0% found this document useful (0 votes)
16 views9 pages

Des Example

The document provides design examples for mechanical anchors in both non-cracked and cracked concrete, detailing the anchoring conditions, design actions, and resistance calculations for tension and shear loading. It emphasizes the importance of verifying concrete cone, splitting, pryout, and edge design resistance according to ETAG 001 standards. The examples include specific parameters and calculations for different anchor types, showcasing how to determine the lowest design resistance values for combined loading scenarios.

Uploaded by

jihado2110
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views9 pages

Des Example

The document provides design examples for mechanical anchors in both non-cracked and cracked concrete, detailing the anchoring conditions, design actions, and resistance calculations for tension and shear loading. It emphasizes the importance of verifying concrete cone, splitting, pryout, and edge design resistance according to ETAG 001 standards. The examples include specific parameters and calculations for different anchor types, showcasing how to determine the lowest design resistance values for combined loading scenarios.

Uploaded by

jihado2110
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Design examples

Design examples
Example 1: mechanical anchor in non-cracked concrete
Anchoring conditions
concrete Non-cracked concrete C40/50
number of anchors Group of two anchors close to the edge
base material thickness h 250 mm
anchor spacing s 300 mm
edge distance c 120 mm
shear load direction perpendicular to free edge E 90 °
TENSION design action (fixing point) NSd 55,0 kN
SHEAR design action (fixing point) VSd 20,0 kN
(1)
TENSION design action per anchor NSd 27,5 kN
(1)
SHEAR design action per anchor VSd 10,0 kN

anchor HSL-3-G M16


The parameters are given in the
effective anchorage depth hef 100 mm anchor-section in the tables “setting
critical spacing for splitting failure scr,sp 380 mm details” and “setting parameters”
critical spacing for concrete cone failure scr,N 300 mm (for HSL-3-G M16)
critical edge distance for splitting failure ccr,sp 190 mm
critical edge distance for concrete cone failure ccr,N 150 mm
minimum edge distance smin 100 mm
for c 240 mm
minimum spacing cmin 100 mm
for s 240 mm

General remarks

According ETAG 001, Annex C, concrete cone, splitting, pryout and concrete edge design
resistance must be verified for the anchor group. Steel and pull-out design resistance must be
verified for the most unfavourable anchor of the anchor group.
According to the simplified design method given in this Fastening Technology Manual all
anchors of a group are loaded equally, the design resistance values given in the tables are valid
for one anchor.

48 6 / 2010
Design examples

Tension loading
Design steel resistance
NRd,s = 83,7 kN See “basic design tensile
resistance”
(for HSL-3-G M16)

Design concrete pull-out resistance


basic resistance N
0
Rd,p - See “basic design tensile
resistance”
concrete non-cracked concrete C40/50 fB -
(for HSL-3-G M16 pull-out failure is
0
NRd,p = N Rd,p fB =- not decisive in non-cracked
concrete)

Design concrete cone resistance


basic resistance N
0
Rd,c 33,6 kN See “basic design tensile
resistance”
concrete non-cracked concrete C40/50 fB 1,41
(for HSL-3-G M16)
f1,N 0,94 and “influencing factors”
c = 120 mm ccr,N = 150 mm c/ccr,N = 0,80  (for HSL-3-G M16)
f2,N 0,90
s = 300 mm scr,N = 300 mm s/scr,N = 1,00  f3,N 1,00
Influencing factors may be
anchor HSL-3-G M16  fre,N 1,00 interpolated.
0
NRd,c = N Rd,c fB f1,N f2,N f3,N fre,N = 40,1 kN

Design splitting resistance


basic resistance N
0
Rd,c 33,6 kN See “basic design tensile
resistance”
concrete non-cracked concrete C40/50 fB 1,41
(for HSL-3-G M16)
f1,sp 0,89 and “influencing factors”
c = 120 mm ccr,sp = 190 mm c/ccr,sp = 0,63  (for HSL-3-G M16)
f2,sp 0,82
s = 300 mm scr,sp = 380 mm s/scr,sp = 0,79  f3,sp 0,89
Influencing factors may be
2/3
h = 250 mm hef = 100 mm [h/(2hef)] = 2,5  fh,sp 1,16 interpolated.
anchor HSL-3-G M16  fre,N 1,00
0
NRd,sp = N Rd,c fB f1,sp f2,sp f3,sp fh,sp fre,N = 35,7 kN

Tension design resistance: lowest value NRd = 35,7 kN

6 / 2010 49
Design examples

Shear loading
Design steel resistance
VRd,s = 68,6 kN See “basic design shear resistance”
(for HSL-3-G M16)

