Bedstead Complement
Bedstead Complement
0 0 @ P ` p ° À Ð à ð
U+0020 U+0030 U+0040 U+0050 U+0060 U+0070 U+00A0 U+00B0 U+00C0 U+00D0 U+00E0 U+00F0
exclam one A Q a q exclamdown plusminus Aacute Ntilde aacute ntilde
1 ! 1 A Q a q ¡ ± Á Ñ á ñ
U+0021 U+0031 U+0041 U+0051 U+0061 U+0071 U+00A1 U+00B1 U+00C1 U+00D1 U+00E1 U+00F1
quotedbl two B R b r cent twosuperior Acircumflex Ograve acircumflex ograve
2 " 2 B R b r ¢ ² Â Ò â ò
U+0022 U+0032 U+0042 U+0052 U+0062 U+0072 U+00A2 U+00B2 U+00C2 U+00D2 U+00E2 U+00F2
numbersign three C S c s sterling threesuperior Atilde Oacute atilde oacute
3 # 3 C S c s £ ³ Ã Ó ã ó
U+0023 U+0033 U+0043 U+0053 U+0063 U+0073 U+00A3 U+00B3 U+00C3 U+00D3 U+00E3 U+00F3
dollar four D T d t currency acute Adieresis Ocircumflex adieresis ocircumflex
4 $ 4 D T d t ¤ ´ Ä Ô ä ô
U+0024 U+0034 U+0044 U+0054 U+0064 U+0074 U+00A4 U+00B4 U+00C4 U+00D4 U+00E4 U+00F4
percent five E U e u yen mu Aring Otilde aring otilde
5 % 5 E U e u ¥ µ Å Õ å õ
U+0025 U+0035 U+0045 U+0055 U+0065 U+0075 U+00A5 U+00B5 U+00C5 U+00D5 U+00E5 U+00F5
ampersand six F V f v brokenbar paragraph AE Odieresis ae odieresis
6 & 6 F V f v ¦ ¶ Æ Ö æ ö
U+0026 U+0036 U+0046 U+0056 U+0066 U+0076 U+00A6 U+00B6 U+00C6 U+00D6 U+00E6 U+00F6
quotesingle seven G W g w section periodcentered Ccedilla multiply ccedilla divide
7 ' 7 G W g w § · Ç × ç ÷
U+0027 U+0037 U+0047 U+0057 U+0067 U+0077 U+00A7 U+00B7 U+00C7 U+00D7 U+00E7 U+00F7
parenleft eight H X h x dieresis cedilla Egrave Oslash egrave oslash
8 ( 8 H X h x ¨ ¸ È Ø è ø
U+0028 U+0038 U+0048 U+0058 U+0068 U+0078 U+00A8 U+00B8 U+00C8 U+00D8 U+00E8 U+00F8
parenright nine I Y i y copyright onesuperior Eacute Ugrave eacute ugrave
9 ) 9 I Y i y © ¹ É Ù é ù
U+0029 U+0039 U+0049 U+0059 U+0069 U+0079 U+00A9 U+00B9 U+00C9 U+00D9 U+00E9 U+00F9
asterisk colon J Z j z ordfeminine ordmasculine Ecircumflex Uacute ecircumflex uacute
A * : J Z j z ª º Ê Ú ê ú
U+002A U+003A U+004A U+005A U+006A U+007A U+00AA U+00BA U+00CA U+00DA U+00EA U+00FA
plus semicolon K bracketleft k braceleft guillemotleft guillemotright Edieresis Ucircumflex edieresis ucircumflex
B + ; K [ k { « » Ë Û ë û
U+002B U+003B U+004B U+005B U+006B U+007B U+00AB U+00BB U+00CB U+00DB U+00EB U+00FB
comma less L backslash l bar logicalnot onequarter Igrave Udieresis igrave udieresis
C , < L \ l | ¬ ¼ Ì Ü ì ü
U+002C U+003C U+004C U+005C U+006C U+007C U+00AC U+00BC U+00CC U+00DC U+00EC U+00FC
hyphen equal M bracketright m braceright onehalf Iacute Yacute iacute yacute
D - = M ] m } ½ Í Ý í ý
U+002D U+003D U+004D U+005D U+006D U+007D U+00BD U+00CD U+00DD U+00ED U+00FD
period greater N asciicircum n asciitilde registered threequarters Icircumflex Thorn icircumflex thorn
E . > N ^ n ~ ® ¾ Î Þ î þ
U+002E U+003E U+004E U+005E U+006E U+007E U+00AE U+00BE U+00CE U+00DE U+00EE U+00FE
slash question O underscore o macron questiondown Idieresis germandbls idieresis ydieresis
F / ? O _ o ¯ ¿ Ï ß ï ÿ
U+002F U+003F U+004F U+005F U+006F U+00AF U+00BF U+00CF U+00DF U+00EF U+00FF
010 011 012 013 014 015 016 017 018 019 01A 01B
Amacron Dcroat Gdotaccent Idotaccent ldot
0 Ā Đ Ġ İ ŀ
U+0100 U+0110 U+0120 U+0130 U+0140
amacron dcroat gdotaccent dotlessi Lslash scaron
1 ā đ ġ ı Ł š
U+0101 U+0111 U+0121 U+0131 U+0141 U+0161
Emacron IJ lslash OE uni0162 Uogonek florin
2 Ē IJ ł Œ Ţ Ų ƒ
U+0112 U+0132 U+0142 U+0152 U+0162 U+0172 U+0192
emacron ij Nacute oe uni0163 uogonek
3 ē ij Ń œ ţ ų
U+0113 U+0133 U+0143 U+0153 U+0163 U+0173
Aogonek Jcircumflex nacute Racute Tcaron Wcircumflex
4 Ą Ĵ ń Ŕ Ť Ŵ
U+0104 U+0134 U+0144 U+0154 U+0164 U+0174
aogonek jcircumflex racute tcaron wcircumflex uni01A5
5 ą ĵ ŕ ť ŵ ƥ
U+0105 U+0135 U+0155 U+0165 U+0175 U+01A5
Cacute Edotaccent Hbar Ycircumflex
6 Ć Ė Ħ Ŷ
U+0106 U+0116 U+0126 U+0176
cacute edotaccent hbar Ncaron ycircumflex uni01A7
7 ć ė ħ Ň ŷ Ƨ
U+0107 U+0117 U+0127 U+0147 U+0177 U+01A7
Ccircumflex Eogonek Itilde kgreenlandic ncaron Rcaron Ydieresis uni0188 uni01A8
8 Ĉ Ę Ĩ ĸ ň Ř Ÿ ƈ ƨ
U+0108 U+0118 U+0128 U+0138 U+0148 U+0158 U+0178 U+0188 U+01A8
ccircumflex eogonek itilde napostrophe rcaron Zacute uni0199
9 ĉ ę ĩ ʼn ř Ź ƙ
U+0109 U+0119 U+0129 U+0149 U+0159 U+0179 U+0199
Cdotaccent Ecaron Imacron Eng Umacron zacute
A Ċ Ě Ī Ŋ Ū ź
U+010A U+011A U+012A U+014A U+016A U+017A
cdotaccent ecaron imacron eng sacute umacron Zdotaccent uni019B uni01AB uni01BB
B ċ ě ī ŋ ś ū Ż ƛ ƫ ƻ
