0% found this document useful (0 votes)
24 views20 pages

Bedstead Complement

Uploaded by

Blaze Zornes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views20 pages

Bedstead Complement

Uploaded by

Blaze Zornes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

002 003 004 005 006 007 00A 00B 00C 00D 00E 00F

space zero at P grave p uni00A0 degree Agrave Eth agrave eth

0 0 @ P ` p ° À Ð à ð
U+0020 U+0030 U+0040 U+0050 U+0060 U+0070 U+00A0 U+00B0 U+00C0 U+00D0 U+00E0 U+00F0
exclam one A Q a q exclamdown plusminus Aacute Ntilde aacute ntilde

1 ! 1 A Q a q ¡ ± Á Ñ á ñ
U+0021 U+0031 U+0041 U+0051 U+0061 U+0071 U+00A1 U+00B1 U+00C1 U+00D1 U+00E1 U+00F1
quotedbl two B R b r cent twosuperior Acircumflex Ograve acircumflex ograve

2 " 2 B R b r ¢ ² Â Ò â ò
U+0022 U+0032 U+0042 U+0052 U+0062 U+0072 U+00A2 U+00B2 U+00C2 U+00D2 U+00E2 U+00F2
numbersign three C S c s sterling threesuperior Atilde Oacute atilde oacute

3 # 3 C S c s £ ³ Ã Ó ã ó
U+0023 U+0033 U+0043 U+0053 U+0063 U+0073 U+00A3 U+00B3 U+00C3 U+00D3 U+00E3 U+00F3
dollar four D T d t currency acute Adieresis Ocircumflex adieresis ocircumflex

4 $ 4 D T d t ¤ ´ Ä Ô ä ô
U+0024 U+0034 U+0044 U+0054 U+0064 U+0074 U+00A4 U+00B4 U+00C4 U+00D4 U+00E4 U+00F4
percent five E U e u yen mu Aring Otilde aring otilde

5 % 5 E U e u ¥ µ Å Õ å õ
U+0025 U+0035 U+0045 U+0055 U+0065 U+0075 U+00A5 U+00B5 U+00C5 U+00D5 U+00E5 U+00F5
ampersand six F V f v brokenbar paragraph AE Odieresis ae odieresis

6 & 6 F V f v ¦ ¶ Æ Ö æ ö
U+0026 U+0036 U+0046 U+0056 U+0066 U+0076 U+00A6 U+00B6 U+00C6 U+00D6 U+00E6 U+00F6
quotesingle seven G W g w section periodcentered Ccedilla multiply ccedilla divide

7 ' 7 G W g w § · Ç × ç ÷
U+0027 U+0037 U+0047 U+0057 U+0067 U+0077 U+00A7 U+00B7 U+00C7 U+00D7 U+00E7 U+00F7
parenleft eight H X h x dieresis cedilla Egrave Oslash egrave oslash

8 ( 8 H X h x ¨ ¸ È Ø è ø
U+0028 U+0038 U+0048 U+0058 U+0068 U+0078 U+00A8 U+00B8 U+00C8 U+00D8 U+00E8 U+00F8
parenright nine I Y i y copyright onesuperior Eacute Ugrave eacute ugrave

9 ) 9 I Y i y © ¹ É Ù é ù
U+0029 U+0039 U+0049 U+0059 U+0069 U+0079 U+00A9 U+00B9 U+00C9 U+00D9 U+00E9 U+00F9
asterisk colon J Z j z ordfeminine ordmasculine Ecircumflex Uacute ecircumflex uacute

A * : J Z j z ª º Ê Ú ê ú
U+002A U+003A U+004A U+005A U+006A U+007A U+00AA U+00BA U+00CA U+00DA U+00EA U+00FA
plus semicolon K bracketleft k braceleft guillemotleft guillemotright Edieresis Ucircumflex edieresis ucircumflex

B + ; K [ k { « » Ë Û ë û
U+002B U+003B U+004B U+005B U+006B U+007B U+00AB U+00BB U+00CB U+00DB U+00EB U+00FB
comma less L backslash l bar logicalnot onequarter Igrave Udieresis igrave udieresis

C , < L \ l | ¬ ¼ Ì Ü ì ü
U+002C U+003C U+004C U+005C U+006C U+007C U+00AC U+00BC U+00CC U+00DC U+00EC U+00FC
hyphen equal M bracketright m braceright onehalf Iacute Yacute iacute yacute

D - = M ] m } ½ Í Ý í ý
U+002D U+003D U+004D U+005D U+006D U+007D U+00BD U+00CD U+00DD U+00ED U+00FD
period greater N asciicircum n asciitilde registered threequarters Icircumflex Thorn icircumflex thorn

E . > N ^ n ~ ® ¾ Î Þ î þ
U+002E U+003E U+004E U+005E U+006E U+007E U+00AE U+00BE U+00CE U+00DE U+00EE U+00FE
slash question O underscore o macron questiondown Idieresis germandbls idieresis ydieresis

F / ? O _ o ¯ ¿ Ï ß ï ÿ
U+002F U+003F U+004F U+005F U+006F U+00AF U+00BF U+00CF U+00DF U+00EF U+00FF
010 011 012 013 014 015 016 017 018 019 01A 01B
Amacron Dcroat Gdotaccent Idotaccent ldot

0 Ā Đ Ġ İ ŀ
U+0100 U+0110 U+0120 U+0130 U+0140
amacron dcroat gdotaccent dotlessi Lslash scaron

1 ā đ ġ ı Ł š
U+0101 U+0111 U+0121 U+0131 U+0141 U+0161
Emacron IJ lslash OE uni0162 Uogonek florin

2 Ē IJ ł Œ Ţ Ų ƒ
U+0112 U+0132 U+0142 U+0152 U+0162 U+0172 U+0192
emacron ij Nacute oe uni0163 uogonek

3 ē ij Ń œ ţ ų
U+0113 U+0133 U+0143 U+0153 U+0163 U+0173
Aogonek Jcircumflex nacute Racute Tcaron Wcircumflex

4 Ą Ĵ ń Ŕ Ť Ŵ
U+0104 U+0134 U+0144 U+0154 U+0164 U+0174
aogonek jcircumflex racute tcaron wcircumflex uni01A5

5 ą ĵ ŕ ť ŵ ƥ
U+0105 U+0135 U+0155 U+0165 U+0175 U+01A5
Cacute Edotaccent Hbar Ycircumflex

6 Ć Ė Ħ Ŷ
U+0106 U+0116 U+0126 U+0176
cacute edotaccent hbar Ncaron ycircumflex uni01A7

7 ć ė ħ Ň ŷ Ƨ
U+0107 U+0117 U+0127 U+0147 U+0177 U+01A7
Ccircumflex Eogonek Itilde kgreenlandic ncaron Rcaron Ydieresis uni0188 uni01A8

8 Ĉ Ę Ĩ ĸ ň Ř Ÿ ƈ ƨ
U+0108 U+0118 U+0128 U+0138 U+0148 U+0158 U+0178 U+0188 U+01A8
ccircumflex eogonek itilde napostrophe rcaron Zacute uni0199

9 ĉ ę ĩ ʼn ř Ź ƙ
U+0109 U+0119 U+0129 U+0149 U+0159 U+0179 U+0199
Cdotaccent Ecaron Imacron Eng Umacron zacute

A Ċ Ě Ī Ŋ Ū ź
U+010A U+011A U+012A U+014A U+016A U+017A
cdotaccent ecaron imacron eng sacute umacron Zdotaccent uni019B uni01AB uni01BB

B ċ ě ī ŋ ś ū Ż ƛ ƫ ƻ
U+010B U+011B U+012B U+014B U+015B U+016B U+017B U+019B U+01AB U+01BB
Ccaron Gcircumflex Omacron zdotaccent

C Č Ĝ Ō ż
U+010C U+011C U+014C U+017C
ccaron gcircumflex Lcaron omacron Zcaron uni01AD

D č ĝ Ľ ō Ž ƭ
U+010D U+011D U+013D U+014D U+017D U+01AD
Dcaron Iogonek lcaron Scedilla Uring zcaron uni018E uni019E

E Ď Į ľ Ş Ů ž Ǝ ƞ
U+010E U+012E U+013E U+015E U+016E U+017E U+018E U+019E
dcaron iogonek Ldot scedilla uring longs uni018F

F ď į Ŀ ş ů ſ Ə
U+010F U+012F U+013F U+015F U+016F U+017F U+018F
01C 01D 01E 01F 023 024 025 026 027 028 029 02A
uni01C0 uni01D0 uni01F0 uni0240 uni0250 uni0260 uni0270 uni0280 uni0290 uni02A0

0 ǀ ǐ ǰ ɀ ɐ ɠ ɰ ʀ ʐ ʠ
U+01C0 U+01D0 U+01F0 U+0240 U+0250 U+0260 U+0270 U+0280 U+0290 U+02A0
uni01C1 uni01D1 uni0251 uni0261 uni0271 uni0281 uni0291 uni02A1