Concrete pryout design resistance


basic resistance V
0
Rd,cp 67,2 kN See “basic design shear resistance”
(for HSL-3-G M16)
concrete non-cracked concrete C40/50 fB 1,41
and “influencing factors”
f1,N 0,94 (for HSL-3-G M16)
c = 120 mm ccr,N = 150 mm c/ccr,N = 0,80 
f2,N 0,90
Influencing factors may be
s = 300 mm scr,N = 300 mm s/scr,N = 1,00  f3,N 1,00
interpolated.
anchor HSL-3-G M16  fre,N 1,00
0
VRd,cp = V Rd,cp fB f1,N f2,N f3,N fre,N = 80,2 kN

Concrete edge design resistance


basic resistance V
0
Rd,c 13,7 kN See “basic design shear resistance”
(for HSL-3-G M16)
concrete non-cracked concrete C40/50 fB 1,41
and “influencing factors”
shear load direction (for HSL-3-G M16)
perpendicular to free edge
90 °  fE 2

h = 250 mm c = 120 mm h/c = 2,08  fh 1 Influencing factors may be


interpolated.
c = 120 mm hef = 100 mm c/hef = 1,20
 f4 1,20
s = 300 mm hef = 100 mm s/hef = 3,00
0
VRd,c = V Rd,c fB fE fh f4 = 46,4 kN

Shear design resistance: lowest value VRd = 46,4 kN

Combined tension and shear loading


EN

The following equation must be satisfied for combined tension and shear
loads: 1,2
(Eq. 1)
1,5 1,5
(E N) + (EV)  1 (Eq. 1)
1
EN (EV ) ratio between design action and design (Eq. 2)
resistance for tension (shear) loading 0,8

According to ETAG 001, Annex C, the following simplified equation may 0,6
be applied: 0,4
(Eq. 2) E N + E V  1,2 and EN  1, EV  1
0,2
Example (load values are valid for one anchor) 0 EV
NSd
(1)
= 27,5 kN (1)
EN = NSd /NRd = 0,770 1 3 0 0,2 0,4 0,6 0,8 1 1,2
VSd
(1)
= 10,0 kN (1)
EV = VSd /VRd = 0,216 1 3
NRd = 35,7 kN
EN + EV = 0,986  1,2 3
VRd = 46,4 kN 1,5
(EN) + (E V)
1,5
= 0,776 1 3

50 6 / 2010
Design examples

Example 2: mechanical anchor in cracked concrete with dense reinforcement


Anchoring conditions
concrete Cracked concrete C30/37
number of anchors Group of two anchors close to the edge
base material thickness h 150 mm
anchor spacing s 70 mm
edge distance c 120 mm
shear load direction perpendicular to free edge E 90 °
TENSION design action (fixing point) NSd 10,0 kN
SHEAR design action (fixing point) VSd 10,0 kN
(1)
TENSION design action per anchor NSd 5,0 kN
(1)
SHEAR design action per anchor VSd 5,0 kN

anchor HSL-3-SK M10


The parameters are given in the
effective anchorage depth hef 70 mm anchor-section in the tables “setting
critical spacing for splitting failure scr,sp 270 mm details” and “setting parameters”
critical spacing for concrete cone failure scr,N 210 mm (for HSL-3-SK M10)
critical edge distance for splitting failure ccr,sp 135 mm
critical edge distance for concrete cone failure ccr,N 105 mm
minimum edge distance smin 70 mm
for c 100 mm
minimum spacing cmin 70 mm
for s 160 mm

General remarks

According ETAG 001, Annex C, concrete cone, splitting, pryout and concrete edge design
resistance must be verified for the anchor group. Steel and pull-out design resistance must be
verified for the most unfavourable anchor of the anchor group.
According to the simplified design method given in this Fastening Technology Manual all
anchors of a group are loaded equally, the design resistance values given in the tables are valid
for one anchor.

6 / 2010 51
Design examples

Tension loading
Design steel resistance
NRd,s = 30,9 kN See “basic design tensile
resistance”
for HSL-3- SK M10

Design concrete pull-out resistance


basic resistance N
0
Rd,p 10,7 See “basic design tensile
resistance”
concrete Cracked concrete C30/37 fB 1,22
(for HSL-3- SK M10 pull-out failure
0
NRd,p = N Rd,p fB = 13,1 kN is not decisive in non-cracked
concrete)

Design concrete cone resistance


basic resistance N
0
Rd,c 14,1 kN See “basic design tensile
resistance”
concrete Cracked concrete C30/37 fB 1,22
(for HSL-3- SK M10)
f1,N 1,00 and “influencing factors”
c = 120 mm ccr,N = 105 mm c/ccr,N = 1,14  (for HSL-3- SK M10)
f2,N 1,00
s = 70 mm scr,N = 210 mm s/scr,N = 0,33  f3,N 0,67
Influencing factors may be
anchor HSL-3-SK M10  fre,N 0,85 interpolated.
0
NRd,c = N Rd,c fB f1,N f2,N f3,N fre,N = 9,8 kN

