6TRz0IodbTuAGUc1mMXeFz61EJC6vhRFnnu3yqt09lvFqn0exCPzrZBDypsc6vmgLhyWAqo0+d4be6LZQNEqGWvqkY6ZOkdJVCQof1KAWBeRQjzzi5FMC3yVGMb46mWRQCKxJQ2ARPKHinEaUR24PLA4GA9rFv4NTPUV9nKVmrLId3OJiR8jUaRv7TCnaYMtbOfwY9hP7QWGdf28YKmVZ4QDWhmJOKV4AT+gOjGmZXsoc1zI9U3aVUJsOVDcC9YUKkX06PzoniETAuiqi06lidqBhq3MfL+DDWqhAvvJYQVcdt2CZslyp+Kkig14EK18f9WDM5t+hTjrWbumwZF7uFctH6byztElbtIOh7lOZzqmCMmSDL/RKb9qVdq89ak/fVC2T5mzQr6U9fwFxupGg</latexit>
<latexit

§ ( more components in the state vector)

§ Get a flux for each spatial dimension

45 02-Basics_CFD
Compact Notation, Multiple Spatial Dimensions

§ For d dimensions we have:


d
X
@~u(~x, t) @ f~i (~u)
+ =0
@t i=1
@x i
<latexit sha1_base64="BEByeRArX6YE2x0yFAvEyOoFYwU=">AAADPHichVFNaxRBEK0do9kkalZz9NJkCawoy0wQ1EMg+BG8CBGySSATh57e3k2z80VPz5I4zG/L31DvOYVcPYn4pp18GSU99FT1q3qvq7rCLFK5cd1vLefOzN17s+25+YX7Dx4udh493s7TQgs5EGmU6t2Q5zJSiRwYZSK5m2nJ4zCSO+HkbR3fmUqdqzTZMkeZ3I/5OFEjJbgBFHS0P9JclH7GtVE8Yv5UirKoetYeVs/N0+oyaCr2jPl5EQelWvOqz0P2L/aoClSv0bnKPgxUxdaYG3S6bt+1i910vMbpUrM208538mlIKQkqKCZJCRn4EXHK8e2RRy5lwPapBKbhKRuXVNE8uAWyJDI40An+Y5z2GjTBudbMLVvglghbg8loBXvDKobIrm+V8HPYn9hfLDb+7w2lVa4rPIINoThnFT8CN3SAjNuYcZN5XsvtzLorQyN6ZbtRqC+zSN2nuNB5h4gGNrERRu9t5hgaoT1P8QIJ7AAV1K98rsBsx0NYbq20KkmjyKGnYevXRz0Ys/f3UG86g9X+67736UV3/U0z7zY9oWXqYagvaZ0+0CbKEPSVfrVmW23n2DlxTp2zP6lOq+Es0bXl/PgNb0e8HQ==</latexit>

§ For example in 2D, 2 fluxes with 4 components:

2 3 2 3
m1 m2
6 (3 )m21 m22 7 6 m2 ·m1 7
6 2⇢ +( 1)(e ) 7
2⇢ 7~ 6 ⇢ 7
f1 (~u) = 6
~ 6 2 7
6 m1 ·m2 7f2 (~u) = 6 (3 )m22
2⇢⇣ +( 1)(e
m1
7
2⇢⌘)5
4 ⇣ ⇢ ⌘5 4
m1 (1 )(m21 +m2 )
2
m2 (1 )(m21 +m2 )
2

⇢ e + 2⇢ ⇢ e+ 2⇢
<latexit sha1_base64="NrbZEU8JgWGP0POIrSFKMEiKXhY=">AAADvnichVFLb9NAEB7XPNrwCnDksiJCsoUaxQYJOCCVp7ggFYnQim6J1s7GWcWPaL2JWixLXOEfwu/gyIHPWycUKtS11jP7zTffzOxG81SVZjD47my4Fy5eury51bly9dr1G92btz6UxULHchgXaaH3I1HKVOVyaJRJ5f5cS5FFqdyLZi+a+N5S6lIV+XtzPJeHmUhyNVGxMIBG3Z98KeNqUo9Cz3qL2mdPGY9kovIqyoTR6qjuZKOQcd7hEy3iCgcejwvDslFQV1xPi3od8x5s80RkmfARDT+FdYXEhsHuM+8kwrZZ4DNPwq70glNE/3SdlXwqJ2aVLiHVFgvWxTwrgoit6q/VuFbJ1PgdLvPxn3FG3d6gP7CLnXWC1ulRu3aL7g/iNKaCYlpQRpJyMvBTElTiO6CABjQHdkgVMA1P2bikmjrIXYAlwRBAZ/gnOB20aI5zo1na7BhVUmyNTEb3sF9bxQjspqqEX8L+wv5sseS/FSqr3HR4DBtBccsqvgVuaArGeZlZy1z1cn5mM5WhCT220yj0N7dIM2e81nmJiAY2sxFGrywzgUZkz0vcQA47RAfNLa8UmJ14DCuslVYlbxUF9DRsc/voB88c/PuoZ51h2H/SD9497O08b997k+7QXfLwqI9oh97QLtqInY/OF+er88195iZu5hYn1A2nzblNfy336DcMDeIS</latexit>