1 ǁ Ǒ ɑ ɡ ɱ ʁ ʑ ʡ
U+01C1 U+01D1 U+0251 U+0261 U+0271 U+0281 U+0291 U+02A1
uni01C2 uni01D2 uni01E2 uni0232 uni0252 uni0262 uni0272 uni0282 uni0292 uni02A2

2 ǂ ǒ Ǣ Ȳ ɒ ɢ ɲ ʂ ʒ ʢ
U+01C2 U+01D2 U+01E2 U+0232 U+0252 U+0262 U+0272 U+0282 U+0292 U+02A2
uni01C3 uni01D3 uni01E3 uni0233 uni0253 uni0263 uni0273 uni0283 uni0293 uni02A3

3 ǃ Ǔ ǣ ȳ ɓ ɣ ɳ ʃ ʓ ʣ
U+01C3 U+01D3 U+01E3 U+0233 U+0253 U+0263 U+0273 U+0283 U+0293 U+02A3
uni01D4 uni0254 uni0264 uni0274 uni0284 uni0294 uni02A4

4 ǔ ɔ ɤ ɴ ʄ ʔ ʤ
U+01D4 U+0254 U+0264 U+0274 U+0284 U+0294 U+02A4
uni01D5 uni0245 uni0255 uni0265 uni0275 uni0295 uni02A5

5 Ǖ Ʌ ɕ ɥ ɵ ʕ ʥ
U+01D5 U+0245 U+0255 U+0265 U+0275 U+0295 U+02A5
uni01D6 uni0256 uni0266 uni0276 uni0286 uni0296 uni02A6

6 ǖ ɖ ɦ ɶ ʆ ʖ ʦ
U+01D6 U+0256 U+0266 U+0276 U+0286 U+0296 U+02A6
uni01D7 uni0237 uni0257 uni0267 uni0277 uni0287 uni0297 uni02A7

7 Ǘ ȷ ɗ ɧ ɷ ʇ ʗ ʧ
U+01D7 U+0237 U+0257 U+0267 U+0277 U+0287 U+0297 U+02A7
uni01D8 uni01F8 uni0258 uni0268 uni0278 uni0288 uni0298 uni02A8

8 ǘ Ǹ ɘ ɨ ɸ ʈ ʘ ʨ
U+01D8 U+01F8 U+0258 U+0268 U+0278 U+0288 U+0298 U+02A8
uni01D9 uni01F9 uni0259 uni0269 uni0279 uni0289 uni0299 uni02A9

9 Ǚ ǹ ə ɩ ɹ ʉ ʙ ʩ
U+01D9 U+01F9 U+0259 U+0269 U+0279 U+0289 U+0299 U+02A9
uni01DA uni025A uni026A uni027A uni028A uni029A uni02AA

A ǚ ɚ ɪ ɺ ʊ ʚ ʪ
U+01DA U+025A U+026A U+027A U+028A U+029A U+02AA
uni01DB uni025B uni026B uni027B uni028B uni029B uni02AB

B Ǜ ɛ ɫ ɻ ʋ ʛ ʫ
U+01DB U+025B U+026B U+027B U+028B U+029B U+02AB
uni01DC uni025C uni026C uni027C uni028C uni029C uni02AC

C ǜ ɜ ɬ ɼ ʌ ʜ ʬ
U+01DC U+025C U+026C U+027C U+028C U+029C U+02AC
uni01CD uni01DD uni025D uni026D uni027D uni028D uni029D uni02AD

D Ǎ ǝ ɝ ɭ ɽ ʍ ʝ ʭ
U+01CD U+01DD U+025D U+026D U+027D U+028D U+029D U+02AD
uni01CE uni025E uni026E uni027E uni028E uni029E

E ǎ ɞ ɮ ɾ ʎ ʞ
U+01CE U+025E U+026E U+027E U+028E U+029E
uni01CF uni023F uni025F uni026F uni028F uni029F

F Ǐ ȿ ɟ ɯ ʏ ʟ
U+01CF U+023F U+025F U+026F U+028F U+029F
02B 02C 02D 02E 037 038 039 03A 03B 03C 03D 03F
uni02B0 uni02D0 uni02E0 iotadieresistonos Pi upsilondieresistonos pi

0 ʰ ː ˠ ΐ Π ΰ π
U+02B0 U+02D0 U+02E0 U+0390 U+03A0 U+03B0 U+03C0
uni02D1 uni02E1 Alpha Rho alpha rho

1 ˑ ˡ Α Ρ α ρ
U+02D1 U+02E1 U+0391 U+03A1 U+03B1 U+03C1
uni02B2 uni02E2 Beta beta sigma1

2 ʲ ˢ Β β ς
U+02B2 U+02E2 U+0392 U+03B2 U+03C2
uni02E3 Gamma Sigma gamma sigma uni03F3

3 ˣ Γ Σ γ σ ϳ
U+02E3 U+0393 U+03A3 U+03B3 U+03C3 U+03F3
uni02E4 tonos uni0394 Tau delta tau

4 ˤ ΄ Δ Τ δ τ
U+02E4 U+0384 U+0394 U+03A4 U+03B4 U+03C4
uni02E5 dieresistonos Epsilon Upsilon epsilon upsilon phi1

5 ˥ ΅ Ε Υ ε υ ϕ
U+02E5 U+0385 U+0395 U+03A5 U+03B5 U+03C5 U+03D5
circumflex uni02E6 Alphatonos Zeta Phi zeta phi

6 ˆ ˦ Ά Ζ Φ ζ φ
U+02C6 U+02E6 U+0386 U+0396 U+03A6 U+03B6 U+03C6
caron uni02E7 Eta Chi eta chi

7 ˇ ˧ Η Χ η χ
U+02C7 U+02E7 U+0397 U+03A7 U+03B7 U+03C7
uni02C8 breve uni02E8 Epsilontonos Theta Psi theta psi

8 ˈ ˘ ˨ Έ Θ Ψ θ ψ
U+02C8 U+02D8 U+02E8 U+0388 U+0398 U+03A8 U+03B8 U+03C8
uni02B9 dotaccent uni02E9 Etatonos Iota uni03A9 iota omega

9 ʹ ˙ ˩ Ή Ι Ω ι ω
U+02B9 U+02D9 U+02E9 U+0389 U+0399 U+03A9 U+03B9 U+03C9
uni02BA ring Iotatonos Kappa Iotadieresis kappa iotadieresis

A ʺ ˚ Ί Κ Ϊ κ ϊ
U+02BA U+02DA U+038A U+039A U+03AA U+03BA U+03CA
ogonek Lambda Upsilondieresis lambda upsilondieresis

B ˛ Λ Ϋ λ ϋ
U+02DB U+039B U+03AB U+03BB U+03CB
uni02BC uni02CC tilde Omicrontonos Mu alphatonos uni03BC omicrontonos

C ʼ ˌ ˜ Ό Μ ά μ ό
U+02BC U+02CC U+02DC U+038C U+039C U+03AC U+03BC U+03CC
hungarumlaut Nu epsilontonos nu upsilontonos

D ˝ Ν έ ν ύ
U+02DD U+039D U+03AD U+03BD U+03CD
Upsilontonos Xi etatonos xi omegatonos

E Ύ Ξ ή ξ ώ
U+038E U+039E U+03AE U+03BE U+03CE
uni037F Omegatonos Omicron iotatonos omicron

F Ϳ Ώ Ο ί ο
U+037F U+038F U+039F U+03AF U+03BF
040 041 042 043 044 045 049 05D 05E 1D0 1D1 1D2
uni0400 uni0410 uni0420 uni0430 uni0440 uni0450 uni0490 uni05D0 uni05E0 uni1D00 uni1D20

0 Ѐ А Р а р ѐ Ґ ‫א‬ ‫נ‬ ᴀ ᴠ
U+0400 U+0410 U+0420 U+0430 U+0440 U+0450 U+0490 U+05D0 U+05E0 U+1D00 U+1D20
uni0401 uni0411 uni0421 uni0431 uni0441 uni0451 uni0491 uni05D1 uni05E1 uni1D01 uni1D21

1 Ё Б С б с ё ґ ‫ב‬ ‫ס‬ ᴁ ᴡ
U+0401 U+0411 U+0421 U+0431 U+0441 U+0451 U+0491 U+05D1 U+05E1 U+1D01 U+1D21
uni0402 uni0412 uni0422 uni0432 uni0442 uni0452 uni0492 uni05D2 uni05E2 uni1D02 uni1D22

2 Ђ В Т в т ђ Ғ ‫ג‬ ‫ע‬ ᴂ ᴢ
U+0402 U+0412 U+0422 U+0432 U+0442 U+0452 U+0492 U+05D2 U+05E2 U+1D02 U+1D22
uni0413 uni0423 uni0433 uni0443 uni0493 uni05D3 uni05E3