Design splitting resistance


basic resistance N
0
Rd,c 14,1 kN See “basic design tensile
resistance”
concrete Cracked concrete C30/37 fB 1,22
(for HSL-3- SK M10)
f1,sp 0,97 and “influencing factors”
c = 120 mm ccr,sp = 135 mm c/ccr,sp = 0,89  (for HSL-3- SK M10)
f2,sp 0,94
s = 70 mm scr,sp = 270 mm s/scr,sp = 0,26  f3,sp 0,63
Influencing factors may be
2/3
h = 150 mm hef = 70 mm [h/(2hef)] = 2,14  fh,sp 1,05 interpolated.
anchor HSL-3-SK M10  fre,N 0,85
0
NRd,sp = N Rd,c fB f1,sp f2,sp f3,sp fh,sp fre,N = 8,8 kN

Tension design resistance: lowest value NRd = 8,8 kN

52 6 / 2010
Design examples

Shear loading
Design steel resistance
VRd,s = 39,4 kN See “basic design shear resistance”
(for HSL-3- SK M10)

Concrete pryout design resistance


basic resistance V
0
Rd,cp 28,1 kN See “basic design shear resistance”
(for HSL-3- SK M10)
concrete Cracked concrete C30/37 fB 1,22
and “influencing factors”
f1,N 1,00 (for HSL-3- SK M10)
c = 120 mm ccr,N = 105 mm c/ccr,N = 1,14 
f2,N 1,00
Influencing factors may be
s = 70 mm scr,N = 210 mm s/scr,N = 0,33  f3,N 0,67
interpolated.
anchor HSL-3-SK M10  fre,N 0,85
0
VRd,cp = V Rd,cp fB f1,N f2,N f3,N fre,N = 19,5 kN

Concrete edge design resistance


basic resistance V
0
Rd,c 4,6 kN See “basic design shear resistance”
(for HSL-3- SK M10)
concrete Cracked concrete C30/37 fB 1,22
and “influencing factors”
shear load direction (for HSL-3- SK M10)
perpendicular to free edge
90 °  fE 2

h = 150 mm c = 120 mm h/c = 1,25  fh 0,88 Influencing factors may be


interpolated.
c = 120 mm hef = 70 mm c/hef = 1,71
 f4 1,34
s= 70 mm hef = 70 mm s/hef = 1,00
0
VRd,c = V Rd,c fB fE fh f4 = 13,2 kN

Shear design resistance: lowest value VRd = 13,2 kN

Combined tension and shear loading


EN

The following equation must be satisfied for combined tension and shear
loads: 1,2
(Eq. 1)
1,5 1,5
(E N) + (EV)  1 (Eq. 1)
1
EN (EV ) ratio between design action and design (Eq. 2)
resistance for tension (shear) loading 0,8

According to ETAG 001, Annex C, the following simplified equation may 0,6
be applied: 0,4
(Eq. 2) E N + E V  1,2 and E N  1, E V  1
0,2
Example (load values are valid for one anchor) 0 EV
NSd
(1)
= 5,0 kN (1)
EN = NSd /NRd = 0,567 1 3 0 0,2 0,4 0,6 0,8 1 1,2
VSd
(1)
= 5,0 kN (1)
EV = VSd /VRd = 0,378 1 3
NRd = 8,8 kN
EN + EV = 0,945  1,2 3
VRd = 13,2 kN 1,5
(E N) + (E V)
1,5
= 0,659 1 3

6 / 2010 53
Design examples

Example 3: adhesive anchoring system with variable embedment depth in


non-cracked concrete
Anchoring conditions
concrete Non-cracked concrete C50/60
service temperature
temperature range II
range of base material
number of anchors Group of two anchors close to the edge
base material thickness h 100 mm
anchor spacing s 150 mm
edge distance c 100 mm
shear load direction perpendicular to free edge E 0°
TENSION design action (fixing point) NSd 15,0 kN
SHEAR design action (fixing point) VSd 15,0 kN
(1)
TENSION design action per anchor NSd 7,5 kN
(1)
SHEAR design action per anchor VSd 7,5 kN
effective anchorage depth hef 70 mm

anchor Hilti HIT-RE 500-SD with HIT-V 5.8, size M12


The parameters are given in the
external diameter d 12 mm anchor-section in the tables “setting
typical anchorage depth hef,typ 110 mm details” and “setting parameters”
minimum edge distance smin 60 mm (for HIT-RE 500-SD with HIT-V 5.8,
minimum spacing cmin size M12)
60 mm