<latexit sha1_base64="f83BHrzLE4B+3RBPh3TnRZQVFNo=">AAADvnichVFLb9NAEB7XPNrwCnDksiJCsoUaxQGp5YBUnuKCVCRCK7olWjsbZxU/ovUmarEscYV/CL+DIwc+b5xQqFDXWs/s9818M7MbzhJVmF7vu7PhXrp85ermVuva9Rs3b7Vv3/lQ5HMdyUGUJ7k+DEUhE5XJgVEmkYczLUUaJvIgnL6o+YOF1IXKs/fmdCaPUxFnaqwiYQAN2z/5QkbluBoGnvXmlc+eMh7KWGVlmAqj1UnVSocB47zFx1pEpfdom8ciTYXPgH/qV2WfcT3JK/aQeUuGbbPAZ56EXeakw/6ZQH+tBQEejXIDJdCWPMutoESOzUpaokzTSLBuxLOdgLGF/HUlrlU8MX6Ly2z0Z5xhu9Pr9uxi552gcTrUrP28/YM4jSiniOaUkqSMDPyEBBX4jiigHs2AHVMJTMNTlpdUUQu5c0RJRAigU/xjnI4aNMO51ixsdoQqCbZGJqMH2K+tYojouqqEX8D+wv5ssfi/FUqrXHd4ChtCccsqvgVuaIKIizLTJnLVy8WZ9VSGxrRrp1Hob2aRes5orfMSjAY2tQyjVzYyhkZozwvcQAY7QAf1La8UmJ14BCuslVYlaxQF9DRsffvoB88c/Puo551Bv/ukG7x73Nl73rz3Jt2j++ThUXdoj97QPtqInI/OF+er88195sZu6ubL0A2nyblLfy335DeDE+IP</latexit>