3 Г У г у ғ ‫ד‬ ‫ף‬
U+0413 U+0423 U+0433 U+0443 U+0493 U+05D3 U+05E3
uni0404 uni0414 uni0424 uni0434 uni0444 uni0454 uni05D4 uni05E4 uni1D04 uni1D14

4 Є Д Ф д ф є ‫ה‬ ‫פ‬ ᴄ ᴔ
U+0404 U+0414 U+0424 U+0434 U+0444 U+0454 U+05D4 U+05E4 U+1D04 U+1D14
uni0405 uni0415 uni0425 uni0435 uni0445 uni0455 uni05D5 uni05E5 uni1D05

5 Ѕ Е Х е х ѕ ‫ו‬ ‫ץ‬ ᴅ
U+0405 U+0415 U+0425 U+0435 U+0445 U+0455 U+05D5 U+05E5 U+1D05
uni0406 uni0416 uni0426 uni0436 uni0446 uni0456 uni05D6 uni05E6 uni1D06

6 І Ж Ц ж ц і ‫ז‬ ‫צ‬ ᴆ
U+0406 U+0416 U+0426 U+0436 U+0446 U+0456 U+05D6 U+05E6 U+1D06
uni0407 uni0417 uni0427 uni0437 uni0447 uni0457 uni05D7 uni05E7 uni1D07

7 Ї З Ч з ч ї ‫ח‬ ‫ק‬ ᴇ
U+0407 U+0417 U+0427 U+0437 U+0447 U+0457 U+05D7 U+05E7 U+1D07
uni0408 uni0418 uni0428 uni0438 uni0448 uni0458 uni05D8 uni05E8 uni1D18

8 Ј И Ш и ш ј ‫ט‬ ‫ר‬ ᴘ
U+0408 U+0418 U+0428 U+0438 U+0448 U+0458 U+05D8 U+05E8 U+1D18
uni0409 uni0419 uni0429 uni0439 uni0449 uni0459 uni05D9 uni05E9 uni1D09 uni1D19

9 Љ Й Щ й щ љ ‫י‬ ‫ש‬ ᴉ ᴙ
U+0409 U+0419 U+0429 U+0439 U+0449 U+0459 U+05D9 U+05E9 U+1D09 U+1D19
uni040A uni041A uni042A uni043A uni044A uni045A uni05DA uni05EA uni1D0A uni1D1A

A Њ К Ъ к ъ њ ‫ך‬ ‫ת‬ ᴊ ᴚ
U+040A U+041A U+042A U+043A U+044A U+045A U+05DA U+05EA U+1D0A U+1D1A
uni040B uni041B uni042B uni043B uni044B uni045B uni05DB uni1D0B uni1D1B

B Ћ Л Ы л ы ћ ‫כ‬ ᴋ ᴛ
U+040B U+041B U+042B U+043B U+044B U+045B U+05DB U+1D0B U+1D1B
uni041C uni042C uni043C uni044C uni05DC uni1D1C

C М Ь м ь ‫ל‬ ᴜ
U+041C U+042C U+043C U+044C U+05DC U+1D1C
uni041D uni042D uni043D uni044D uni05DD uni1D0D uni1D1D

D Н Э н э ‫ם‬ ᴍ ᴝ
U+041D U+042D U+043D U+044D U+05DD U+1D0D U+1D1D
uni040E uni041E uni042E uni043E uni044E uni045E uni05DE uni1D0E

E Ў О Ю о ю ў ‫מ‬ ᴎ
U+040E U+041E U+042E U+043E U+044E U+045E U+05DE U+1D0E
uni040F uni041F uni042F uni043F uni044F uni045F uni05DF uni1D0F uni1D1F

F Џ П Я п я џ ‫ן‬ ᴏ ᴟ
U+040F U+041F U+042F U+043F U+044F U+045F U+05DF U+1D0F U+1D1F
1D4 1D6 1DB 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8
uni1E10 uni1E20 uni1E40 uni1E70

0 Ḑ Ḡ Ṁ Ṱ
U+1E10 U+1E20 U+1E40 U+1E70
uni1E11 uni1E21 uni1E41 uni1E71

1 ḑ ḡ ṁ ṱ
U+1E11 U+1E21 U+1E41 U+1E71
uni1D62 uni1E02 uni1E12 uni1E22 uni1E32 uni1E42 uni1E62 uni1E72

2 ᵢ Ḃ Ḓ Ḣ Ḳ Ṃ Ṣ Ṳ
U+1D62 U+1E02 U+1E12 U+1E22 U+1E32 U+1E42 U+1E62 U+1E72
uni1E03 uni1E13 uni1E23 uni1E33 uni1E43 uni1E63 uni1E73

3 ḃ ḓ ḣ ḳ ṃ ṣ ṳ
U+1E03 U+1E13 U+1E23 U+1E33 U+1E43 U+1E63 U+1E73
uni1E04 uni1E24 uni1E34 uni1E44 uni1E54 Wdieresis

4 Ḅ Ḥ Ḵ Ṅ Ṕ Ẅ
U+1E04 U+1E24 U+1E34 U+1E44 U+1E54 U+1E84
uni1E05 uni1E25 uni1E35 uni1E45 uni1E55 wdieresis

5 ḅ ḥ ḵ ṅ ṕ ẅ
U+1E05 U+1E25 U+1E35 U+1E45 U+1E55 U+1E85
uni1E06 uni1E26 uni1E36 uni1E46 uni1E56 uni1E76

6 Ḇ Ḧ Ḷ Ṇ Ṗ Ṷ
U+1E06 U+1E26 U+1E36 U+1E46 U+1E56 U+1E76
uni1E07 uni1E27 uni1E37 uni1E47 uni1E57 uni1E77

7 ḇ ḧ ḷ ṇ ṗ ṷ
U+1E07 U+1E27 U+1E37 U+1E47 U+1E57 U+1E77
uni1E08 uni1E18 uni1E28 uni1E48 uni1E58 uni1E88

8 Ḉ Ḙ Ḩ Ṉ Ṙ Ẉ
U+1E08 U+1E18 U+1E28 U+1E48 U+1E58 U+1E88
uni1E09 uni1E19 uni1E29 uni1E49 uni1E59 uni1E89

9 ḉ ḙ ḩ ṉ ṙ ẉ
U+1E09 U+1E19 U+1E29 U+1E49 U+1E59 U+1E89
uni1D4A uni1E0A uni1E3A uni1E5A uni1E6A uni1E7A uni1E8A

A ᵊ Ḋ Ḻ Ṛ Ṫ Ṻ Ẋ
U+1D4A U+1E0A U+1E3A U+1E5A U+1E6A U+1E7A U+1E8A
uni1E0B uni1E3B uni1E5B uni1E6B uni1E7B uni1E8B

B ḋ ḻ ṛ ṫ ṻ ẋ
U+1E0B U+1E3B U+1E5B U+1E6B U+1E7B U+1E8B
uni1E0C uni1E3C uni1E5C uni1E6C uni1E8C

C Ḍ Ḽ Ṝ Ṭ Ẍ
U+1E0C U+1E3C U+1E5C U+1E6C U+1E8C
uni1E0D uni1E3D uni1E5D uni1E6D uni1E8D

D ḍ ḽ ṝ ṭ ẍ
U+1E0D U+1E3D U+1E5D U+1E6D U+1E8D
uni1E0E uni1E1E uni1E3E uni1E5E uni1E6E uni1E7E uni1E8E

E Ḏ Ḟ Ḿ Ṟ Ṯ Ṿ Ẏ
U+1E0E U+1E1E U+1E3E U+1E5E U+1E6E U+1E7E U+1E8E
uni1DBF uni1E0F uni1E1F uni1E3F uni1E5F uni1E6F uni1E7F uni1E8F

F ᶿ ḏ ḟ ḿ ṟ ṯ ṿ ẏ
U+1DBF U+1E0F U+1E1F U+1E3F U+1E5F U+1E6F U+1E7F U+1E8F
1E9 1EA 1EB 1EC 1EE 1EF 201 202 203 204 205 207
uni1E90 uni1EA0 uni2010 dagger perthousand uni2040 uni2070

0 Ẑ Ạ ‐ † ‰ ⁀ ⁰
U+1E90 U+1EA0 U+2010 U+2020 U+2030 U+2040 U+2070
uni1E91 uni1EA1 uni2011 daggerdbl uni2071

1 ẑ ạ ‑ ‡ ⁱ
U+1E91 U+1EA1 U+2011 U+2021 U+2071
uni1E92 bullet minute uni2052

2 Ẓ • ′ ⁒
U+1E92 U+2022 U+2032 U+2052
uni1E93 endash second uni2053

3 ẓ – ″ ⁓
U+1E93 U+2013 U+2033 U+2053
uni1E94 uni1EE4 uni1EF4 emdash fraction uni2054 uni2074