U+010B U+011B U+012B U+014B U+015B U+016B U+017B U+019B U+01AB U+01BB
Ccaron Gcircumflex Omacron zdotaccent
C Č Ĝ Ō ż
U+010C U+011C U+014C U+017C
ccaron gcircumflex Lcaron omacron Zcaron uni01AD
D č ĝ Ľ ō Ž ƭ
U+010D U+011D U+013D U+014D U+017D U+01AD
Dcaron Iogonek lcaron Scedilla Uring zcaron uni018E uni019E
E Ď Į ľ Ş Ů ž Ǝ ƞ
U+010E U+012E U+013E U+015E U+016E U+017E U+018E U+019E
dcaron iogonek Ldot scedilla uring longs uni018F
F ď į Ŀ ş ů ſ Ə
U+010F U+012F U+013F U+015F U+016F U+017F U+018F
01C 01D 01E 01F 023 024 025 026 027 028 029 02A
uni01C0 uni01D0 uni01F0 uni0240 uni0250 uni0260 uni0270 uni0280 uni0290 uni02A0
0 ǀ ǐ ǰ ɀ ɐ ɠ ɰ ʀ ʐ ʠ
U+01C0 U+01D0 U+01F0 U+0240 U+0250 U+0260 U+0270 U+0280 U+0290 U+02A0
uni01C1 uni01D1 uni0251 uni0261 uni0271 uni0281 uni0291 uni02A1
1 ǁ Ǒ ɑ ɡ ɱ ʁ ʑ ʡ
U+01C1 U+01D1 U+0251 U+0261 U+0271 U+0281 U+0291 U+02A1
uni01C2 uni01D2 uni01E2 uni0232 uni0252 uni0262 uni0272 uni0282 uni0292 uni02A2
2 ǂ ǒ Ǣ Ȳ ɒ ɢ ɲ ʂ ʒ ʢ
U+01C2 U+01D2 U+01E2 U+0232 U+0252 U+0262 U+0272 U+0282 U+0292 U+02A2
uni01C3 uni01D3 uni01E3 uni0233 uni0253 uni0263 uni0273 uni0283 uni0293 uni02A3
3 ǃ Ǔ ǣ ȳ ɓ ɣ ɳ ʃ ʓ ʣ
U+01C3 U+01D3 U+01E3 U+0233 U+0253 U+0263 U+0273 U+0283 U+0293 U+02A3
uni01D4 uni0254 uni0264 uni0274 uni0284 uni0294 uni02A4
4 ǔ ɔ ɤ ɴ ʄ ʔ ʤ
U+01D4 U+0254 U+0264 U+0274 U+0284 U+0294 U+02A4
uni01D5 uni0245 uni0255 uni0265 uni0275 uni0295 uni02A5
5 Ǖ Ʌ ɕ ɥ ɵ ʕ ʥ
U+01D5 U+0245 U+0255 U+0265 U+0275 U+0295 U+02A5
uni01D6 uni0256 uni0266 uni0276 uni0286 uni0296 uni02A6
6 ǖ ɖ ɦ ɶ ʆ ʖ ʦ
U+01D6 U+0256 U+0266 U+0276 U+0286 U+0296 U+02A6
uni01D7 uni0237 uni0257 uni0267 uni0277 uni0287 uni0297 uni02A7
7 Ǘ ȷ ɗ ɧ ɷ ʇ ʗ ʧ
U+01D7 U+0237 U+0257 U+0267 U+0277 U+0287 U+0297 U+02A7
uni01D8 uni01F8 uni0258 uni0268 uni0278 uni0288 uni0298 uni02A8
8 ǘ Ǹ ɘ ɨ ɸ ʈ ʘ ʨ
U+01D8 U+01F8 U+0258 U+0268 U+0278 U+0288 U+0298 U+02A8
uni01D9 uni01F9 uni0259 uni0269 uni0279 uni0289 uni0299 uni02A9
9 Ǚ ǹ ə ɩ ɹ ʉ ʙ ʩ
U+01D9 U+01F9 U+0259 U+0269 U+0279 U+0289 U+0299 U+02A9
uni01DA uni025A uni026A uni027A uni028A uni029A uni02AA
A ǚ ɚ ɪ ɺ ʊ ʚ ʪ
U+01DA U+025A U+026A U+027A U+028A U+029A U+02AA
uni01DB uni025B uni026B uni027B uni028B uni029B uni02AB
B Ǜ ɛ ɫ ɻ ʋ ʛ ʫ
U+01DB U+025B U+026B U+027B U+028B U+029B U+02AB
uni01DC uni025C uni026C uni027C uni028C uni029C uni02AC
C ǜ ɜ ɬ ɼ ʌ ʜ ʬ
U+01DC U+025C U+026C U+027C U+028C U+029C U+02AC
uni01CD uni01DD uni025D uni026D uni027D uni028D uni029D uni02AD
D Ǎ ǝ ɝ ɭ ɽ ʍ ʝ ʭ
U+01CD U+01DD U+025D U+026D U+027D U+028D U+029D U+02AD
uni01CE uni025E uni026E uni027E uni028E uni029E
E ǎ ɞ ɮ ɾ ʎ ʞ
U+01CE U+025E U+026E U+027E U+028E U+029E
uni01CF uni023F uni025F uni026F uni028F uni029F
F Ǐ ȿ ɟ ɯ ʏ ʟ
U+01CF U+023F U+025F U+026F U+028F U+029F
02B 02C 02D 02E 037 038 039 03A 03B 03C 03D 03F
uni02B0 uni02D0 uni02E0 iotadieresistonos Pi upsilondieresistonos pi
0 ʰ ː ˠ ΐ Π ΰ π
U+02B0 U+02D0 U+02E0 U+0390 U+03A0 U+03B0 U+03C0
uni02D1 uni02E1 Alpha Rho alpha rho
1 ˑ ˡ Α Ρ α ρ
U+02D1 U+02E1 U+0391 U+03A1 U+03B1 U+03C1
uni02B2 uni02E2 Beta beta sigma1
2 ʲ ˢ Β β ς
U+02B2 U+02E2 U+0392 U+03B2 U+03C2
uni02E3 Gamma Sigma gamma sigma uni03F3
3 ˣ Γ Σ γ σ ϳ
U+02E3 U+0393 U+03A3 U+03B3 U+03C3 U+03F3
uni02E4 tonos uni0394 Tau delta tau
4 ˤ ΄ Δ Τ δ τ
U+02E4 U+0384 U+0394 U+03A4 U+03B4 U+03C4
uni02E5 dieresistonos Epsilon Upsilon epsilon upsilon phi1
5 ˥ ΅ Ε Υ ε υ ϕ
U+02E5 U+0385 U+0395 U+03A5 U+03B5 U+03C5 U+03D5
circumflex uni02E6 Alphatonos Zeta Phi zeta phi
6 ˆ ˦ Ά Ζ Φ ζ φ
U+02C6 U+02E6 U+0386 U+0396 U+03A6 U+03B6 U+03C6
caron uni02E7 Eta Chi eta chi
7 ˇ ˧ Η Χ η χ
U+02C7 U+02E7 U+0397 U+03A7 U+03B7 U+03C7
uni02C8 breve uni02E8 Epsilontonos Theta Psi theta psi
8 ˈ ˘ ˨ Έ Θ Ψ θ ψ
U+02C8 U+02D8 U+02E8 U+0388 U+0398 U+03A8 U+03B8 U+03C8
uni02B9 dotaccent uni02E9 Etatonos Iota uni03A9 iota omega
9 ʹ ˙ ˩ Ή Ι Ω ι ω
U+02B9 U+02D9 U+02E9 U+0389 U+0399 U+03A9 U+03B9 U+03C9
uni02BA ring Iotatonos Kappa Iotadieresis kappa iotadieresis
A ʺ ˚ Ί Κ Ϊ κ ϊ
U+02BA U+02DA U+038A U+039A U+03AA U+03BA U+03CA
ogonek Lambda Upsilondieresis lambda upsilondieresis
B ˛ Λ Ϋ λ ϋ
U+02DB U+039B U+03AB U+03BB U+03CB
uni02BC uni02CC tilde Omicrontonos Mu alphatonos uni03BC omicrontonos
C ʼ ˌ ˜ Ό Μ ά μ ό
U+02BC U+02CC U+02DC U+038C U+039C U+03AC U+03BC U+03CC
hungarumlaut Nu epsilontonos nu upsilontonos
D ˝ Ν έ ν ύ
U+02DD U+039D U+03AD U+03BD U+03CD
Upsilontonos Xi etatonos xi omegatonos