46 02-Basics_CFD
Simplification To Incompressible

Compressible Navier-Stokes equations


include friction and thermal conduction

hyperbolic – parabolic

Re ! 1
<latexit sha1_base64="8UasSEyFSHtBCcImCaClUss1dUs=">AAAC33ichVFLS8NAEJ7GZ+urKp68BIvgKaTi8ya+8CJUMSq0pWziNl2aJmGzVap49yRePXrVX6S/xYNf1lQQKU7YzOw3M9/Ow40DkSjbfs8ZQ8Mjo2Pj+cLE5NT0THF27jyJutLjjhcFkbx0WcIDEXJHCRXwy1hy1nEDfuG291L/xTWXiYjCM9WLeb3D/FA0hccUoEZx4ZSbNSn8lmJSRjdmTYRN1WsUS7a1sW5DzL9G2bK1lCiTSlT8oBpdUUQedalDnEJSsANilOCrUplsioHV6Q6YhCW0n9M9FZDbRRRHBAPaxt/HrZqhIe4pZ6KzPbwS4EhkmrSMc6gZXUSnr3LYCfQnzq3G/IEv3GnmtMIetAvGvGY8Bq6ohYj/MjtZZL+W/zPTrhQ1aUt3I1BfrJG0T++HZx8eCaytPSYd6EgfHK6+X2MCIbSDCtIp9xlM3fEVNNOaa5YwY2Tgk9Dp9FEP1tzfpTnYcFatbat8slba2c32PU6LtEQrWOom7dARVVCGh2Ze6JXeDNd4MB6Np+9QI5flzNMvMZ6/APell6E=</latexit>
sha1_base64="8460CjcRAsmk+qf40sEBA4tQFpo=">AAACxXichVFLS8NAEJ7GV1tf1auXYBE8lcSLehN8IIJQwdhCLbJJt3FpmoTNtliLB69e/XX6Wzz47ZoqWqQbNjP7zcw3Lz+NRKYc561gzc0vLC4VS+XllfLq2npl4yZLBjLgXpBEiWz6LOORiLmnhIp4M5Wc9f2IN/zesbY3hlxmIomv1Sjl7T4LY9EVAVOA6neVqlNzzLGnFTdXqpSfpPJOt9ShhAIaUJ84xaSgR8Qow9cilxxKgbVpDExCE8bO6YnKiB3Ai8ODAe3hH+LVytEYb82ZmegAWSJciUibdnDPDKMPb52VQ88gP3AfDRb+m2FsmHWFI0gfjCXDeAlc0T08ZkX2c89JLbMjdVeKunRguhGoLzWI7jP45jmBRQLrGYtNp8YzBIdv3kNMIIb0UIGe8oTBNh13IJmR3LDEOSMDn4TU00c92LL7d6fTirdXO6y5Vz/bpiJt0TbtYqn7dETnVEcZAZK90Kt1YaXW0Hr4crQKecQm/TrW8yfuBIzj</latexit>
sha1_base64="hVkMG36qujfrtScZMhqWemST4Is=">AAAC33ichVFNLwRBEH3G9/ciTi4TInHazLrgJvERFwlikViRntE7Ojs7M+npXVni7iSujq78In6LgzdtEET0pKeqX716XdXlp5HKjOc9dzndPb19/QODQ8Mjo2PjpYnJgyxp6UBWgyRK9JEvMhmpWFaNMpE8SrUUTT+Sh35jLY8ftqXOVBLvm04qT5oijFVdBcIQOi1N70m3plV4boTWyYVbU3HddE5Lc17Zs8v97VQKZw7F2klKL6jhDAkCtNCERAxDP4JAxu8YFXhIiZ3gipimp2xc4hpDzG2RJckQRBv8hzwdF2jMc66Z2eyAt0Tcmpku5rk3raJPdn6rpJ/RvnJfWiz884Yrq5xX2KH1qThoFbeJG5yT8V9ms2B+1PJ/Zt6VQR3LthvF+lKL5H0GnzrrjGhiDRtxsWGZITV8e27zBWLaKivIX/lDwbUdn9EKa6VViQtFQT1Nm78+6+GYKz+H+tupLpZXypXdr3FjADOYxQKHuoRVbGGHZQRs5gGPeHJ858a5de7eqU5XkTOFb8u5fwOCBJb6</latexit>
sha1_base64="Wp6Ds+EXbznpL38xzTuKtXBYlcs=">AAAC33ichVFNT9tAEH0YKISPEkA9cbEaVeopcpBa4IbEh7hUCohAJIKitdmYVRzbWm9AAXHnVPXKkSv9ReW3cOB5cUAVihhrPbNvZt7Oh59GKjOe92/MGZ+Y/DQ1XZqZnZv/vFBeXDrKkr4OZCNIokQ3fZHJSMWyYZSJZDPVUvT8SB773a3cf3whdaaS+NAMUnnaE2GsOioQhlC7/OVAui2twnMjtE4u3ZaKO2bQLle86s8fHsV9b9SqnpUKCqkn5Ue0cIYEAfroQSKGoR1BION3gho8pMROcU1M01LWL3GDGeb2GSUZIYh2+Q95OynQmPecM7PZAV+JeDQzXXzj2bWMPqPzVyXtjPqJ58pi4cgXri1zXuGA2idjyTL+Im5wzoiPMntF5LCWjzPzrgw6WLfdKNaXWiTvM3jl2aZHE+taj4sdGxmSw7f3C04gpm6wgnzKQwbXdnxGLayWliUuGAX5NHU+fdbDNQ936Y42GqvVjWpt/23dmMYKvuI7l7qGTeyhzjICNnOPB/x1fOfW+e38eQl1xoqcZfwnzt0zzwuXGw==</latexit>
sha1_base64="q0AcImRoGBBX3Vvui5A4v94Kodc=">AAAC33ichVFLS8NAEJ7GV1tfVfHkJVgETyUVfN3EF16EKtYW2iKbuI1L82KzrdTi3ZN49ehVf5H+Fg9+WVNBpDhhM7PfzHw7DzvyRKws6z1jjI1PTE5lc/npmdm5+cLC4mUcdqXDq07ohbJus5h7IuBVJZTH65HkzLc9XrM7B4m/1uMyFmFwofoRb/nMDURbOEwBuiosn3OzKYV7o5iU4a3ZFEFb9a8KRau0tWlBzL9GuWRpKVIqlbDwQU26ppAc6pJPnAJSsD1iFONrUJksioC1aABMwhLaz+me8sjtIoojggHt4O/i1kjRAPeEM9bZDl7xcCQyTVrDOdaMNqKTVznsGPoT505j7sgXBpo5qbAPbYMxpxlPgSu6QcR/mX4aOazl/8ykK0Vt2tHdCNQXaSTp0/nhOYRHAutoj0lHOtIFh63vPUwggK6igmTKQwZTd3wNzbTmmiVIGRn4JHQyfdSDNQ93aY42qhul3VL5zCru7af7ztIKrdI6lrpNe3RCFZThoJkXeqU3wzYejEfj6TvUyKQ5S/RLjOcv9mWXnQ==</latexit>