4 Ẕ Ụ Ỵ — ⁄ ⁔ ⁴
U+1E94 U+1EE4 U+1EF4 U+2014 U+2044 U+2054 U+2074
uni1E95 uni1EE5 uni1EF5 uni2035 uni2075

5 ẕ ụ ỵ ‵ ⁵
U+1E95 U+1EE5 U+1EF5 U+2035 U+2075
uni1E96 dblverticalbar ellipsis uni2036 uni2056 uni2076

6 ẖ ‖ … ‶ ⁖ ⁶
U+1E96 U+2016 U+2026 U+2036 U+2056 U+2076
uni1E97 underscoredbl uni2047 uni2077

7 ẗ ‗ ⁇ ⁷
U+1E97 U+2017 U+2047 U+2077
uni1EB8 quoteleft uni2048 uni2058 uni2078

8 Ẹ ‘ ⁈ ⁘ ⁸
U+1EB8 U+2018 U+2048 U+2058 U+2078
uni1EB9 quoteright guilsinglleft uni2049 uni2059 uni2079

9 ẹ ’ ‹ ⁉ ⁙ ⁹
U+1EB9 U+2019 U+2039 U+2049 U+2059 U+2079
uni1ECA quotesinglbase guilsinglright uni205A uni207A

A Ị ‚ › ⁚ ⁺
U+1ECA U+201A U+203A U+205A U+207A
uni1ECB quotereversed uni203B uni204B uni205B uni207B

B ị ‛ ※ ⁋ ⁛ ⁻
U+1ECB U+201B U+203B U+204B U+205B U+207B
uni1ECC quotedblleft exclamdbl uni205C uni207C

C Ọ “ ‼ ⁜ ⁼
U+1ECC U+201C U+203C U+205C U+207C
uni1ECD quotedblright uni203D uni205D uni207D

D ọ ” ‽ ⁝ ⁽
U+1ECD U+201D U+203D U+205D U+207D
uni1E9E quotedblbase uni203E uni205E uni207E

E ẞ „ ‾ ⁞ ⁾
U+1E9E U+201E U+203E U+205E U+207E
uni201F uni203F uni204F uni207F

F ‟ ‿ ⁏ ⁿ
U+201F U+203F U+204F U+207F
208 209 20A 211 212 213 214 215 218 219 21A 21B
uni2080 uni2150 arrowleft

0 ₀ ⅐ ←
U+2080 U+2150 U+2190
uni2081 uni2151 arrowup

1 ₁ ⅑ ↑
U+2081 U+2151 U+2191
uni2082 uni2132 uni2152 arrowright

2 ₂ Ⅎ ⅒ →
U+2082 U+2132 U+2152 U+2192
uni2083 onethird arrowdown

3 ₃ ⅓ ↓
U+2083 U+2153 U+2193
uni2084 twothirds arrowboth uni21A4 uni21B4

4 ₄ ⅔ ↔ ↤ ↴
U+2084 U+2154 U+2194 U+21A4 U+21B4
uni2085 uni2155 arrowupdn uni21A5 carriagereturn

5 ₅ ⅕ ↕ ↥ ↵
U+2085 U+2155 U+2195 U+21A5 U+21B5
uni2086 Omega uni2156 uni2196 uni21A6

6 ₆ Ω ⅖ ↖ ↦
U+2086 U+2126 U+2156 U+2196 U+21A6
uni2087 peseta uni2117 uni2127 uni2157 uni2197 uni21A7

7 ₇ ₧ ℗ ℧ ⅗ ↗ ↧
U+2087 U+20A7 U+2117 U+2127 U+2157 U+2197 U+21A7
uni2088 uni2158 uni2198 arrowupdnbse

8 ₈ ⅘ ↘ ↨
U+2088 U+2158 U+2198 U+21A8
uni2089 uni2099 uni2129 uni2159 uni2189 uni2199 uni21B9

9 ₉ ₙ ℩ ⅙ ↉ ↙ ↹
U+2089 U+2099 U+2129 U+2159 U+2189 U+2199 U+21B9
uni208A uni20AA uni215A uni218A

A ₊ ₪ ⅚ ↊
U+208A U+20AA U+215A U+218A
uni208B uni214B oneeighth uni218B

B ₋ ⅋ ⅛ ↋
U+208B U+214B U+215B U+218B
uni208C Euro threeeighths uni21BC

C ₌ € ⅜ ↼
U+208C U+20AC U+215C U+21BC
uni208D fiveeighths uni21BD

D ₍ ⅝ ↽
U+208D U+215D U+21BD
uni208E uni214E seveneighths uni21BE

E ₎ ⅎ ⅞ ↾
U+208E U+214E U+215E U+21BE
uni21BF

F ↿
U+21BF
21C 21D 21E 220 221 222 223 224 225 226 228 229
uni21C0 arrowdblleft uni2210 uni2250 notequal uni2290

0 ⇀ ⇐ ∐ ≐ ≠ ⊐
U+21C0 U+21D0 U+2210 U+2250 U+2260 U+2290
uni21C1 arrowdblup summation uni2251 equivalence uni2291

1 ⇁ ⇑ ∑ ≑ ≡ ⊑
U+21C1 U+21D1 U+2211 U+2251 U+2261 U+2291
uni21C2 arrowdblright partialdiff minus uni2242 uni2252 uni2262 propersubset uni2292

2 ⇂ ⇒ ∂ − ≂ ≒ ≢ ⊂ ⊒
U+21C2 U+21D2 U+2202 U+2212 U+2242 U+2252 U+2262 U+2282 U+2292
uni21C3 arrowdbldown uni2213 uni2223 uni2243 uni2253 propersuperset uni2293

3 ⇃ ⇓ ∓ ∣ ≃ ≓ ⊃ ⊓
U+21C3 U+21D3 U+2213 U+2223 U+2243 U+2253 U+2283 U+2293
uni21E4 uni2214 therefore lessequal uni2294

4 ⇤ ∔ ∴ ≤ ⊔
U+21E4 U+2214 U+2234 U+2264 U+2294
uni21E5 uni2225 uni2235 congruent greaterequal circleplus

5 ⇥ ∥ ∵ ≅ ≥ ⊕
U+21E5 U+2225 U+2235 U+2245 U+2265 U+2295
uni21E6 Delta reflexsubset uni2296

6 ⇦ ∆ ⊆ ⊖
U+21E6 U+2206 U+2286 U+2296
uni21E7 gradient logicaland reflexsuperset

7 ⇧ ∇ ∧ ⊇
U+21E7 U+2207 U+2227 U+2287
uni21E8 element uni2218 logicalor uni2238 approxequal uni2258

8 ⇨ ∈ ∘ ∨ ∸ ≈ ≘
U+21E8 U+2208 U+2218 U+2228 U+2238 U+2248 U+2258
uni21E9 uni2219 intersection uni2299

9 ⇩ ∙ ∩ ⊙
U+21E9 U+2219 U+2229 U+2299
uni21EA uni220A radical union uni223A

A ⇪ ∊ √ ∪ ∺
U+21EA U+220A U+221A U+222A U+223A
uni21CB suchthat uni221B integral

B ⇋ ∋ ∛ ∫
U+21CB U+220B U+221B U+222B
uni21CC uni221C similar uni224C uni226C

C ⇌ ∜ ∼ ≌ ≬
U+21CC U+221C U+223C U+224C U+226C
uni220D proportional uni223D uni224D uni228D

D ∍ ∝ ∽ ≍ ⊍
U+220D U+221D U+223D U+224D U+228D
infinity uni222E uni224E uni225E uni229E

E ∞ ∮ ≎ ≞ ⊞
U+221E U+222E U+224E U+225E U+229E
product orthogonal uni223F uni224F uni228F uni229F

F ∏ ∟ ∿ ≏ ⊏ ⊟
U+220F U+221F U+223F U+224F U+228F U+229F
22A 22C 22D 22E 22F 230 231 232 233 234 235 236
uni22F0 revlogicalnot integraltp uni2340 uni2360

0 ⋰ ⌐ ⌠ ⍀ ⍠
U+22F0 U+2310 U+2320 U+2340 U+2360
uni22A1 uni22F1 integralbt uni2341 uni2351

1 ⊡ ⋱ ⌡ ⍁ ⍑
U+22A1 U+22F1 U+2321 U+2341 U+2351
uni22A2 uni22C2 house uni2342 uni2352