E Ύ Ξ ή ξ ώ
U+038E U+039E U+03AE U+03BE U+03CE
uni037F Omegatonos Omicron iotatonos omicron
F Ϳ Ώ Ο ί ο
U+037F U+038F U+039F U+03AF U+03BF
040 041 042 043 044 045 049 05D 05E 1D0 1D1 1D2
uni0400 uni0410 uni0420 uni0430 uni0440 uni0450 uni0490 uni05D0 uni05E0 uni1D00 uni1D20
0 Ѐ А Р а р ѐ Ґ א נ ᴀ ᴠ
U+0400 U+0410 U+0420 U+0430 U+0440 U+0450 U+0490 U+05D0 U+05E0 U+1D00 U+1D20
uni0401 uni0411 uni0421 uni0431 uni0441 uni0451 uni0491 uni05D1 uni05E1 uni1D01 uni1D21
1 Ё Б С б с ё ґ ב ס ᴁ ᴡ
U+0401 U+0411 U+0421 U+0431 U+0441 U+0451 U+0491 U+05D1 U+05E1 U+1D01 U+1D21
uni0402 uni0412 uni0422 uni0432 uni0442 uni0452 uni0492 uni05D2 uni05E2 uni1D02 uni1D22
2 Ђ В Т в т ђ Ғ ג ע ᴂ ᴢ
U+0402 U+0412 U+0422 U+0432 U+0442 U+0452 U+0492 U+05D2 U+05E2 U+1D02 U+1D22
uni0413 uni0423 uni0433 uni0443 uni0493 uni05D3 uni05E3
3 Г У г у ғ ד ף
U+0413 U+0423 U+0433 U+0443 U+0493 U+05D3 U+05E3
uni0404 uni0414 uni0424 uni0434 uni0444 uni0454 uni05D4 uni05E4 uni1D04 uni1D14
4 Є Д Ф д ф є ה פ ᴄ ᴔ
U+0404 U+0414 U+0424 U+0434 U+0444 U+0454 U+05D4 U+05E4 U+1D04 U+1D14
uni0405 uni0415 uni0425 uni0435 uni0445 uni0455 uni05D5 uni05E5 uni1D05
5 Ѕ Е Х е х ѕ ו ץ ᴅ
U+0405 U+0415 U+0425 U+0435 U+0445 U+0455 U+05D5 U+05E5 U+1D05
uni0406 uni0416 uni0426 uni0436 uni0446 uni0456 uni05D6 uni05E6 uni1D06
6 І Ж Ц ж ц і ז צ ᴆ
U+0406 U+0416 U+0426 U+0436 U+0446 U+0456 U+05D6 U+05E6 U+1D06
uni0407 uni0417 uni0427 uni0437 uni0447 uni0457 uni05D7 uni05E7 uni1D07
7 Ї З Ч з ч ї ח ק ᴇ
U+0407 U+0417 U+0427 U+0437 U+0447 U+0457 U+05D7 U+05E7 U+1D07
uni0408 uni0418 uni0428 uni0438 uni0448 uni0458 uni05D8 uni05E8 uni1D18
8 Ј И Ш и ш ј ט ר ᴘ
U+0408 U+0418 U+0428 U+0438 U+0448 U+0458 U+05D8 U+05E8 U+1D18
uni0409 uni0419 uni0429 uni0439 uni0449 uni0459 uni05D9 uni05E9 uni1D09 uni1D19
9 Љ Й Щ й щ љ י ש ᴉ ᴙ
U+0409 U+0419 U+0429 U+0439 U+0449 U+0459 U+05D9 U+05E9 U+1D09 U+1D19
uni040A uni041A uni042A uni043A uni044A uni045A uni05DA uni05EA uni1D0A uni1D1A
A Њ К Ъ к ъ њ ך ת ᴊ ᴚ
U+040A U+041A U+042A U+043A U+044A U+045A U+05DA U+05EA U+1D0A U+1D1A
uni040B uni041B uni042B uni043B uni044B uni045B uni05DB uni1D0B uni1D1B
B Ћ Л Ы л ы ћ כ ᴋ ᴛ
U+040B U+041B U+042B U+043B U+044B U+045B U+05DB U+1D0B U+1D1B
uni041C uni042C uni043C uni044C uni05DC uni1D1C
C М Ь м ь ל ᴜ
U+041C U+042C U+043C U+044C U+05DC U+1D1C
uni041D uni042D uni043D uni044D uni05DD uni1D0D uni1D1D
D Н Э н э ם ᴍ ᴝ
U+041D U+042D U+043D U+044D U+05DD U+1D0D U+1D1D
uni040E uni041E uni042E uni043E uni044E uni045E uni05DE uni1D0E
E Ў О Ю о ю ў מ ᴎ
U+040E U+041E U+042E U+043E U+044E U+045E U+05DE U+1D0E
uni040F uni041F uni042F uni043F uni044F uni045F uni05DF uni1D0F uni1D1F
F Џ П Я п я џ ן ᴏ ᴟ
U+040F U+041F U+042F U+043F U+044F U+045F U+05DF U+1D0F U+1D1F
1D4 1D6 1DB 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8
uni1E10 uni1E20 uni1E40 uni1E70
0 Ḑ Ḡ Ṁ Ṱ
U+1E10 U+1E20 U+1E40 U+1E70
uni1E11 uni1E21 uni1E41 uni1E71
1 ḑ ḡ ṁ ṱ
U+1E11 U+1E21 U+1E41 U+1E71
uni1D62 uni1E02 uni1E12 uni1E22 uni1E32 uni1E42 uni1E62 uni1E72
2 ᵢ Ḃ Ḓ Ḣ Ḳ Ṃ Ṣ Ṳ
U+1D62 U+1E02 U+1E12 U+1E22 U+1E32 U+1E42 U+1E62 U+1E72
uni1E03 uni1E13 uni1E23 uni1E33 uni1E43 uni1E63 uni1E73
3 ḃ ḓ ḣ ḳ ṃ ṣ ṳ
U+1E03 U+1E13 U+1E23 U+1E33 U+1E43 U+1E63 U+1E73
uni1E04 uni1E24 uni1E34 uni1E44 uni1E54 Wdieresis
4 Ḅ Ḥ Ḵ Ṅ Ṕ Ẅ
U+1E04 U+1E24 U+1E34 U+1E44 U+1E54 U+1E84
uni1E05 uni1E25 uni1E35 uni1E45 uni1E55 wdieresis
5 ḅ ḥ ḵ ṅ ṕ ẅ
U+1E05 U+1E25 U+1E35 U+1E45 U+1E55 U+1E85
uni1E06 uni1E26 uni1E36 uni1E46 uni1E56 uni1E76
6 Ḇ Ḧ Ḷ Ṇ Ṗ Ṷ
U+1E06 U+1E26 U+1E36 U+1E46 U+1E56 U+1E76
uni1E07 uni1E27 uni1E37 uni1E47 uni1E57 uni1E77
7 ḇ ḧ ḷ ṇ ṗ ṷ
U+1E07 U+1E27 U+1E37 U+1E47 U+1E57 U+1E77
uni1E08 uni1E18 uni1E28 uni1E48 uni1E58 uni1E88
8 Ḉ Ḙ Ḩ Ṉ Ṙ Ẉ
U+1E08 U+1E18 U+1E28 U+1E48 U+1E58 U+1E88
uni1E09 uni1E19 uni1E29 uni1E49 uni1E59 uni1E89
9 ḉ ḙ ḩ ṉ ṙ ẉ
U+1E09 U+1E19 U+1E29 U+1E49 U+1E59 U+1E89
uni1D4A uni1E0A uni1E3A uni1E5A uni1E6A uni1E7A uni1E8A
A ᵊ Ḋ Ḻ Ṛ Ṫ Ṻ Ẋ
U+1D4A U+1E0A U+1E3A U+1E5A U+1E6A U+1E7A U+1E8A
uni1E0B uni1E3B uni1E5B uni1E6B uni1E7B uni1E8B
B ḋ ḻ ṛ ṫ ṻ ẋ
U+1E0B U+1E3B U+1E5B U+1E6B U+1E7B U+1E8B
uni1E0C uni1E3C uni1E5C uni1E6C uni1E8C
C Ḍ Ḽ Ṝ Ṭ Ẍ
U+1E0C U+1E3C U+1E5C U+1E6C U+1E8C
uni1E0D uni1E3D uni1E5D uni1E6D uni1E8D
D ḍ ḽ ṝ ṭ ẍ
U+1E0D U+1E3D U+1E5D U+1E6D U+1E8D
uni1E0E uni1E1E uni1E3E uni1E5E uni1E6E uni1E7E uni1E8E
E Ḏ Ḟ Ḿ Ṟ Ṯ Ṿ Ẏ
U+1E0E U+1E1E U+1E3E U+1E5E U+1E6E U+1E7E U+1E8E