Ma ! 0
<latexit sha1_base64="HqS3/c/EXuJETRyDySrCTRr3Ki8=">AAAC2nichVFLS8NAEB7jq/UZ9eglWARPJRVBvRVfeCkoGC20pWzimi7Ni81W0eLJk3j16FX/k/4WD35ZU0GLdMNmZr/55tuZHTcJRKps+33MGJ+YnJouFGdm5+YXFs2l5fM07kmPO14cxLLuspQHIuKOEirg9URyFroBv3C7+1n84prLVMTRmbpNeCtkfiSuhMcUoLZp1pjVlMLvKCZlfGPZbbNkl229rGGnkjslytdJbH5Qky4pJo96FBKniBT8gBil+BpUIZsSYC3qA5PwhI5zuqcZ5PbA4mAwoF38fZwaORrhnGmmOtvDLQG2RKZF69hHWtEFO7uVw09hP7HvNOb/e0NfK2cV3sK6UCxqxRpwRR0wRmWGOXNQy+jMrCtFV7SjuxGoL9FI1qf3o3OAiATW1RGLDjXTh4arz9d4gQjWQQXZKw8ULN3xJSzTlmuVKFdk0JOw2eujHoy58neow46zWd4tV063StW9fN4FWqU12sBQt6lKx3SCMjyU9EKv9Ga0jAfj0Xj6phpjec4K/VrG8xccIpTv</latexit>

Incompressible Navier-
Euler equations
Stokes
Gas dynamics
equations
hyperbolic
parabolic - elliptic

47 02-Basics_CFD
Neglect Density and Temperature Changes

§ Compressible Navier-Stokes -> Incompressible

@⇢(~x, t)
+ r · (⇢~v ) = 0
<latexit sha1_base64="I/v/rYzbRvQcBiWjR59nNn3x5MQ=">AAADIXichVFNaxRBEK2MX0n8WvXopXERNijLTBDMJRD8wosQwd0E0iH09PbONts7M/T0LsZlfo1/wz/gTbypN6/6Ezz4ppwoGiQ99FT1q1evq7rS0tkqxPGnlejc+QsXL62urV++cvXa9c6Nm8OqmHttBrpwhd9PVWWczc0g2ODMfumNmqXO7KXTx018b2F8ZYv8VTguzeFMZbkdW60CoKPOUI690ktZKh+sckL6SdGTC6OXr+v7YaP+Ewm1uCdkrlKnpB4VQTozDj1OYP6ilt5mk7AhtkV81OnG/ZiXOO0krdOldu0Wnc8kaUQFaZrTjAzlFOA7UlThO6CEYiqBHdISmIdnOW6opnXkzsEyYCigU/wznA5aNMe50aw4W+MWh+2RKegu9jNWTMFubjXwK9gf2G8Yy/57w5KVmwqPYVMorrHiC+CBJmCclTlrmSe1nJ3ZdBVoTFvcjUV9JSNNn/q3zhNEPLApRwQ9ZWYGjZTPC7xADjtABc0rnygI7ngEq9gaVslbRQU9D9u8PurBmJN/h3raGW72k7ifvHzQ3XnUDnyVbtMd6mGqD2mHntMu6tD0jr7SN/oevY3eRx+ij7+o0Uqbc4v+WtGXnyaKsfk=</latexit>
@t
@ m(~
~ x, t)
+ r · (m~ ~v + pI) = r · ⌧
@t
<latexit sha1_base64="Ls/XFY5rmRVMBqEU0IioS4xjM8U=">AAADY3ichVHbahRBEK3ZUXPzsom+idC4ChuMy0wIxBcheEMfhAhuEkiH0NPbu2l2bvT0LsZh/sNf03f/QsTT7cQQo6SHnqo+depUdVdSprqyUfQ16ITXrt9YWFxaXrl56/ad7uraXlXMjFRDWaSFOUhEpVKdq6HVNlUHpVEiS1K1n0xfuvj+XJlKF/lHe1qqo0xMcj3WUlhAx90vfGyErHkpjNUiZXyuZJ01fW8/NRvMrjfnUduwJ4znIkkFl6PCsn7L51Ib6f25o5SMF6jqmqrPvXdNs86eX8j/F41bMWua424vGkR+sctO3Do9atdu0f1GnEZUkKQZZaQoJws/JUEVvkOKKaIS2BHVwAw87eOKGlpG7gwsBYYAOsV/gtNhi+Y4O83KZ0tUSbENMhk9xn7jFROwXVUFv4L9gf3ZY5P/Vqi9suvwFDaB4pJXfA/c0gkYV2VmLfOsl6sz3a0sjemZv41Gf6VH3D3lH51XiBhgUx9h9NozJ9BI/HmOF8hhh+jAvfKZAvM3HsEKb5VXyVtFAT0D614f/WDM8d9DvezsbQ7iaBB/2OrtvGgHvkj36SH1MdVt2qG3tIs+JP0MHgVPg0Hne7gSroX3flM7QZtzly6s8MEvJvDH/g==</latexit>