2 ⊢ ⋂ ⌂ ⍂ ⍒
U+22A2 U+22C2 U+2302 U+2342 U+2352
uni22A3 uni22C3 uni2363

3 ⊣ ⋃ ⍣
U+22A3 U+22C3 U+2363
uni22A4 uni22C4 uni22D4 uni2364

4 ⊤ ⋄ ⋔ ⍤
U+22A4 U+22C4 U+22D4 U+2364
perpendicular uni2355

5 ⊥ ⍕
U+22A5 U+2355
uni22A6 uni2336

6 ⊦ ⌶
U+22A6 U+2336
uni22A7 uni22F7 uni2337

7 ⊧ ⋷ ⌷
U+22A7 U+22F7 U+2337
uni22A8 uni22F8 uni2308 uni2338 uni2368

8 ⊨ ⋸ ⌈ ⌸ ⍨
U+22A8 U+22F8 U+2308 U+2338 U+2368
uni22A9 uni2309 uni2339 uni2349 uni2359

9 ⊩ ⌉ ⌹ ⍉ ⍙
U+22A9 U+2309 U+2339 U+2349 U+2359
uni230A uni233A uni234A uni236A

A ⌊ ⌺ ⍊ ⍪
U+230A U+233A U+234A U+236A
uni22AB uni22CB uni230B uni233B uni234B uni236B

B ⊫ ⋋ ⌋ ⌻ ⍋ ⍫
U+22AB U+22CB U+230B U+233B U+234B U+236B
uni22CC uni22DC uni236C

C ⋌ ⋜ ⍬
U+22CC U+22DC U+236C
uni22CD uni22DD uni233D uni235D

D ⋍ ⋝ ⌽ ⍝
U+22CD U+22DD U+233D U+235D
uni22EE uni22FE uni234E uni235E

E ⋮ ⋾ ⍎ ⍞
U+22EE U+22FE U+234E U+235E
uni22EF uni233F uni235F

F ⋯ ⌿ ⍟
U+22EF U+233F U+235F
237 238 239 23A 23B 23D 240 241 242 250 251 252
uni23A0 uni23B0 uni2400 uni2410 uni2420 SF100000 SF030000 uni2520

0 ⎠ ⎰ ␀ ␐ ␠ ─ ┐ ┠
U+23A0 U+23B0 U+2400 U+2410 U+2420 U+2500 U+2510 U+2520
uni2371 uni23A1 uni23B1 uni2401 uni2411 uni2421 uni2501 uni2511 uni2521

1 ⍱ ⎡ ⎱ ␁ ␑ ␡ ━ ┑ ┡
U+2371 U+23A1 U+23B1 U+2401 U+2411 U+2421 U+2501 U+2511 U+2521
uni2372 uni23A2 uni23B2 uni2402 uni2412 SF110000 uni2512 uni2522

2 ⍲ ⎢ ⎲ ␂ ␒ │ ┒ ┢
U+2372 U+23A2 U+23B2 U+2402 U+2412 U+2502 U+2512 U+2522
uni2373 uni2393 uni23A3 uni23B3 uni2403 uni2413 uni2423 uni2503 uni2513 uni2523

3 ⍳ ⎓ ⎣ ⎳ ␃ ␓ ␣ ┃ ┓ ┣
U+2373 U+2393 U+23A3 U+23B3 U+2403 U+2413 U+2423 U+2503 U+2513 U+2523
uni2374 uni23A4 uni2404 uni2414 uni2424 uni2504 SF020000 SF090000

4 ⍴ ⎤ ␄ ␔ ␤ ┄ └ ┤
U+2374 U+23A4 U+2404 U+2414 U+2424 U+2504 U+2514 U+2524
uni2375 uni2395 uni23A5 uni2405 uni2415 uni2425 uni2505 uni2515 uni2525

5 ⍵ ⎕ ⎥ ␅ ␕ ␥ ┅ ┕ ┥
U+2375 U+2395 U+23A5 U+2405 U+2415 U+2425 U+2505 U+2515 U+2525
uni2376 uni23A6 uni2406 uni2416 uni2426 uni2506 uni2516 uni2526

6 ⍶ ⎦ ␆ ␖ ␦ ┆ ┖ ┦
U+2376 U+23A6 U+2406 U+2416 U+2426 U+2506 U+2516 U+2526
uni2377 uni23A7 uni2407 uni2417 uni2507 uni2517 uni2527

7 ⍷ ⎧ ␇ ␗ ┇ ┗ ┧
U+2377 U+23A7 U+2407 U+2417 U+2507 U+2517 U+2527
uni2378 uni23A8 uni2408 uni2418 SF040000 uni2528

8 ⍸ ⎨ ␈ ␘ ┘ ┨
U+2378 U+23A8 U+2408 U+2418 U+2518 U+2528
uni2379 uni23A9 uni2409 uni2419 uni2519 uni2529

9 ⍹ ⎩ ␉ ␙ ┙ ┩
U+2379 U+23A9 U+2409 U+2419 U+2519 U+2529
uni237A uni23AA uni23BA uni23DA uni240A uni241A uni250A uni251A uni252A

A ⍺ ⎪ ⎺ ⏚ ␊ ␚ ┊ ┚ ┪
U+237A U+23AA U+23BA U+23DA U+240A U+241A U+250A U+251A U+252A
uni237B uni239B uni23AB uni23BB uni240B uni241B uni250B uni251B uni252B

B ⍻ ⎛ ⎫ ⎻ ␋ ␛ ┋ ┛ ┫
U+237B U+239B U+23AB U+23BB U+240B U+241B U+250B U+251B U+252B
uni239C uni23AC uni23BC uni240C uni241C SF010000 SF080000 SF060000

C ⎜ ⎬ ⎼ ␌ ␜ ┌ ├ ┬
U+239C U+23AC U+23BC U+240C U+241C U+250C U+251C U+252C
uni237D uni238D uni239D uni23AD uni23BD uni240D uni241D uni250D uni251D uni252D

D ⍽ ⎍ ⎝ ⎭ ⎽ ␍ ␝ ┍ ┝ ┭
U+237D U+238D U+239D U+23AD U+23BD U+240D U+241D U+250D U+251D U+252D
uni237E uni238E uni239E uni23AE uni240E uni241E uni250E uni251E uni252E

E ⍾ ⎎ ⎞ ⎮ ␎ ␞ ┎ ┞ ┮
U+237E U+238E U+239E U+23AE U+240E U+241E U+250E U+251E U+252E
uni237F uni239F uni240F uni241F uni250F uni251F uni252F

F ⍿ ⎟ ␏ ␟ ┏ ┟ ┯
U+237F U+239F U+240F U+241F U+250F U+251F U+252F
253 254 255 256 257 258 259 25A 25B 25C 25D 25E
uni2530 uni2540 SF430000 SF420000 uni2570 upblock rtblock filledbox uni25C0

0 ┰ ╀ ═ ╠ ╰ ▀ ▐ ■ ◀
U+2530 U+2540 U+2550 U+2560 U+2570 U+2580 U+2590 U+25A0 U+25C0
uni2531 uni2541 SF240000 SF190000 ltshade H22073 uni25C1

1 ┱ ╁ ║ ╡ ░ □ ◁
U+2531 U+2541 U+2551 U+2561 U+2591 U+25A1 U+25C1
uni2532 uni2542 SF510000 SF200000 shade triagup

2 ┲ ╂ ╒ ╢ ▒ ▲
U+2532 U+2542 U+2552 U+2562 U+2592 U+25B2
uni2533 uni2543 SF520000 SF230000 dkshade

3 ┳ ╃ ╓ ╣ ▓
U+2533 U+2543 U+2553 U+2563 U+2593
SF070000 uni2544 SF390000 SF470000 uni2574 dnblock triaglf

4 ┴ ╄ ╔ ╤ ╴ ▄ ◄
U+2534 U+2544 U+2554 U+2564 U+2574 U+2584 U+25C4
uni2535 uni2545 SF220000 SF480000 uni2575

5 ┵ ╅ ╕ ╥ ╵
U+2535 U+2545 U+2555 U+2565 U+2575
uni2536 uni2546 SF210000 SF410000 uni2576 uni2596 uni25B6 uni25C6

6 ┶ ╆ ╖ ╦ ╶ ▖ ▶ ◆
U+2536 U+2546 U+2556 U+2566 U+2576 U+2596 U+25B6 U+25C6
uni2537 uni2547 SF250000 SF450000 uni2577 uni2597 uni25B7 uni25C7

7 ┷ ╇ ╗ ╧ ╷ ▗ ▷ ◇
U+2537 U+2547 U+2557 U+2567 U+2577 U+2597 U+25B7 U+25C7
uni2538 uni2548 SF500000 SF460000 uni2578 block uni2598 invbullet

8 ┸ ╈ ╘ ╨ ╸ █ ▘ ◘
U+2538 U+2548 U+2558 U+2568 U+2578 U+2588 U+2598 U+25D8
uni2539 uni2549 SF490000 SF400000 uni2579 uni2599 invcircle

9 ┹ ╉ ╙ ╩ ╹ ▙ ◙
U+2539 U+2549 U+2559 U+2569 U+2579 U+2599 U+25D9
uni253A uni254A SF380000 SF540000 uni257A uni259A H18543 triagrt lozenge