uni1DBF uni1E0F uni1E1F uni1E3F uni1E5F uni1E6F uni1E7F uni1E8F
F ᶿ ḏ ḟ ḿ ṟ ṯ ṿ ẏ
U+1DBF U+1E0F U+1E1F U+1E3F U+1E5F U+1E6F U+1E7F U+1E8F
1E9 1EA 1EB 1EC 1EE 1EF 201 202 203 204 205 207
uni1E90 uni1EA0 uni2010 dagger perthousand uni2040 uni2070
0 Ẑ Ạ ‐ † ‰ ⁀ ⁰
U+1E90 U+1EA0 U+2010 U+2020 U+2030 U+2040 U+2070
uni1E91 uni1EA1 uni2011 daggerdbl uni2071
1 ẑ ạ ‑ ‡ ⁱ
U+1E91 U+1EA1 U+2011 U+2021 U+2071
uni1E92 bullet minute uni2052
2 Ẓ • ′ ⁒
U+1E92 U+2022 U+2032 U+2052
uni1E93 endash second uni2053
3 ẓ – ″ ⁓
U+1E93 U+2013 U+2033 U+2053
uni1E94 uni1EE4 uni1EF4 emdash fraction uni2054 uni2074
4 Ẕ Ụ Ỵ — ⁄ ⁔ ⁴
U+1E94 U+1EE4 U+1EF4 U+2014 U+2044 U+2054 U+2074
uni1E95 uni1EE5 uni1EF5 uni2035 uni2075
5 ẕ ụ ỵ ‵ ⁵
U+1E95 U+1EE5 U+1EF5 U+2035 U+2075
uni1E96 dblverticalbar ellipsis uni2036 uni2056 uni2076
6 ẖ ‖ … ‶ ⁖ ⁶
U+1E96 U+2016 U+2026 U+2036 U+2056 U+2076
uni1E97 underscoredbl uni2047 uni2077
7 ẗ ‗ ⁇ ⁷
U+1E97 U+2017 U+2047 U+2077
uni1EB8 quoteleft uni2048 uni2058 uni2078
8 Ẹ ‘ ⁈ ⁘ ⁸
U+1EB8 U+2018 U+2048 U+2058 U+2078
uni1EB9 quoteright guilsinglleft uni2049 uni2059 uni2079
9 ẹ ’ ‹ ⁉ ⁙ ⁹
U+1EB9 U+2019 U+2039 U+2049 U+2059 U+2079
uni1ECA quotesinglbase guilsinglright uni205A uni207A
A Ị ‚ › ⁚ ⁺
U+1ECA U+201A U+203A U+205A U+207A
uni1ECB quotereversed uni203B uni204B uni205B uni207B
B ị ‛ ※ ⁋ ⁛ ⁻
U+1ECB U+201B U+203B U+204B U+205B U+207B
uni1ECC quotedblleft exclamdbl uni205C uni207C
C Ọ “ ‼ ⁜ ⁼
U+1ECC U+201C U+203C U+205C U+207C
uni1ECD quotedblright uni203D uni205D uni207D
D ọ ” ‽ ⁝ ⁽
U+1ECD U+201D U+203D U+205D U+207D
uni1E9E quotedblbase uni203E uni205E uni207E
E ẞ „ ‾ ⁞ ⁾
U+1E9E U+201E U+203E U+205E U+207E
uni201F uni203F uni204F uni207F
F ‟ ‿ ⁏ ⁿ
U+201F U+203F U+204F U+207F
208 209 20A 211 212 213 214 215 218 219 21A 21B
uni2080 uni2150 arrowleft
0 ₀ ⅐ ←
U+2080 U+2150 U+2190
uni2081 uni2151 arrowup
1 ₁ ⅑ ↑
U+2081 U+2151 U+2191
uni2082 uni2132 uni2152 arrowright
2 ₂ Ⅎ ⅒ →
U+2082 U+2132 U+2152 U+2192
uni2083 onethird arrowdown
3 ₃ ⅓ ↓
U+2083 U+2153 U+2193
uni2084 twothirds arrowboth uni21A4 uni21B4
4 ₄ ⅔ ↔ ↤ ↴
U+2084 U+2154 U+2194 U+21A4 U+21B4
uni2085 uni2155 arrowupdn uni21A5 carriagereturn
5 ₅ ⅕ ↕ ↥ ↵
U+2085 U+2155 U+2195 U+21A5 U+21B5
uni2086 Omega uni2156 uni2196 uni21A6
6 ₆ Ω ⅖ ↖ ↦
U+2086 U+2126 U+2156 U+2196 U+21A6
uni2087 peseta uni2117 uni2127 uni2157 uni2197 uni21A7
7 ₇ ₧ ℗ ℧ ⅗ ↗ ↧
U+2087 U+20A7 U+2117 U+2127 U+2157 U+2197 U+21A7
uni2088 uni2158 uni2198 arrowupdnbse
8 ₈ ⅘ ↘ ↨
U+2088 U+2158 U+2198 U+21A8
uni2089 uni2099 uni2129 uni2159 uni2189 uni2199 uni21B9
9 ₉ ₙ ℩ ⅙ ↉ ↙ ↹
U+2089 U+2099 U+2129 U+2159 U+2189 U+2199 U+21B9
uni208A uni20AA uni215A uni218A
A ₊ ₪ ⅚ ↊
U+208A U+20AA U+215A U+218A
uni208B uni214B oneeighth uni218B
B ₋ ⅋ ⅛ ↋
U+208B U+214B U+215B U+218B
uni208C Euro threeeighths uni21BC
C ₌ € ⅜ ↼
U+208C U+20AC U+215C U+21BC
uni208D fiveeighths uni21BD
D ₍ ⅝ ↽
U+208D U+215D U+21BD
uni208E uni214E seveneighths uni21BE
E ₎ ⅎ ⅞ ↾
U+208E U+214E U+215E U+21BE
uni21BF
F ↿
U+21BF
21C 21D 21E 220 221 222 223 224 225 226 228 229
uni21C0 arrowdblleft uni2210 uni2250 notequal uni2290
0 ⇀ ⇐ ∐ ≐ ≠ ⊐
U+21C0 U+21D0 U+2210 U+2250 U+2260 U+2290
uni21C1 arrowdblup summation uni2251 equivalence uni2291
1 ⇁ ⇑ ∑ ≑ ≡ ⊑
U+21C1 U+21D1 U+2211 U+2251 U+2261 U+2291
uni21C2 arrowdblright partialdiff minus uni2242 uni2252 uni2262 propersubset uni2292
2 ⇂ ⇒ ∂ − ≂ ≒ ≢ ⊂ ⊒
U+21C2 U+21D2 U+2202 U+2212 U+2242 U+2252 U+2262 U+2282 U+2292
uni21C3 arrowdbldown uni2213 uni2223 uni2243 uni2253 propersuperset uni2293
3 ⇃ ⇓ ∓ ∣ ≃ ≓ ⊃ ⊓
U+21C3 U+21D3 U+2213 U+2223 U+2243 U+2253 U+2283 U+2293
uni21E4 uni2214 therefore lessequal uni2294
4 ⇤ ∔ ∴ ≤ ⊔
U+21E4 U+2214 U+2234 U+2264 U+2294
uni21E5 uni2225 uni2235 congruent greaterequal circleplus
5 ⇥ ∥ ∵ ≅ ≥ ⊕
U+21E5 U+2225 U+2235 U+2245 U+2265 U+2295
uni21E6 Delta reflexsubset uni2296
6 ⇦ ∆ ⊆ ⊖
U+21E6 U+2206 U+2286 U+2296
uni21E7 gradient logicaland reflexsuperset
7 ⇧ ∇ ∧ ⊇
U+21E7 U+2207 U+2227 U+2287
uni21E8 element uni2218 logicalor uni2238 approxequal uni2258
8 ⇨ ∈ ∘ ∨ ∸ ≈ ≘
U+21E8 U+2208 U+2218 U+2228 U+2238 U+2248 U+2258
uni21E9 uni2219 intersection uni2299
9 ⇩ ∙ ∩ ⊙
U+21E9 U+2219 U+2229 U+2299
uni21EA uni220A radical union uni223A
A ⇪ ∊ √ ∪ ∺
U+21EA U+220A U+221A U+222A U+223A
uni21CB suchthat uni221B integral
B ⇋ ∋ ∛ ∫
U+21CB U+220B U+221B U+222B
uni21CC uni221C similar uni224C uni226C
C ⇌ ∜ ∼ ≌ ≬
U+21CC U+221C U+223C U+224C U+226C