@e(~x, t)
+ r · (e + p)~v = r · ⌧~v + r · (rT )
<latexit sha1_base64="NAVN81d/WWE6cw4xo55oS7Z/cE8=">AAADXXichVFdaxNBFL2bbe2HtY364INQBoOYEAm7IuiLUPzCF6FC0xa6pcxOJnHIZneYnQTrsn/Cf6cv/g0ffPDMuNHWIp1l9t4599xz78xNdaZKG0Vfg1a4snpjbX1j8+bWre2d9u07h2UxN0IORZEV5jjlpcxULodW2UweayP5LM3kUTp95eJHC2lKVeQH9lzL0xmf5GqsBLeAztpfkrHhoko0N1bxjMluspCi+lQ/tr36L2xr1mdJztOMJ2JUWNaVfd3z1EXNXrCLsaRAQddPdcGzfF7XS37/klIy5VrzRoEd9M7anWgQ+cWuOnHjdKhZ+0X7GyU0ooIEzWlGknKy8DPiVOI7oZgi0sBOqQJm4Ckfl1TTJnLnYEkwONAp/hOcTho0x9lplj5boEqGbZDJ6CH2W6+Ygu2qSvgl7E/szx6b/LdC5ZVdh+ewKRQ3vOJ74JY+gnFd5qxhLnu5PtPdytKYnvvbKPSnPeLuKf7ovEbEAJv6CKM3njmBRurPC7xADjtEB+6VlwrM33gEy72VXiVvFDn0DKx7ffSDMcf/DvWqc/hkEEeD+MPTzt7LZuDrdJ8eUBdTfUZ79I720YegH8Fu8Cjotr6Hq+FWuP2b2gqanLt0aYX3fgFKiMPT</latexit>
@t
48 02-Basics_CFD
Divergence Free Flow

§ Constant density:
§ One variable less
§ mass conservation reduces to divergence free constrained for the velocity field:

§ Note: no time dependency in this equation


r~v = 0
<latexit sha1_base64="C1O8lX28U0faP0X7PACqZgb25c4=">AAAC3HichVFNS8NAEH2NX7V+VT16CRbBU0lFUA9C8QsvgoK1hbaUTbqtoWkSkrRYi0dP4tWjV/1L+ls8+LKmghZxw2Zm37x5O7Nj+o4dRobxltImJqemZ9Kzmbn5hcWl7PLKVej1AkuWLM/xgoopQunYrixFduTIih9I0TUdWTY7h3G83JdBaHvuZTTwZb0r2q7dsi0REWpkV2quMB2h1/rSGvbv9H3daGRzRt5QSx93ComTQ7LOvew7amjCg4UeupBwEdF3IBDyq6IAAz6xOobEAnq2ikvcIcPcHlmSDEG0w3+bp2qCujzHmqHKtniLwx0wU8cG94lSNMmOb5X0Q9oP7luFtf+8YaiU4woHtCYVZ5XiGfEI12T8l9lNmKNa/s+Mu4rQwq7qxmZ9vkLiPq1vnSNGAmIdFdFxrJhtapjq3OcLuLQlVhC/8khBVx03aYWyUqm4iaKgXkAbvz7r4ZgLv4c67pS28nv5wsV2rniQzDuNNaxjk0PdQRGnOGcZFm7wjBe8ag3tXnvQHr+oWirJWcWPpT19AniMlW8=</latexit>