A ┺ ╊ ╚ ╪ ╺ ▚ ▪ ► ◊
U+253A U+254A U+255A U+256A U+257A U+259A U+25AA U+25BA U+25CA
uni253B uni254B SF280000 SF530000 uni257B uni259B H18551 circle uni25EB

B ┻ ╋ ╛ ╫ ╻ ▛ ▫ ○ ◫
U+253B U+254B U+255B U+256B U+257B U+259B U+25AB U+25CB U+25EB
SF050000 uni254C SF270000 SF440000 uni257C lfblock uni259C filledrect triagdn uni25CC

C ┼ ╌ ╜ ╬ ╼ ▌ ▜ ▬ ▼ ◌
U+253C U+254C U+255C U+256C U+257C U+258C U+259C U+25AC U+25BC U+25CC
uni253D uni254D SF260000 uni256D uni257D uni259D uni25AD

D ┽ ╍ ╝ ╭ ╽ ▝ ▭
U+253D U+254D U+255D U+256D U+257D U+259D U+25AD
uni253E uni254E SF360000 uni256E uni257E uni259E

E ┾ ╎ ╞ ╮ ╾ ▞
U+253E U+254E U+255E U+256E U+257E U+259E
uni253F uni254F SF370000 uni256F uni257F uni259F H18533

F ┿ ╏ ╟ ╯ ╿ ▟ ●
U+253F U+254F U+255F U+256F U+257F U+259F U+25CF
25F 260 263 264 266 270 271 27C 27D 291 293 295
uni25F0 female spade

0 ◰ ♀ ♠
U+25F0 U+2640 U+2660
uni25F1

1 ◱
U+25F1
uni25F2 male uni27D2 uni2912 uni2952

2 ◲ ♂ ⟒ ⤒ ⥒
U+25F2 U+2642 U+27D2 U+2912 U+2952
uni25F3 club uni2713 uni2913 uni2953

3 ◳ ♣ ✓ ⤓ ⥓
U+25F3 U+2663 U+2713 U+2913 U+2953
uni25F4 uni2934 uni2954

4 ◴ ⤴ ⥔
U+25F4 U+2934 U+2954
uni25F5 heart uni2935 uni2955

5 ◵ ♥ ⤵ ⥕
U+25F5 U+2665 U+2935 U+2955
uni25F6 diamond uni2936 uni2956

6 ◶ ♦ ⤶ ⥖
U+25F6 U+2666 U+2936 U+2956
uni25F7 uni2607 uni2937 uni2957

7 ◷ ☇ ⤷ ⥗
U+25F7 U+2607 U+2937 U+2957
uni2608 uni2708 uni2958

8 ☈ ✈ ⥘
U+2608 U+2708 U+2958
uni2609 uni2639 uni2669 uni2959

9 ☉ ☹ ♩ ⥙
U+2609 U+2639 U+2669 U+2959
smileface musicalnote uni27CA uni295A

A ☺ ♪ ⟊ ⥚
U+263A U+266A U+27CA U+295A
invsmileface musicalnotedbl uni295B

B ☻ ♫ ⥛
U+263B U+266B U+295B
sun uni266C uni295C

C ☼ ♬ ⥜
U+263C U+266C U+295C
uni266D uni295D

D ♭ ⥝
U+266D U+295D
uni266E uni295E

E ♮ ⥞
U+266E U+295E
uni266F uni295F

F ♯ ⥟
U+266F U+295F
296 298 29B 2A2 2A3 2A4 2A5 2A6 2A7 2AA 2AB 2AC
uni2960 uni2980 uni2A30 uni2A40 uni2AC0

0 ⥠ ⦀ ⨰ ⩀ ⫀
U+2960 U+2980 U+2A30 U+2A40 U+2AC0
uni2961 uni2A51 uni2AC1

1 ⥡ ⩑ ⫁
U+2961 U+2A51 U+2AC1
uni2A52 uni2AC2

2 ⩒ ⫂
U+2A52 U+2AC2
uni2A73 uni2AC3

3 ⩳ ⫃
U+2A73 U+2AC3
uni2AC4

4 ⫄
U+2AC4
uni2A25 uni2AC5

5 ⨥ ⫅
U+2A25 U+2AC5
uni29B6 uni2A66 uni2AC6

6 ⦶ ⩦ ⫆
U+29B6 U+2A66 U+2AC6
uni2A67 uni2A77 uni2AC7

7 ⩧ ⩷ ⫇
U+2A67 U+2A77 U+2AC7
uni2AC8

8 ⫈
U+2AC8

uni29BA uni2A2A uni2A6A

A ⦺ ⨪ ⩪
U+29BA U+2A2A U+2A6A
uni2A2B uni2A6B

B ⨫ ⩫
U+2A2B U+2A6B
uni2A2C

C ⨬
U+2A2C
uni2ABD

D ⪽
U+2ABD
uni2AAE uni2ABE

E ⪮ ⪾
U+2AAE U+2ABE
uni2ABF uni2ACF

F ⪿ ⫏
U+2ABF U+2ACF
2AD 2AE 2AF 2B1 2C6 2C7 2E1 2E2 2E3 2E4 A73 A78
uni2AD0 uni2AE0 uni2E40 uniA730 uniA780

0 ⫐ ⫠ ⹀ ꜰ Ꞁ
U+2AD0 U+2AE0 U+2E40 U+A730 U+A780
uni2AD1 uni2C71 uni2E41 uniA731 uniA781

1 ⫑ ⱱ ⹁ ꜱ ꞁ
U+2AD1 U+2C71 U+2E41 U+A731 U+A781
uni2AD2 uni2AE2 uni2AF2 uni2E42

2 ⫒ ⫢ ⫲ ⹂
U+2AD2 U+2AE2 U+2AF2 U+2E42
uni2AD3 uni2AE3

3 ⫓ ⫣
U+2AD3 U+2AE3
uni2AD4 uni2AE4 uni2AF4

4 ⫔ ⫤ ⫴
U+2AD4 U+2AE4 U+2AF4
uni2AD5 uni2AE5 uni2AF5

5 ⫕ ⫥ ⫵
U+2AD5 U+2AE5 U+2AF5
uni2AD6 uni2AE6 uni2E36

6 ⫖ ⫦ ⸶
U+2AD6 U+2AE6 U+2E36
uni2AE7 uni2E37

7 ⫧ ⸷
U+2AE7 U+2E37
uni2AE8 uni2E18 uni2E28 uni2E38

8 ⫨ ⸘ ⸨ ⸸
U+2AE8 U+2E18 U+2E28 U+2E38
uni2AD9 uni2AE9 uni2E29

9 ⫙ ⫩ ⸩
U+2AD9 U+2AE9 U+2E29
uni2ADA uni2AEA uni2B1A uni2E2A

A ⫚ ⫪ ⬚ ⸪
U+2ADA U+2AEA U+2B1A U+2E2A
uni2ADB uni2AEB uni2C7B uni2E2B uni2E4B

B ⫛ ⫫ ⱻ ⸫ ⹋
U+2ADB U+2AEB U+2C7B U+2E2B U+2E4B
uni2AEC uni2AFC uni2E2C

C ⫬ ⫼ ⸬
U+2AEC U+2AFC U+2E2C
uni2AED uni2E2D

D ⫭ ⸭
U+2AED U+2E2D
uni2ADE uni2C7E uni2E2E

E ⫞ Ȿ ⸮
U+2ADE U+2C7E U+2E2E
uni2ADF uni2C6F uni2C7F

F ⫟ Ɐ Ɀ
U+2ADF U+2C6F U+2C7F
A7A A7B A7F EE0 EE1 EE2 EE3 EE4 EE5 EE6 EE7 FB0
uniA7B0 uniEE00 uniEE10 uniEE20 uniEE30 uniEE40 uniEE50 uniEE60 uniEE70

0 Ʞ        
U+A7B0 U+EE00 U+EE10 U+EE20 U+EE30 U+EE40 U+EE50 U+EE60 U+EE70
uniA7B1 uniEE01 uniEE11 uniEE21 uniEE31 uniEE41 uniEE51 uniEE61 uniEE71 fi

1 Ʇ         fi
U+A7B1 U+EE01 U+EE11 U+EE21 U+EE31 U+EE41 U+EE51 U+EE61 U+EE71 U+FB01
uniEE02 uniEE12 uniEE22 uniEE32 uniEE42 uniEE52 uniEE62 uniEE72 fl

2         fl
U+EE02 U+EE12 U+EE22 U+EE32 U+EE42 U+EE52 U+EE62 U+EE72 U+FB02
uniEE03 uniEE13 uniEE23 uniEE33 uniEE43 uniEE53 uniEE63 uniEE73

3        
U+EE03 U+EE13 U+EE23 U+EE33 U+EE43 U+EE53 U+EE63 U+EE73
uniEE04 uniEE14 uniEE24 uniEE34 uniEE44 uniEE54 uniEE64 uniEE74