uni220D proportional uni223D uni224D uni228D
D ∍ ∝ ∽ ≍ ⊍
U+220D U+221D U+223D U+224D U+228D
infinity uni222E uni224E uni225E uni229E
E ∞ ∮ ≎ ≞ ⊞
U+221E U+222E U+224E U+225E U+229E
product orthogonal uni223F uni224F uni228F uni229F
F ∏ ∟ ∿ ≏ ⊏ ⊟
U+220F U+221F U+223F U+224F U+228F U+229F
22A 22C 22D 22E 22F 230 231 232 233 234 235 236
uni22F0 revlogicalnot integraltp uni2340 uni2360
0 ⋰ ⌐ ⌠ ⍀ ⍠
U+22F0 U+2310 U+2320 U+2340 U+2360
uni22A1 uni22F1 integralbt uni2341 uni2351
1 ⊡ ⋱ ⌡ ⍁ ⍑
U+22A1 U+22F1 U+2321 U+2341 U+2351
uni22A2 uni22C2 house uni2342 uni2352
2 ⊢ ⋂ ⌂ ⍂ ⍒
U+22A2 U+22C2 U+2302 U+2342 U+2352
uni22A3 uni22C3 uni2363
3 ⊣ ⋃ ⍣
U+22A3 U+22C3 U+2363
uni22A4 uni22C4 uni22D4 uni2364
4 ⊤ ⋄ ⋔ ⍤
U+22A4 U+22C4 U+22D4 U+2364
perpendicular uni2355
5 ⊥ ⍕
U+22A5 U+2355
uni22A6 uni2336
6 ⊦ ⌶
U+22A6 U+2336
uni22A7 uni22F7 uni2337
7 ⊧ ⋷ ⌷
U+22A7 U+22F7 U+2337
uni22A8 uni22F8 uni2308 uni2338 uni2368
8 ⊨ ⋸ ⌈ ⌸ ⍨
U+22A8 U+22F8 U+2308 U+2338 U+2368
uni22A9 uni2309 uni2339 uni2349 uni2359
9 ⊩ ⌉ ⌹ ⍉ ⍙
U+22A9 U+2309 U+2339 U+2349 U+2359
uni230A uni233A uni234A uni236A
A ⌊ ⌺ ⍊ ⍪
U+230A U+233A U+234A U+236A
uni22AB uni22CB uni230B uni233B uni234B uni236B
B ⊫ ⋋ ⌋ ⌻ ⍋ ⍫
U+22AB U+22CB U+230B U+233B U+234B U+236B
uni22CC uni22DC uni236C
C ⋌ ⋜ ⍬
U+22CC U+22DC U+236C
uni22CD uni22DD uni233D uni235D
D ⋍ ⋝ ⌽ ⍝
U+22CD U+22DD U+233D U+235D
uni22EE uni22FE uni234E uni235E
E ⋮ ⋾ ⍎ ⍞
U+22EE U+22FE U+234E U+235E
uni22EF uni233F uni235F
F ⋯ ⌿ ⍟
U+22EF U+233F U+235F
237 238 239 23A 23B 23D 240 241 242 250 251 252
uni23A0 uni23B0 uni2400 uni2410 uni2420 SF100000 SF030000 uni2520
0 ⎠ ⎰ ␀ ␐ ␠ ─ ┐ ┠
U+23A0 U+23B0 U+2400 U+2410 U+2420 U+2500 U+2510 U+2520
uni2371 uni23A1 uni23B1 uni2401 uni2411 uni2421 uni2501 uni2511 uni2521
1 ⍱ ⎡ ⎱ ␁ ␑ ␡ ━ ┑ ┡
U+2371 U+23A1 U+23B1 U+2401 U+2411 U+2421 U+2501 U+2511 U+2521
uni2372 uni23A2 uni23B2 uni2402 uni2412 SF110000 uni2512 uni2522
2 ⍲ ⎢ ⎲ ␂ ␒ │ ┒ ┢
U+2372 U+23A2 U+23B2 U+2402 U+2412 U+2502 U+2512 U+2522
uni2373 uni2393 uni23A3 uni23B3 uni2403 uni2413 uni2423 uni2503 uni2513 uni2523
3 ⍳ ⎓ ⎣ ⎳ ␃ ␓ ␣ ┃ ┓ ┣
U+2373 U+2393 U+23A3 U+23B3 U+2403 U+2413 U+2423 U+2503 U+2513 U+2523
uni2374 uni23A4 uni2404 uni2414 uni2424 uni2504 SF020000 SF090000
4 ⍴ ⎤ ␄ ␔  ┄ └ ┤
U+2374 U+23A4 U+2404 U+2414 U+2424 U+2504 U+2514 U+2524
uni2375 uni2395 uni23A5 uni2405 uni2415 uni2425 uni2505 uni2515 uni2525
5 ⍵ ⎕ ⎥ ␅ ␕ ␥ ┅ ┕ ┥
U+2375 U+2395 U+23A5 U+2405 U+2415 U+2425 U+2505 U+2515 U+2525
uni2376 uni23A6 uni2406 uni2416 uni2426 uni2506 uni2516 uni2526
6 ⍶ ⎦ ␆ ␖ ␦ ┆ ┖ ┦
U+2376 U+23A6 U+2406 U+2416 U+2426 U+2506 U+2516 U+2526
uni2377 uni23A7 uni2407 uni2417 uni2507 uni2517 uni2527
7 ⍷ ⎧ ␇ ␗ ┇ ┗ ┧
U+2377 U+23A7 U+2407 U+2417 U+2507 U+2517 U+2527
uni2378 uni23A8 uni2408 uni2418 SF040000 uni2528
8 ⍸ ⎨ ␈ ␘ ┘ ┨
U+2378 U+23A8 U+2408 U+2418 U+2518 U+2528
uni2379 uni23A9 uni2409 uni2419 uni2519 uni2529
9 ⍹ ⎩ ␉ ␙ ┙ ┩
U+2379 U+23A9 U+2409 U+2419 U+2519 U+2529
uni237A uni23AA uni23BA uni23DA uni240A uni241A uni250A uni251A uni252A
A ⍺ ⎪ ⎺ ⏚ ␊ ␚ ┊ ┚ ┪
U+237A U+23AA U+23BA U+23DA U+240A U+241A U+250A U+251A U+252A
uni237B uni239B uni23AB uni23BB uni240B uni241B uni250B uni251B uni252B
B ⍻ ⎛ ⎫ ⎻ ␋ ␛ ┋ ┛ ┫
U+237B U+239B U+23AB U+23BB U+240B U+241B U+250B U+251B U+252B
uni239C uni23AC uni23BC uni240C uni241C SF010000 SF080000 SF060000
C ⎜ ⎬ ⎼ ␌ ␜ ┌ ├ ┬
U+239C U+23AC U+23BC U+240C U+241C U+250C U+251C U+252C
uni237D uni238D uni239D uni23AD uni23BD uni240D uni241D uni250D uni251D uni252D
D ⍽ ⎍ ⎝ ⎭ ⎽ ␍ ␝ ┍ ┝ ┭
U+237D U+238D U+239D U+23AD U+23BD U+240D U+241D U+250D U+251D U+252D
uni237E uni238E uni239E uni23AE uni240E uni241E uni250E uni251E uni252E
E ⍾ ⎎ ⎞ ⎮ ␎ ␞ ┎ ┞ ┮
U+237E U+238E U+239E U+23AE U+240E U+241E U+250E U+251E U+252E
uni237F uni239F uni240F uni241F uni250F uni251F uni252F
F ⍿ ⎟ ␏ ␟ ┏ ┟ ┯
U+237F U+239F U+240F U+241F U+250F U+251F U+252F
253 254 255 256 257 258 259 25A 25B 25C 25D 25E
uni2530 uni2540 SF430000 SF420000 uni2570 upblock rtblock filledbox uni25C0
0 ┰ ╀ ═ ╠ ╰ ▀ ▐ ■ ◀
U+2530 U+2540 U+2550 U+2560 U+2570 U+2580 U+2590 U+25A0 U+25C0
uni2531 uni2541 SF240000 SF190000 ltshade H22073 uni25C1
1 ┱ ╁ ║ ╡ ░ □ ◁
U+2531 U+2541 U+2551 U+2561 U+2591 U+25A1 U+25C1
uni2532 uni2542 SF510000 SF200000 shade triagup
2 ┲ ╂ ╒ ╢ ▒ ▲
U+2532 U+2542 U+2552 U+2562 U+2592 U+25B2
uni2533 uni2543 SF520000 SF230000 dkshade
3 ┳ ╃ ╓ ╣ ▓
U+2533 U+2543 U+2553 U+2563 U+2593