49 02-Basics_CFD
One Equation Less

§ With r~v = 0
<latexit sha1_base64="C1O8lX28U0faP0X7PACqZgb25c4=">AAAC3HichVFNS8NAEH2NX7V+VT16CRbBU0lFUA9C8QsvgoK1hbaUTbqtoWkSkrRYi0dP4tWjV/1L+ls8+LKmghZxw2Zm37x5O7Nj+o4dRobxltImJqemZ9Kzmbn5hcWl7PLKVej1AkuWLM/xgoopQunYrixFduTIih9I0TUdWTY7h3G83JdBaHvuZTTwZb0r2q7dsi0REWpkV2quMB2h1/rSGvbv9H3daGRzRt5QSx93ComTQ7LOvew7amjCg4UeupBwEdF3IBDyq6IAAz6xOobEAnq2ikvcIcPcHlmSDEG0w3+bp2qCujzHmqHKtniLwx0wU8cG94lSNMmOb5X0Q9oP7luFtf+8YaiU4woHtCYVZ5XiGfEI12T8l9lNmKNa/s+Mu4rQwq7qxmZ9vkLiPq1vnSNGAmIdFdFxrJhtapjq3OcLuLQlVhC/8khBVx03aYWyUqm4iaKgXkAbvz7r4ZgLv4c67pS28nv5wsV2rniQzDuNNaxjk0PdQRGnOGcZFm7wjBe8ag3tXnvQHr+oWirJWcWPpT19AniMlW8=</latexit>

§ And constant temperature rT = 0


<latexit sha1_base64="UfNlLDYVyUSCbcFH/TXbv/FIq9Y=">AAAC1HichVFNS8NAEJ3Gr7Z+VT16CRbBU0lEUA9C8QsvQoXGFtoim3Qbl6ZJ2KSFWnoSrx696t/S3+LBlzUVtEg3bGb2zZu3Mzt26IkoNoz3jDY3v7C4lM3ll1dW19YLG5u3UdCXDrecwAtk3WYR94TPrVjEHq+HkrOe7fGa3T1L4rUBl5EI/Go8DHmrx1xfdITDYkDNps9sj+lV/UQ37gpFo2SopU87ZuoUKV2VoPBBTWpTQA71qUecfIrhe8QowtcgkwwKgbVoBEzCEyrOaUx55PbB4mAwoF38XZwaKerjnGhGKtvBLR62RKZOu9iXStEGO7mVw49gP7EfFOb+e8NIKScVDmFtKOaU4jXwmO7BmJXZS5mTWmZnJl3F1KEj1Y1AfaFCkj6dH51zRCSwrorodKGYLjRsdR7gBXxYCxUkrzxR0FXHbVimLFcqfqrIoCdhk9dHPRiz+Xeo0461XzoumTcHxfJpOu8sbdMO7WGoh1SmK6qgDAdtvNArvWk1baw9ak/fVC2T5mzRr6U9fwFmNJJO</latexit>

ØThe energy balance does not provide any additional information

50 02-Basics_CFD
Incompressible Navier-Stokes Equations

§ Parabolic – Elliptic system of PDEs:

r · ~v = 0 <latexit sha1_base64="Wkso6CdMxL2ZtT8/t9UWl+g/S2A=">AAAC4nichVFLS8NAEJ7GV1tfUQ8evASL4KkkIuhFKL7wIlSwD2hL2aTbGpomIdkWaukf8CZevXnVH6S/xYPfrqmgRbphM7PffPPtzI4dem4sTPM9pc3NLywupTPZ5ZXVtXV9Y7McB/3I4SUn8IKoarOYe67PS8IVHq+GEWc92+MVu3sm45UBj2I38G/FMOSNHuv4btt1mADU1LfrPrM9VndagTDqA+6MBmPjxDCbes7Mm2oZ046VODlKVjHQP6hOLQrIoT71iJNPAr5HjGJ8NbLIpBBYg0bAIniuinMaUxa5fbA4GAxoF/8OTrUE9XGWmrHKdnCLhx0h06A97EulaIMtb+XwY9hP7HuFdf69YaSUZYVDWBuKGaV4DVzQHRizMnsJc1LL7EzZlaA2HatuXNQXKkT26fzonCMSAeuqiEEXitmBhq3OA7yAD1tCBfKVJwqG6rgFy5TlSsVPFBn0Ilj5+qgHY7b+DnXaKR/kLTNv3RzmCqfJwNO0Q7u0j6keUYGuqIg6ZO0v9EpvWkt70B61p2+qlkpytujX0p6/ANN6l9M=</latexit>