4        
U+EE04 U+EE14 U+EE24 U+EE34 U+EE44 U+EE54 U+EE64 U+EE74
uniEE05 uniEE15 uniEE25 uniEE35 uniEE45 uniEE55 uniEE65 uniEE75

5        
U+EE05 U+EE15 U+EE25 U+EE35 U+EE45 U+EE55 U+EE65 U+EE75
uniEE06 uniEE16 uniEE26 uniEE36 uniEE46 uniEE56 uniEE66 uniEE76

6        
U+EE06 U+EE16 U+EE26 U+EE36 U+EE46 U+EE56 U+EE66 U+EE76
uniEE07 uniEE17 uniEE27 uniEE37 uniEE47 uniEE57 uniEE67 uniEE77

7        
U+EE07 U+EE17 U+EE27 U+EE37 U+EE47 U+EE57 U+EE67 U+EE77
uniEE08 uniEE18 uniEE28 uniEE38 uniEE48 uniEE58 uniEE68 uniEE78

8        
U+EE08 U+EE18 U+EE28 U+EE38 U+EE48 U+EE58 U+EE68 U+EE78
uniEE09 uniEE19 uniEE29 uniEE39 uniEE49 uniEE59 uniEE69 uniEE79

9        
U+EE09 U+EE19 U+EE29 U+EE39 U+EE49 U+EE59 U+EE69 U+EE79
uniEE0A uniEE1A uniEE2A uniEE3A uniEE4A uniEE5A uniEE6A uniEE7A

A        
U+EE0A U+EE1A U+EE2A U+EE3A U+EE4A U+EE5A U+EE6A U+EE7A
uniA7FB uniEE0B uniEE1B uniEE2B uniEE3B uniEE4B uniEE5B uniEE6B uniEE7B

B ꟻ        
U+A7FB U+EE0B U+EE1B U+EE2B U+EE3B U+EE4B U+EE5B U+EE6B U+EE7B
uniA7FC uniEE0C uniEE1C uniEE2C uniEE3C uniEE4C uniEE5C uniEE6C uniEE7C

C ꟼ        
U+A7FC U+EE0C U+EE1C U+EE2C U+EE3C U+EE4C U+EE5C U+EE6C U+EE7C
uniA7FD uniEE0D uniEE1D uniEE2D uniEE3D uniEE4D uniEE5D uniEE6D uniEE7D

D ꟽ        
U+A7FD U+EE0D U+EE1D U+EE2D U+EE3D U+EE4D U+EE5D U+EE6D U+EE7D
uniEE0E uniEE1E uniEE2E uniEE3E uniEE4E uniEE5E uniEE6E uniEE7E

E        
U+EE0E U+EE1E U+EE2E U+EE3E U+EE4E U+EE5E U+EE6E U+EE7E
uniA7AF uniEE0F uniEE1F uniEE2F uniEE3F uniEE4F uniEE5F uniEE6F uniEE7F

F ꞯ        
U+A7AF U+EE0F U+EE1F U+EE2F U+EE3F U+EE4F U+EE5F U+EE6F U+EE7F
FFF 1045 1046 1047 1D10 1D11 1D12 1D13 1F68 1F69 1FB0 1FB1
u10450 u10460 u10470 u1D100 u1D110 u1F680 u1FB00 u1FB10

0 𐑐 𐑠 𐑰 𝄀 𝄐 🚀 🬀 🬐
U+10450 U+10460 U+10470 U+1D100 U+1D110 U+1F680 U+1FB00 U+1FB10
u10451 u10461 u10471 u1D101 u1D111 u1D121 u1F681 u1FB01 u1FB11

1 𐑑 𐑡 𐑱 𝄁 𝄑 𝄡 🚁 🬁 🬑
U+10451 U+10461 U+10471 U+1D101 U+1D111 U+1D121 U+1F681 U+1FB01 U+1FB11
u10452 u10462 u10472 u1D102 u1D122 u1F682 u1FB02 u1FB12

2 𐑒 𐑢 𐑲 𝄂 𝄢 🚂 🬂 🬒
U+10452 U+10462 U+10472 U+1D102 U+1D122 U+1F682 U+1FB02 U+1FB12
u10453 u10463 u10473 u1D103 u1FB03 u1FB13

3 𐑓 𐑣 𐑳 𝄃 🬃 🬓
U+10453 U+10463 U+10473 U+1D103 U+1FB03 U+1FB13
u10454 u10464 u10474 u1D104 u1FB04 u1FB14

4 𐑔 𐑤 𐑴 𝄄 🬄 🬔
U+10454 U+10464 U+10474 U+1D104 U+1FB04 U+1FB14
u10455 u10465 u10475 u1D105 u1FB05 u1FB15

5 𐑕 𐑥 𐑵 𝄅 🬅 🬕
U+10455 U+10465 U+10475 U+1D105 U+1FB05 U+1FB15
u10456 u10466 u10476 u1D106 u1D116 u1FB06 u1FB16

6 𐑖 𐑦 𐑶 𝄆 𝄖 🬆 🬖
U+10456 U+10466 U+10476 U+1D106 U+1D116 U+1FB06 U+1FB16
u10457 u10467 u10477 u1D107 u1D117 u1FB07 u1FB17

7 𐑗 𐑧 𐑷 𝄇 𝄗 🬇 🬗
U+10457 U+10467 U+10477 U+1D107 U+1D117 U+1FB07 U+1FB17
u10458 u10468 u10478 u1D108 u1D118 u1FB08 u1FB18

8 𐑘 𐑨 𐑸 𝄈 𝄘 🬈 🬘
U+10458 U+10468 U+10478 U+1D108 U+1D118 U+1FB08 U+1FB18
u10459 u10469 u10479 u1D119 u1FB09 u1FB19

9 𐑙 𐑩 𐑹 𝄙 🬉 🬙
U+10459 U+10469 U+10479 U+1D119 U+1FB09 U+1FB19
u1045A u1046A u1047A u1D11A u1D12A u1D13A u1F69A u1FB0A u1FB1A

A 𐑚 𐑪 𐑺 𝄚 𝄪 𝄺 🚚 🬊 🬚
U+1045A U+1046A U+1047A U+1D11A U+1D12A U+1D13A U+1F69A U+1FB0A U+1FB1A
u1045B u1046B u1047B u1D10B u1D12B u1D13B u1FB0B u1FB1B

B 𐑛 𐑫 𐑻 𝄋 𝄫 𝄻 🬋 🬛
U+1045B U+1046B U+1047B U+1D10B U+1D12B U+1D13B U+1FB0B U+1FB1B
u1045C u1046C u1047C u1D13C u1FB0C u1FB1C

C 𐑜 𐑬 𐑼 𝄼 🬌 🬜
U+1045C U+1046C U+1047C U+1D13C U+1FB0C U+1FB1C
uniFFFD u1045D u1046D u1047D u1FB0D u1FB1D

D � 𐑝 𐑭 𐑽 🬍 🬝
U+FFFD U+1045D U+1046D U+1047D U+1FB0D U+1FB1D
u1045E u1046E u1047E u1D11E u1FB0E u1FB1E

E 𐑞 𐑮 𐑾 𝄞 🬎 🬞
U+1045E U+1046E U+1047E U+1D11E U+1FB0E U+1FB1E
u1045F u1046F u1047F u1FB0F u1FB1F

F 𐑟 𐑯 𐑿 🬏 🬟
U+1045F U+1046F U+1047F U+1FB0F U+1FB1F
1FB2 1FB3 1FBB 1FBC
u1FB20 u1FB30 u1FBB0 u1FBC0 .notdef L.saa5052 Z.c2sc germandbls.sc q.sc u1FB07.sep6 u1FB17.sep6 u1FB27.sep6

0 🬠 🬰 🮰 🯀  L Z ß q 🬇 🬗 🬧
U+1FB20 U+1FB30 U+1FBB0 U+1FBC0
u1FB21 u1FB31 A.c2sc M.c2sc a.sc h.sc r.sc u1FB08.sep6 u1FB18.sep6 u1FB28.sep6

1 🬡 🬱 A M a h r 🬈 🬘 🬨
U+1FB21 U+1FB31
u1FB22 u1FB32 AE.c2sc N.c2sc ae.sc i.sc rtblock.sep4 u1FB09.sep6 u1FB19.sep6 u1FB29.sep6

2 🬢 🬲 Æ N æ i ▐ 🬉 🬙 🬩
U+1FB22 U+1FB32
u1FB23 u1FB33 B.c2sc O.c2sc b.sc j.sc rtblock.sep6 u1FB0A.sep6 u1FB1A.sep6 u1FB2A.sep6

3 🬣 🬳 B O b j ▐ 🬊 🬚 🬪
U+1FB23 U+1FB33
u1FB24 u1FB34 u1FBC4 C.c2sc OE.c2sc block.sep4 k.sc s.sc u1FB0B.sep6 u1FB1B.sep6 u1FB2B.sep6