SF070000 uni2544 SF390000 SF470000 uni2574 dnblock triaglf
4 ┴ ╄ ╔ ╤ ╴ ▄ ◄
U+2534 U+2544 U+2554 U+2564 U+2574 U+2584 U+25C4
uni2535 uni2545 SF220000 SF480000 uni2575
5 ┵ ╅ ╕ ╥ ╵
U+2535 U+2545 U+2555 U+2565 U+2575
uni2536 uni2546 SF210000 SF410000 uni2576 uni2596 uni25B6 uni25C6
6 ┶ ╆ ╖ ╦ ╶ ▖ ▶ ◆
U+2536 U+2546 U+2556 U+2566 U+2576 U+2596 U+25B6 U+25C6
uni2537 uni2547 SF250000 SF450000 uni2577 uni2597 uni25B7 uni25C7
7 ┷ ╇ ╗ ╧ ╷ ▗ ▷ ◇
U+2537 U+2547 U+2557 U+2567 U+2577 U+2597 U+25B7 U+25C7
uni2538 uni2548 SF500000 SF460000 uni2578 block uni2598 invbullet
8 ┸ ╈ ╘ ╨ ╸ █ ▘ ◘
U+2538 U+2548 U+2558 U+2568 U+2578 U+2588 U+2598 U+25D8
uni2539 uni2549 SF490000 SF400000 uni2579 uni2599 invcircle
9 ┹ ╉ ╙ ╩ ╹ ▙ ◙
U+2539 U+2549 U+2559 U+2569 U+2579 U+2599 U+25D9
uni253A uni254A SF380000 SF540000 uni257A uni259A H18543 triagrt lozenge
A ┺ ╊ ╚ ╪ ╺ ▚ ▪ ► ◊
U+253A U+254A U+255A U+256A U+257A U+259A U+25AA U+25BA U+25CA
uni253B uni254B SF280000 SF530000 uni257B uni259B H18551 circle uni25EB
B ┻ ╋ ╛ ╫ ╻ ▛ ▫ ○ ◫
U+253B U+254B U+255B U+256B U+257B U+259B U+25AB U+25CB U+25EB
SF050000 uni254C SF270000 SF440000 uni257C lfblock uni259C filledrect triagdn uni25CC
C ┼ ╌ ╜ ╬ ╼ ▌ ▜ ▬ ▼ ◌
U+253C U+254C U+255C U+256C U+257C U+258C U+259C U+25AC U+25BC U+25CC
uni253D uni254D SF260000 uni256D uni257D uni259D uni25AD
D ┽ ╍ ╝ ╭ ╽ ▝ ▭
U+253D U+254D U+255D U+256D U+257D U+259D U+25AD
uni253E uni254E SF360000 uni256E uni257E uni259E
E ┾ ╎ ╞ ╮ ╾ ▞
U+253E U+254E U+255E U+256E U+257E U+259E
uni253F uni254F SF370000 uni256F uni257F uni259F H18533
F ┿ ╏ ╟ ╯ ╿ ▟ ●
U+253F U+254F U+255F U+256F U+257F U+259F U+25CF
25F 260 263 264 266 270 271 27C 27D 291 293 295
uni25F0 female spade
0 ◰ ♀ ♠
U+25F0 U+2640 U+2660
uni25F1
1 ◱
U+25F1
uni25F2 male uni27D2 uni2912 uni2952
2 ◲ ♂ ⟒ ⤒ ⥒
U+25F2 U+2642 U+27D2 U+2912 U+2952
uni25F3 club uni2713 uni2913 uni2953
3 ◳ ♣ ✓ ⤓ ⥓
U+25F3 U+2663 U+2713 U+2913 U+2953
uni25F4 uni2934 uni2954
4 ◴ ⤴ ⥔
U+25F4 U+2934 U+2954
uni25F5 heart uni2935 uni2955
5 ◵ ♥ ⤵ ⥕
U+25F5 U+2665 U+2935 U+2955
uni25F6 diamond uni2936 uni2956
6 ◶ ♦ ⤶ ⥖
U+25F6 U+2666 U+2936 U+2956
uni25F7 uni2607 uni2937 uni2957
7 ◷ ☇ ⤷ ⥗
U+25F7 U+2607 U+2937 U+2957
uni2608 uni2708 uni2958
8 ☈ ✈ ⥘
U+2608 U+2708 U+2958
uni2609 uni2639 uni2669 uni2959
9 ☉ ☹ ♩ ⥙
U+2609 U+2639 U+2669 U+2959
smileface musicalnote uni27CA uni295A
A ☺ ♪ ⟊ ⥚
U+263A U+266A U+27CA U+295A
invsmileface musicalnotedbl uni295B
B ☻ ♫ ⥛
U+263B U+266B U+295B
sun uni266C uni295C
C ☼ ♬ ⥜
U+263C U+266C U+295C
uni266D uni295D
D ♭ ⥝
U+266D U+295D
uni266E uni295E
E ♮ ⥞
U+266E U+295E
uni266F uni295F
F ♯ ⥟
U+266F U+295F
296 298 29B 2A2 2A3 2A4 2A5 2A6 2A7 2AA 2AB 2AC
uni2960 uni2980 uni2A30 uni2A40 uni2AC0
0 ⥠ ⦀ ⨰ ⩀ ⫀
U+2960 U+2980 U+2A30 U+2A40 U+2AC0
uni2961 uni2A51 uni2AC1
1 ⥡ ⩑ ⫁
U+2961 U+2A51 U+2AC1
uni2A52 uni2AC2
2 ⩒ ⫂
U+2A52 U+2AC2
uni2A73 uni2AC3
3 ⩳ ⫃
U+2A73 U+2AC3
uni2AC4
4 ⫄
U+2AC4
uni2A25 uni2AC5
5 ⨥ ⫅
U+2A25 U+2AC5
uni29B6 uni2A66 uni2AC6
6 ⦶ ⩦ ⫆
U+29B6 U+2A66 U+2AC6
uni2A67 uni2A77 uni2AC7
7 ⩧ ⩷ ⫇
U+2A67 U+2A77 U+2AC7
uni2AC8
8 ⫈
U+2AC8
A ⦺ ⨪ ⩪
U+29BA U+2A2A U+2A6A
uni2A2B uni2A6B
B ⨫ ⩫
U+2A2B U+2A6B
uni2A2C
C ⨬
U+2A2C
uni2ABD
D ⪽
U+2ABD
uni2AAE uni2ABE
E ⪮ ⪾
U+2AAE U+2ABE
uni2ABF uni2ACF
F ⪿ ⫏
U+2ABF U+2ACF
2AD 2AE 2AF 2B1 2C6 2C7 2E1 2E2 2E3 2E4 A73 A78
uni2AD0 uni2AE0 uni2E40 uniA730 uniA780
0 ⫐ ⫠ ⹀ ꜰ Ꞁ
U+2AD0 U+2AE0 U+2E40 U+A730 U+A780
uni2AD1 uni2C71 uni2E41 uniA731 uniA781
1 ⫑ ⱱ ⹁ ꜱ ꞁ
U+2AD1 U+2C71 U+2E41 U+A731 U+A781
uni2AD2 uni2AE2 uni2AF2 uni2E42
2 ⫒ ⫢ ⫲ ⹂
U+2AD2 U+2AE2 U+2AF2 U+2E42
uni2AD3 uni2AE3
3 ⫓ ⫣
U+2AD3 U+2AE3
uni2AD4 uni2AE4 uni2AF4
4 ⫔ ⫤ ⫴
U+2AD4 U+2AE4 U+2AF4
uni2AD5 uni2AE5 uni2AF5
5 ⫕ ⫥ ⫵
U+2AD5 U+2AE5 U+2AF5
uni2AD6 uni2AE6 uni2E36
6 ⫖ ⫦ ⸶
U+2AD6 U+2AE6 U+2E36
uni2AE7 uni2E37
7 ⫧ ⸷
U+2AE7 U+2E37
uni2AE8 uni2E18 uni2E28 uni2E38
8 ⫨ ⸘ ⸨ ⸸
U+2AE8 U+2E18 U+2E28 U+2E38
uni2AD9 uni2AE9 uni2E29
9 ⫙ ⫩ ⸩
U+2AD9 U+2AE9 U+2E29
uni2ADA uni2AEA uni2B1A uni2E2A
A ⫚ ⫪ ⬚ ⸪
U+2ADA U+2AEA U+2B1A U+2E2A
uni2ADB uni2AEB uni2C7B uni2E2B uni2E4B
B ⫛ ⫫ ⱻ ⸫ ⹋
U+2ADB U+2AEB U+2C7B U+2E2B U+2E4B
uni2AEC uni2AFC uni2E2C
C ⫬ ⫼ ⸬
U+2AEC U+2AFC U+2E2C
uni2AED uni2E2D
D ⫭ ⸭
U+2AED U+2E2D
uni2ADE uni2C7E uni2E2E
E ⫞ Ȿ ⸮
U+2ADE U+2C7E U+2E2E
uni2ADF uni2C6F uni2C7F
F ⫟ Ɐ Ɀ
U+2ADF U+2C6F U+2C7F
A7A A7B A7F EE0 EE1 EE2 EE3 EE4 EE5 EE6 EE7 FB0
uniA7B0 uniEE00 uniEE10 uniEE20 uniEE30 uniEE40 uniEE50 uniEE60 uniEE70
0 Ʞ
U+A7B0 U+EE00 U+EE10 U+EE20 U+EE30 U+EE40 U+EE50 U+EE60 U+EE70