@~v (~x, t) p ⌧
+ r · (~v ~v + I) = r ·
§ Variables:
@t ⇢ ⇢
<latexit sha1_base64="/pluSObo+HRoUrxSjoHmk4Bc1AQ=">AAADfXichVFdaxQxFL2z40dbP7rVF8GX4FLYYllmRKgvleJnfRAquG2hU0omm92GnZ0ZMtnFOuRP+W/0twh6ElOLVmmGzL0599yTkySvC9WYJPkadeJr12/cXFpeuXX7zt3V7tq9/aaaayGHoioqfZjzRhaqlEOjTCEPay35LC/kQT596eoHC6kbVZUfzVktj2d8UqqxEtwAOul+ycaaizaruTaKFyxbSNEubN/HT3aTmQ17UTWWPWZZyfOCZ2JUGdYP/EwoLULuKF60Rqc+rSzLKlhwDtuL7J21G2w7iDGvFqz8g5wZPrc2yJ10e8kg8YNdTtKQ9CiMvar7jTIaUUWC5jQjSSUZ5AVxavAdUUoJ1cCOqQWmkSlfl2RpBb1zsCQYHOgU/wlWRwEtsXaaje8W2KXA1OhktI75xivmYLtdJfIG8TvmZ49N/rtD65WdwzPEHIrLXvE9cEOnYFzVOQvMcy9Xd7pTGRrTM38aBX+1R9w5xW+dV6hoYFNfYfTaMyfQyP16gRsoEYdw4G75XIH5E48QuY/Sq5RBkUNPI7rbhx88c/r3o15O9p8M0mSQfnja23kRHnyJHtIj6uNVt2iHdmkPPkT0IHoevY12Oz/i9XgzHvyidqLQc5/+GPHWT1Vw0y8=</latexit>

Velocity
Pressure
~v
<latexit sha1_base64="M/yxukh5r4T+/dVOki9wLH18ZcE=">AAACz3ichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhRehirGFtkiSbmNoXiTbYC0Vrx696i/T3+LBb9dU0CLdsJnZb775dmbHijw34Zr2nlNmZufmF/KF4uLS8spqaW39Jgn7sc0MO/TCuGGZCfPcgBnc5R5rRDEzfctjdat3LOL1lMWJGwbXfBCxtm86gdt1bZMDqrdSZg/T0W2prFU0udRJR8+cMmWrFpY+qEUdCsmmPvnEKCAO3yOTEnxN0kmjCFibhsBieK6MMxpREbl9sBgYJtAe/g5OzQwNcBaaicy2cYuHHSNTpW3sM6logS1uZfAT2E/sB4k5/94wlMqiwgGsBcWCVLwAzukOjGmZfsYc1zI9U3TFqUsHshsX9UUSEX3aPzoniMTAejKi0qlkOtCw5DnFCwSwBioQrzxWUGXHHVhTWiZVgkzRhF4MK14f9WDM+t+hTjrGbuWwol/ulatH2bzztElbtIOh7lOVzqmGMkSDL/RKb8qVcq88Kk/fVCWX5WzQr6U8fwGHUJGp</latexit>
<latexit

p
<latexit sha1_base64="ZbRmESevQGS3ciOL8YOXvVUz3j8=">AAACyXichVFLS8NAEJ7GV1tfVY9egkXwVBIR1FvxhQeFFowt1CJJuo1L82KTFtviyaNX/XH6Wzz47ZoKWqQbNjP7zcw3Lyf2eZIaxntOm5tfWFzKF4rLK6tr66WNzdsk6guXWW7kR6Lp2AnzecislKc+a8aC2YHjs4bTO5X2xoCJhEfhTTqMWTuwvZB3uWungOrxfalsVAx19GnFzJQyZacWlT7ojjoUkUt9CohRSCl0n2xK8LXIJINiYG0aAxPQuLIzeqIiYvvwYvCwgfbw9/BqZWiIt+RMVLSLLD6uQKROu7gXitGBt8zKoCeQn7gjhXn/ZhgrZlnhENIBY0ExXgNP6QEesyKDzHNSy+xI2VVKXTpS3XDUFytE9un+8JzBIoD1lEWnc+XpgcNR7wEmEEJaqEBOecKgq447kLaSTLGEGaMNPgEpp496sGbz71KnFWu/clwx6wfl6km27zxt0w7tYamHVKVLqqEMF2le6JXetCtNaI/a6NtVy2UxW/TraM9fZZSO1Q==</latexit>