4 🬤 🬴 🯄 C Œ █ k s 🬋 🬛 🬫
U+1FB24 U+1FB34 U+1FBC4
u1FB25 u1FB35 u1FBC5 D.c2sc P.c2sc block.sep6 l.sc semicolon.saa5051 u1FB0C.sep6 u1FB1C.sep6 u1FB2C.sep6

5 🬥 🬵 🯅 D P █ l ; 🬌 🬜 🬬
U+1FB25 U+1FB35 U+1FBC5
u1FB26 u1FB36 u1FBC6 D.saa5052 Q.c2sc c.sc lfblock.sep4 t.sc u1FB0D.sep6 u1FB1D.sep6 u1FB2D.sep6

6 🬦 🬶 🯆 D Q c ▌ t 🬍 🬝 🬭
U+1FB26 U+1FB36 U+1FBC6
u1FB27 u1FB37 u1FBC7 E.c2sc R.c2sc ccedilla.saa5054 lfblock.sep6 thorn.sc u1FB0E.sep6 u1FB1E.sep6 u1FB2E.sep6

7 🬧 🬷 🯇 E R ç ▌ þ 🬎 🬞 🬮
U+1FB27 U+1FB37 U+1FBC7
u1FB28 u1FB38 u1FBC8 Eth.c2sc S.c2sc colon.saa5051 m.sc u.sc u1FB0F.sep6 u1FB1F.sep6 u1FB2F.sep6

8 🬨 🬸 🯈 Ð S : m u 🬏 🬟 🬯
U+1FB28 U+1FB38 U+1FBC8
u1FB29 u1FB39 u1FBC9 F.c2sc T.c2sc comma.saa5051 n.sc u1FB00.sep6 u1FB10.sep6 u1FB20.sep6 u1FB30.sep6

9 🬩 🬹 🯉 F T , n 🬀 🬐 🬠 🬰
U+1FB29 U+1FB39 U+1FBC9
u1FB2A u1FB3A u1FBCA G.c2sc Thorn.c2sc d.sc o.sc u1FB01.sep6 u1FB11.sep6 u1FB21.sep6 u1FB31.sep6

A 🬪 🬺 🯊 G Þ d o 🬁 🬑 🬡 🬱
U+1FB2A U+1FB3A U+1FBCA
u1FB2B u1FB3B u1FBBB H.c2sc U.c2sc dnblock.sep4 ocircumflex.saa5054 u1FB02.sep6 u1FB12.sep6 u1FB22.sep6 u1FB32.sep6

B 🬫 🬻 🮻 H U ▄ ô 🬂 🬒 🬢 🬲
U+1FB2B U+1FB3B U+1FBBB
u1FB2C u1FBBC I.c2sc V.c2sc e.sc oe.sc u1FB03.sep6 u1FB13.sep6 u1FB23.sep6 u1FB33.sep6

C 🬬 🮼 I V e œ 🬃 🬓 🬣 🬳
U+1FB2C U+1FBBC
u1FB2D J.c2sc W.c2sc eth.sc oldsheqel u1FB04.sep6 u1FB14.sep6 u1FB24.sep6 u1FB34.sep6

D 🬭 J W ð  🬄 🬔 🬤 🬴
U+1FB2D
u1FB2E K.c2sc X.c2sc f.sc p.sc u1FB05.sep6 u1FB15.sep6 u1FB25.sep6 u1FB35.sep6

E 🬮 K X f p 🬅 🬕 🬥 🬵
U+1FB2E
u1FB2F L.c2sc Y.c2sc g.sc period.saa5051 u1FB06.sep6 u1FB16.sep6 u1FB26.sep6 u1FB36.sep6

F 🬯 L Y g . 🬆 🬖 🬦 🬶
U+1FB2F
u1FB37.sep6 uni1045A uni1046A uni1047A uni1FB02.sep6 uni1FB0A.sep6 uni1FB12.sep6 uni1FB1A.sep6 uni1FB22.sep6 uni1FB2A.sep6 uni1FB32.sep6 uni1FB3A.sep6

0 🬷 ó   ² ô   ³ õ  
u1FB38.sep6 uni1045B uni1046B uni1047B uni1FB03 uni1FB0B uni1FB13 uni1FB1B uni1FB23 uni1FB2B uni1FB33 uni1FB3B

1 🬸 ô   ³ õ   ¶ ö  
u1FB39.sep6 uni1045C uni1046C uni1047C uni1FB03.sep6 uni1FB0B.sep6 uni1FB13.sep6 uni1FB1B.sep6 uni1FB23.sep6 uni1FB2B.sep6 uni1FB33.sep6 uni1FB3B.sep6

2 🬹 õ   ¶ ö   · ÷  
u1FB3A.sep6 uni1045D uni1046D uni1047D uni1FB04 uni1FB0C uni1FB14 uni1FB1C uni1FB24 uni1FB2C uni1FB34 uni1FBB0

3 🬺 ö   · ÷   ¸ ø  
u1FB3B.sep6 uni1045E uni1046E uni1047E uni1FB04.sep6 uni1FB0C.sep6 uni1FB14.sep6 uni1FB1C.sep6 uni1FB24.sep6 uni1FB2C.sep6 uni1FB34.sep6 uni1FBBB

4 🬻 ÷   ¸ ø   ¹ ù 
ugrave.saa5054 uni1045F uni1046F uni1047F uni1FB05 uni1FB0D uni1FB15 uni1FB1D uni1FB25 uni1FB2D uni1FB35 uni1FBBC

5 ù ø   ¹ ù  º ú 
uni10450 uni10460 uni10470 uni1E9E.c2sc uni1FB05.sep6 uni1FB0D.sep6 uni1FB15.sep6 uni1FB1D.sep6 uni1FB25.sep6 uni1FB2D.sep6 uni1FB35.sep6 uni1FBC0

6 ¹ ù ẞ º ú  ½ û 
uni10451 uni10461 uni10471 uni1F680 uni1FB06 uni1FB0E uni1FB16 uni1FB1E uni1FB26 uni1FB2E uni1FB36 uni1FBC4

7 º ú  ½ û  Ã ü 
uni10452 uni10462 uni10472 uni1F681 uni1FB06.sep6 uni1FB0E.sep6 uni1FB16.sep6 uni1FB1E.sep6 uni1FB26.sep6 uni1FB2E.sep6 uni1FB36.sep6 uni1FBC5

8 ½ û  Ã ü  Å ý 
uni10453 uni10463 uni10473 uni1F682 uni1FB07 uni1FB0F uni1FB17 uni1FB1F uni1FB27 uni1FB2F uni1FB37 uni1FBC6

9 Ã ü  Å ý  Æ þ  
uni10454 uni10464 uni10474 uni1F69A uni1FB07.sep6 uni1FB0F.sep6 uni1FB17.sep6 uni1FB1F.sep6 uni1FB27.sep6 uni1FB2F.sep6 uni1FB37.sep6 uni1FBC7

A Å ý  Æ þ   × ÿ  
uni10455 uni10465 uni10475 uni1FB00 uni1FB08 uni1FB10 uni1FB18 uni1FB20 uni1FB28 uni1FB30 uni1FB38 uni1FBC8

B Æ þ   × ÿ   ð  
uni10456 uni10466 uni10476 uni1FB00.sep6 uni1FB08.sep6 uni1FB10.sep6 uni1FB18.sep6 uni1FB20.sep6 uni1FB28.sep6 uni1FB30.sep6 uni1FB38.sep6 uni1FBC9

C × ÿ   ð   ñ   ­
uni10457 uni10467 uni10477 uni1FB01 uni1FB09 uni1FB11 uni1FB19 uni1FB21 uni1FB29 uni1FB31 uni1FB39 uni1FBCA

D ð   ñ   ­ ò   °
uni10458 uni10468 uni10478 uni1FB01.sep6 uni1FB09.sep6 uni1FB11.sep6 uni1FB19.sep6 uni1FB21.sep6 uni1FB29.sep6 uni1FB31.sep6 uni1FB39.sep6 uni2126

E ñ   ­ ò   ° ó   Ω
uni10459 uni10469 uni10479 uni1FB02 uni1FB0A uni1FB12 uni1FB1A uni1FB22 uni1FB2A uni1FB32 uni1FB3A uni2295

F ò   ° ó   ² ô   ⊕
uni2596.sep4

0 ▖
uni2597.sep4

1 ▗
uni2598.sep4

2 ▘
uni2599.sep4

3 ▙
uni259A.sep4

4 ▚
uni259B.sep4

5 ▛
uni259C.sep4

6 ▜
uni259D.sep4

7 ▝
uni259E.sep4

8 ▞
uni259F.sep4

9 ▟
upblock.sep4

A ▀
v.sc

B v
w.sc

C w
x.sc

D x
y.sc

E y
z.sc

F z

You might also like