uniA7B1 uniEE01 uniEE11 uniEE21 uniEE31 uniEE41 uniEE51 uniEE61 uniEE71 fi
1 Ʇ fi
U+A7B1 U+EE01 U+EE11 U+EE21 U+EE31 U+EE41 U+EE51 U+EE61 U+EE71 U+FB01
uniEE02 uniEE12 uniEE22 uniEE32 uniEE42 uniEE52 uniEE62 uniEE72 fl
2 fl
U+EE02 U+EE12 U+EE22 U+EE32 U+EE42 U+EE52 U+EE62 U+EE72 U+FB02
uniEE03 uniEE13 uniEE23 uniEE33 uniEE43 uniEE53 uniEE63 uniEE73
3
U+EE03 U+EE13 U+EE23 U+EE33 U+EE43 U+EE53 U+EE63 U+EE73
uniEE04 uniEE14 uniEE24 uniEE34 uniEE44 uniEE54 uniEE64 uniEE74
4
U+EE04 U+EE14 U+EE24 U+EE34 U+EE44 U+EE54 U+EE64 U+EE74
uniEE05 uniEE15 uniEE25 uniEE35 uniEE45 uniEE55 uniEE65 uniEE75
5
U+EE05 U+EE15 U+EE25 U+EE35 U+EE45 U+EE55 U+EE65 U+EE75
uniEE06 uniEE16 uniEE26 uniEE36 uniEE46 uniEE56 uniEE66 uniEE76
6
U+EE06 U+EE16 U+EE26 U+EE36 U+EE46 U+EE56 U+EE66 U+EE76
uniEE07 uniEE17 uniEE27 uniEE37 uniEE47 uniEE57 uniEE67 uniEE77
7
U+EE07 U+EE17 U+EE27 U+EE37 U+EE47 U+EE57 U+EE67 U+EE77
uniEE08 uniEE18 uniEE28 uniEE38 uniEE48 uniEE58 uniEE68 uniEE78
8
U+EE08 U+EE18 U+EE28 U+EE38 U+EE48 U+EE58 U+EE68 U+EE78
uniEE09 uniEE19 uniEE29 uniEE39 uniEE49 uniEE59 uniEE69 uniEE79
9
U+EE09 U+EE19 U+EE29 U+EE39 U+EE49 U+EE59 U+EE69 U+EE79
uniEE0A uniEE1A uniEE2A uniEE3A uniEE4A uniEE5A uniEE6A uniEE7A
A
U+EE0A U+EE1A U+EE2A U+EE3A U+EE4A U+EE5A U+EE6A U+EE7A
uniA7FB uniEE0B uniEE1B uniEE2B uniEE3B uniEE4B uniEE5B uniEE6B uniEE7B
B ꟻ
U+A7FB U+EE0B U+EE1B U+EE2B U+EE3B U+EE4B U+EE5B U+EE6B U+EE7B
uniA7FC uniEE0C uniEE1C uniEE2C uniEE3C uniEE4C uniEE5C uniEE6C uniEE7C
C ꟼ
U+A7FC U+EE0C U+EE1C U+EE2C U+EE3C U+EE4C U+EE5C U+EE6C U+EE7C
uniA7FD uniEE0D uniEE1D uniEE2D uniEE3D uniEE4D uniEE5D uniEE6D uniEE7D
D ꟽ
U+A7FD U+EE0D U+EE1D U+EE2D U+EE3D U+EE4D U+EE5D U+EE6D U+EE7D
uniEE0E uniEE1E uniEE2E uniEE3E uniEE4E uniEE5E uniEE6E uniEE7E
E
U+EE0E U+EE1E U+EE2E U+EE3E U+EE4E U+EE5E U+EE6E U+EE7E
uniA7AF uniEE0F uniEE1F uniEE2F uniEE3F uniEE4F uniEE5F uniEE6F uniEE7F
F ꞯ
U+A7AF U+EE0F U+EE1F U+EE2F U+EE3F U+EE4F U+EE5F U+EE6F U+EE7F
FFF 1045 1046 1047 1D10 1D11 1D12 1D13 1F68 1F69 1FB0 1FB1
u10450 u10460 u10470 u1D100 u1D110 u1F680 u1FB00 u1FB10
0 𐑐 𐑠 𐑰 𝄀 𝄐 🚀 🬀 🬐
U+10450 U+10460 U+10470 U+1D100 U+1D110 U+1F680 U+1FB00 U+1FB10
u10451 u10461 u10471 u1D101 u1D111 u1D121 u1F681 u1FB01 u1FB11
1 𐑑 𐑡 𐑱 𝄁 𝄑 𝄡 🚁 🬁 🬑
U+10451 U+10461 U+10471 U+1D101 U+1D111 U+1D121 U+1F681 U+1FB01 U+1FB11
u10452 u10462 u10472 u1D102 u1D122 u1F682 u1FB02 u1FB12
2 𐑒 𐑢 𐑲 𝄂 𝄢 🚂 🬂 🬒
U+10452 U+10462 U+10472 U+1D102 U+1D122 U+1F682 U+1FB02 U+1FB12
u10453 u10463 u10473 u1D103 u1FB03 u1FB13
3 𐑓 𐑣 𐑳 𝄃 🬃 🬓
U+10453 U+10463 U+10473 U+1D103 U+1FB03 U+1FB13
u10454 u10464 u10474 u1D104 u1FB04 u1FB14
4 𐑔 𐑤 𐑴 𝄄 🬄 🬔
U+10454 U+10464 U+10474 U+1D104 U+1FB04 U+1FB14
u10455 u10465 u10475 u1D105 u1FB05 u1FB15
5 𐑕 𐑥 𐑵 𝄅 🬅 🬕
U+10455 U+10465 U+10475 U+1D105 U+1FB05 U+1FB15
u10456 u10466 u10476 u1D106 u1D116 u1FB06 u1FB16
6 𐑖 𐑦 𐑶 𝄆 𝄖 🬆 🬖
U+10456 U+10466 U+10476 U+1D106 U+1D116 U+1FB06 U+1FB16
u10457 u10467 u10477 u1D107 u1D117 u1FB07 u1FB17
7 𐑗 𐑧 𐑷 𝄇 𝄗 🬇 🬗
U+10457 U+10467 U+10477 U+1D107 U+1D117 U+1FB07 U+1FB17
u10458 u10468 u10478 u1D108 u1D118 u1FB08 u1FB18
8 𐑘 𐑨 𐑸 𝄈 𝄘 🬈 🬘
U+10458 U+10468 U+10478 U+1D108 U+1D118 U+1FB08 U+1FB18
u10459 u10469 u10479 u1D119 u1FB09 u1FB19
9 𐑙 𐑩 𐑹 𝄙 🬉 🬙
U+10459 U+10469 U+10479 U+1D119 U+1FB09 U+1FB19
u1045A u1046A u1047A u1D11A u1D12A u1D13A u1F69A u1FB0A u1FB1A
A 𐑚 𐑪 𐑺 𝄚 𝄪 𝄺 🚚 🬊 🬚
U+1045A U+1046A U+1047A U+1D11A U+1D12A U+1D13A U+1F69A U+1FB0A U+1FB1A
u1045B u1046B u1047B u1D10B u1D12B u1D13B u1FB0B u1FB1B
B 𐑛 𐑫 𐑻 𝄋 𝄫 𝄻 🬋 🬛
U+1045B U+1046B U+1047B U+1D10B U+1D12B U+1D13B U+1FB0B U+1FB1B
u1045C u1046C u1047C u1D13C u1FB0C u1FB1C
C 𐑜 𐑬 𐑼 𝄼 🬌 🬜
U+1045C U+1046C U+1047C U+1D13C U+1FB0C U+1FB1C
uniFFFD u1045D u1046D u1047D u1FB0D u1FB1D
D � 𐑝 𐑭 𐑽 🬍 🬝
U+FFFD U+1045D U+1046D U+1047D U+1FB0D U+1FB1D
u1045E u1046E u1047E u1D11E u1FB0E u1FB1E
E 𐑞 𐑮 𐑾 𝄞 🬎 🬞
U+1045E U+1046E U+1047E U+1D11E U+1FB0E U+1FB1E
u1045F u1046F u1047F u1FB0F u1FB1F
F 𐑟 𐑯 𐑿 🬏 🬟
U+1045F U+1046F U+1047F U+1FB0F U+1FB1F
1FB2 1FB3 1FBB 1FBC
u1FB20 u1FB30 u1FBB0 u1FBC0 .notdef L.saa5052 Z.c2sc germandbls.sc q.sc u1FB07.sep6 u1FB17.sep6 u1FB27.sep6
0 🬠 🬰 🮰 🯀 L Z ß q 🬇 🬗 🬧
U+1FB20 U+1FB30 U+1FBB0 U+1FBC0
u1FB21 u1FB31 A.c2sc M.c2sc a.sc h.sc r.sc u1FB08.sep6 u1FB18.sep6 u1FB28.sep6
1 🬡 🬱 A M a h r 🬈 🬘 🬨
U+1FB21 U+1FB31
u1FB22 u1FB32 AE.c2sc N.c2sc ae.sc i.sc rtblock.sep4 u1FB09.sep6 u1FB19.sep6 u1FB29.sep6