Image: game-icons.net, Lorc

51 02-Basics_CFD
Potential Flow

§ Incompressible and inviscid

§ Can use a scalar potential to describe the velocity field

52 02-Basics_CFD
Numerical Methods

§ Finite Differences § Panel Method (potential flows)


§ Finite Volumes § Vortex Lattice (potential flows)
§ Finite Elements
§ continuous
§ discontinuous
§ Finite Points
§ Smoothed Particle Hydrodynamics
§ Lattice Boltzmann
§ Pseudo-Spectral
§ Boundary Elements
53 02-Basics_CFD
Finite Differences

§ Approximates differentials by difference quotients on a grid with point values


§ Will be briefly discussed on Tuesday
§ Solver using this scheme:
§ Overture (http://www.overtureframework.org/)

54 02-Basics_CFD
Finite Volume

§ Utilizes an integral formulation with integral means in control volumina and


the fluxes between those
§ Will be discussed on Tuesday
§ Solvers using this scheme:
§ OpenFOAM (dedicated course)
§ Code Saturne (https://www.code-saturne.org/cms/)
§ Gerris (http://gfs.sourceforge.net/wiki/index.php/Main_Page)

55 02-Basics_CFD
Finite Elements

§ Utilizes functions in elements to represent the solution


§ Will be discussed on Wednesday (continuous) and Thursday (discontinuous)
§ Solvers using this scheme:
§ Elmer (https://www.csc.fi/web/elmer)
§ Nektar++ (https://www.nektar.info/)
§ Ateles
(http://www.apes-suite.org/pages/ateles)

56 02-Basics_CFD
Finite Points

§ Meshfree method based on scattered point values with a solution


construction from a local point neighborhood
§ Least-Square fitting of unknowns
§ Interesting for moving/deforming boundary problems

57 02-Basics_CFD
Smoothed-Particle Hydrodynamics

§ Meshless, lagrangian method: particles build the fluid and a kernel function
describes the “range“ of the properties of the particle
§ Especially interesting for free-surface flows
§ Solvers implementing this scheme:
§ AQUAgpusph (http://canal.etsin.upm.es/aquagpusph/)
§ Pysph (https://pysph.readthedocs.io/en/latest/)
§ FLUIDS (http://fluids3.com/)

58 02-Basics_CFD
Lattice-Boltzmann

§ Works on the Boltzmann equation with a discrete space


§ Cellular automata on a mesoscopic level reproduce Navier-Stokes equations
in a macroscopic view
§ Solvers with this scheme:
§ Palabos (http://www.palabos.org/)
§ Musubi (http://www.apes-suite.org/pages/musubi)
§ OpenLB (http://www.openlb.net/)

59 02-Basics_CFD
(Pseudo)-Spectral

§ Approximation of the solution by a function series


§ Highly efficient for smooth problems
§ Limitations by function choice an geometrical layout
§ Example: http://dedalus-project.org/
§ Spectral Element Method solver:
§ Nek5000 (https://nek5000.mcs.anl.gov/)

60 02-Basics_CFD
Boundary Elements

§ Uses boundary values to define solution to integral equation


§ Requires Green‘s function to be computable for the given problem
§ Solvers for this scheme:
§ FastBEM (http://www.yijunliu.com/Software/)
§ Nemoh (https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-
192863.kjsp)

61 02-Basics_CFD
Panel Method

§ Represents a potential flow by superposition of various singularities


§ Singularities organized in panels to represent walls in the flow
§ Solvers implementing this scheme:
§ XFOIL (http://web.mit.edu/drela/Public/web/xfoil/)
§ Panair (http://www.pdas.com/panair.html)
§ Q-Blade (http://www.q-blade.org/)

62 02-Basics_CFD
Vortex Lattice

§ For potential flows


§ Prandtl‘s lifting lines theory
§ Model lifting surfaces by discrete vortex lines
§ Surfaces discretized into panels with horseshoe vortices
§ Implementation:
§ OpenVOGEL (https://sites.google.com/site/gahvogel/main)

63 02-Basics_CFD
Focus of This Course

§ We will look at the „classical“ methods (FDM, FVM and FEM)

64 02-Basics_CFD

You might also like