2 🬢 🬲 Æ N æ i ▐ 🬉 🬙 🬩
U+1FB22 U+1FB32
u1FB23 u1FB33 B.c2sc O.c2sc b.sc j.sc rtblock.sep6 u1FB0A.sep6 u1FB1A.sep6 u1FB2A.sep6
3 🬣 🬳 B O b j ▐ 🬊 🬚 🬪
U+1FB23 U+1FB33
u1FB24 u1FB34 u1FBC4 C.c2sc OE.c2sc block.sep4 k.sc s.sc u1FB0B.sep6 u1FB1B.sep6 u1FB2B.sep6
4 🬤 🬴 🯄 C Œ █ k s 🬋 🬛 🬫
U+1FB24 U+1FB34 U+1FBC4
u1FB25 u1FB35 u1FBC5 D.c2sc P.c2sc block.sep6 l.sc semicolon.saa5051 u1FB0C.sep6 u1FB1C.sep6 u1FB2C.sep6
5 🬥 🬵 🯅 D P █ l ; 🬌 🬜 🬬
U+1FB25 U+1FB35 U+1FBC5
u1FB26 u1FB36 u1FBC6 D.saa5052 Q.c2sc c.sc lfblock.sep4 t.sc u1FB0D.sep6 u1FB1D.sep6 u1FB2D.sep6
6 🬦 🬶 🯆 D Q c ▌ t 🬍 🬝 🬭
U+1FB26 U+1FB36 U+1FBC6
u1FB27 u1FB37 u1FBC7 E.c2sc R.c2sc ccedilla.saa5054 lfblock.sep6 thorn.sc u1FB0E.sep6 u1FB1E.sep6 u1FB2E.sep6
7 🬧 🬷 🯇 E R ç ▌ þ 🬎 🬞 🬮
U+1FB27 U+1FB37 U+1FBC7
u1FB28 u1FB38 u1FBC8 Eth.c2sc S.c2sc colon.saa5051 m.sc u.sc u1FB0F.sep6 u1FB1F.sep6 u1FB2F.sep6
8 🬨 🬸 🯈 Ð S : m u 🬏 🬟 🬯
U+1FB28 U+1FB38 U+1FBC8
u1FB29 u1FB39 u1FBC9 F.c2sc T.c2sc comma.saa5051 n.sc u1FB00.sep6 u1FB10.sep6 u1FB20.sep6 u1FB30.sep6
9 🬩 🬹 🯉 F T , n 🬀 🬐 🬠 🬰
U+1FB29 U+1FB39 U+1FBC9
u1FB2A u1FB3A u1FBCA G.c2sc Thorn.c2sc d.sc o.sc u1FB01.sep6 u1FB11.sep6 u1FB21.sep6 u1FB31.sep6
A 🬪 🬺 🯊 G Þ d o 🬁 🬑 🬡 🬱
U+1FB2A U+1FB3A U+1FBCA
u1FB2B u1FB3B u1FBBB H.c2sc U.c2sc dnblock.sep4 ocircumflex.saa5054 u1FB02.sep6 u1FB12.sep6 u1FB22.sep6 u1FB32.sep6
B 🬫 🬻 🮻 H U ▄ ô 🬂 🬒 🬢 🬲
U+1FB2B U+1FB3B U+1FBBB
u1FB2C u1FBBC I.c2sc V.c2sc e.sc oe.sc u1FB03.sep6 u1FB13.sep6 u1FB23.sep6 u1FB33.sep6
C 🬬 🮼 I V e œ 🬃 🬓 🬣 🬳
U+1FB2C U+1FBBC
u1FB2D J.c2sc W.c2sc eth.sc oldsheqel u1FB04.sep6 u1FB14.sep6 u1FB24.sep6 u1FB34.sep6
D 🬭 J W ð 🬄 🬔 🬤 🬴
U+1FB2D
u1FB2E K.c2sc X.c2sc f.sc p.sc u1FB05.sep6 u1FB15.sep6 u1FB25.sep6 u1FB35.sep6
E 🬮 K X f p 🬅 🬕 🬥 🬵
U+1FB2E
u1FB2F L.c2sc Y.c2sc g.sc period.saa5051 u1FB06.sep6 u1FB16.sep6 u1FB26.sep6 u1FB36.sep6
F 🬯 L Y g . 🬆 🬖 🬦 🬶
U+1FB2F
u1FB37.sep6 uni1045A uni1046A uni1047A uni1FB02.sep6 uni1FB0A.sep6 uni1FB12.sep6 uni1FB1A.sep6 uni1FB22.sep6 uni1FB2A.sep6 uni1FB32.sep6 uni1FB3A.sep6
0 🬷 ó ² ô ³ õ
u1FB38.sep6 uni1045B uni1046B uni1047B uni1FB03 uni1FB0B uni1FB13 uni1FB1B uni1FB23 uni1FB2B uni1FB33 uni1FB3B
1 🬸 ô ³ õ ¶ ö
u1FB39.sep6 uni1045C uni1046C uni1047C uni1FB03.sep6 uni1FB0B.sep6 uni1FB13.sep6 uni1FB1B.sep6 uni1FB23.sep6 uni1FB2B.sep6 uni1FB33.sep6 uni1FB3B.sep6
2 🬹 õ ¶ ö · ÷
u1FB3A.sep6 uni1045D uni1046D uni1047D uni1FB04 uni1FB0C uni1FB14 uni1FB1C uni1FB24 uni1FB2C uni1FB34 uni1FBB0
3 🬺 ö · ÷ ¸ ø
u1FB3B.sep6 uni1045E uni1046E uni1047E uni1FB04.sep6 uni1FB0C.sep6 uni1FB14.sep6 uni1FB1C.sep6 uni1FB24.sep6 uni1FB2C.sep6 uni1FB34.sep6 uni1FBBB
4 🬻 ÷ ¸ ø ¹ ù
ugrave.saa5054 uni1045F uni1046F uni1047F uni1FB05 uni1FB0D uni1FB15 uni1FB1D uni1FB25 uni1FB2D uni1FB35 uni1FBBC
5 ù ø ¹ ù º ú
uni10450 uni10460 uni10470 uni1E9E.c2sc uni1FB05.sep6 uni1FB0D.sep6 uni1FB15.sep6 uni1FB1D.sep6 uni1FB25.sep6 uni1FB2D.sep6 uni1FB35.sep6 uni1FBC0
6 ¹ ù ẞ º ú ½ û
uni10451 uni10461 uni10471 uni1F680 uni1FB06 uni1FB0E uni1FB16 uni1FB1E uni1FB26 uni1FB2E uni1FB36 uni1FBC4
7 º ú ½ û Ã ü
uni10452 uni10462 uni10472 uni1F681 uni1FB06.sep6 uni1FB0E.sep6 uni1FB16.sep6 uni1FB1E.sep6 uni1FB26.sep6 uni1FB2E.sep6 uni1FB36.sep6 uni1FBC5
8 ½ û Ã ü Å ý
uni10453 uni10463 uni10473 uni1F682 uni1FB07 uni1FB0F uni1FB17 uni1FB1F uni1FB27 uni1FB2F uni1FB37 uni1FBC6
9 Ã ü Å ý Æ þ
uni10454 uni10464 uni10474 uni1F69A uni1FB07.sep6 uni1FB0F.sep6 uni1FB17.sep6 uni1FB1F.sep6 uni1FB27.sep6 uni1FB2F.sep6 uni1FB37.sep6 uni1FBC7
A Å ý Æ þ × ÿ
uni10455 uni10465 uni10475 uni1FB00 uni1FB08 uni1FB10 uni1FB18 uni1FB20 uni1FB28 uni1FB30 uni1FB38 uni1FBC8
B Æ þ × ÿ ð
uni10456 uni10466 uni10476 uni1FB00.sep6 uni1FB08.sep6 uni1FB10.sep6 uni1FB18.sep6 uni1FB20.sep6 uni1FB28.sep6 uni1FB30.sep6 uni1FB38.sep6 uni1FBC9
C × ÿ ð ñ
uni10457 uni10467 uni10477 uni1FB01 uni1FB09 uni1FB11 uni1FB19 uni1FB21 uni1FB29 uni1FB31 uni1FB39 uni1FBCA
D ð ñ ò °
uni10458 uni10468 uni10478 uni1FB01.sep6 uni1FB09.sep6 uni1FB11.sep6 uni1FB19.sep6 uni1FB21.sep6 uni1FB29.sep6 uni1FB31.sep6 uni1FB39.sep6 uni2126
E ñ ò ° ó Ω
uni10459 uni10469 uni10479 uni1FB02 uni1FB0A uni1FB12 uni1FB1A uni1FB22 uni1FB2A uni1FB32 uni1FB3A uni2295
F ò ° ó ² ô ⊕
uni2596.sep4
0 ▖
uni2597.sep4
1 ▗
uni2598.sep4
2 ▘
uni2599.sep4
3 ▙
uni259A.sep4
4 ▚
uni259B.sep4
5 ▛
uni259C.sep4
6 ▜
uni259D.sep4
7 ▝
uni259E.sep4
8 ▞
uni259F.sep4
9 ▟
upblock.sep4
A ▀
v.sc
B v
w.sc
C w
x.sc
D x
y.sc
E y
z.sc
F z