Critical spacings and edge distances


critical spacing for concrete cone failure scr,N and critical spacing for combined
pull-out and concrete cone failure scr,Np
hef = 70 mm scr,N = scr,Np = 3 hef = 210 mm

critical edge distance for concrete cone failure ccr,N and critical edge distance for
combined pull-out and concrete cone failure ccr,Np
hef = 70 mm ccr,N = ccr,Np = 1,5 hef = 105 mm

critical edge distance for splitting failure


for h  1,3 hef ccr,sp = 2,26 hef
for 1,3 hef < h < 2 hef ccr,sp = 4,6 hef - 1,8 h
for h  2 hef ccr,sp = 1,0 hef
h = 100 mm hef = 70 mm h/hef = 1,43  ccr,sp = 142 mm

critical spacing for splitting failure


ccr,sp = 142 mm scr,sp = 2 ccr,sp = 284 mm

General remarks

According EOTA Technical Report TR 029, concrete cone, combined concrete cone and pull-
out, splitting, pryout and concrete edge design resistance must be verified for the anchor group.
Steel design resistance must be verified for the most unfavourable anchor of the anchor group.
According to the simplified design method given in this Fastening Technology Manual all
anchors of a group are loaded equally, the design resistance values given in the tables are valid
for one anchor.
54 6 / 2010
Design examples

Tension loading
Design steel resistance
NRd,s = 28,0 kN See “basic design tensile
resistance”
(for HIT-RE 500-SD with HIT-V
5.8, size M12)

Design combined pull-out and concrete cone resistance


basic resistance N Rd,p
0
29,9 kN See “basic design tensile
resistance”
concrete Non-cracked concrete C50/60 fB,p 1,09
(for HIT-RE 500-SD with HIT-V
hef = 70 mm hef,typ = 110 mm fh,p = hef/hef,typ = 0,64 5.8, size M12)
f1,N 0,99
c = 100 mm ccr,N = 105 mm c/ccr,N = 0,95 
f2,N 0,97
s = 150 mm scr,N = 210 mm s/scr,N = 0,71  f3,N 0,86
hef = 70 mm  fre,N 1,00
0
NRd,p = N Rd,p fB,p f1,N f2,N f3,N fh,p fre,N = 17,1 kN

Design concrete cone resistance


basic resistance N
0
Rd,c 32,4 kN See “basic design tensile
resistance”
concrete Non-cracked concrete C50/60 fB 1,55
1,5
(for HIT-RE 500-SD with HIT-V
hef = 70 mm hef,typ = 110 mm fh,N = (hef/hef,typ) = 0,51 5.8, size M12)
f1,N 0,99 and “influencing factors”
c = 100 mm ccr,N = 105 mm c/ccr,N = 0,95  (for HIT-RE 500-SD with HIT-V
f2,N 0,97
5.8, size M12)
s = 150 mm scr,N = 210 mm s/scr,N = 0,71  f3,N 0,86
hef = 70 mm  fre,N 1,00 Influencing factors may be
0 interpolated.
NRd,c = N Rd,c fB fh,N f1,N f2,N f3,N fre,N = 21,1 kN

Design splitting resistance


basic resistance N
0
Rd,c 32,4 kN See “basic design tensile
resistance”
concrete Non-cracked concrete C50/60 fB 1,55
1,5
(for HIT-RE 500-SD with HIT-V
hef = 70 mm hef,typ = 110 mm fh,N = (hef/hef,typ) = 0,51 5.8, size M12)
f1,sp 0,91 and “influencing factors”
c = 100 mm ccr,sp = 142 mm c/ccr,sp = 0,70  (for HIT-RE 500-SD with HIT-V
f2,sp 0,85
5.8, size M12)
s = 150 mm scr,sp = 284 mm s/scr,sp = 0,53  f3,sp 0,76
hef = 70 mm  fre,N 1,00 Influencing factors may be
0 interpolated.
NRd,sp = N Rd,c fB fh,N f1,sp f2,sp f3,sp fre,N = 15,0 kN

Tension design resistance: lowest value NRd = 15,0 kN

6 / 2010 55
Design examples

Shear loading
Design steel resistance
VRd,s = 16,8 kN See “basic design shear
resistance”
(for HIT-RE 500-SD with HIT-V
5.8, size M12)

Concrete pryout design resistance


lower value of NRd,p and NRd,c 0
V = 17,1 kN See “basic design shear
resistance”
hef = 70 mm  k 2
(for HIT-RE 500-SD with HIT-V
0
VRd,cp = k V = 34,3 kN 5.8, size M12)
and “influencing factors”
(for HIT-RE 500-SD with HIT-V
5.8, size M12)

Concrete edge design resistance


basic resistance V
0
Rd,c 11,6 kN See “basic design shear
resistance”
concrete Non-cracked concrete C50/60 fB 1,55
(for HIT-RE 500-SD with HIT-V
shear load direction 5.8, size M12)
perpendicular to free edge
0°  fE 1,00
and “influencing factors”
h = 100 mm c = 100 mm h/c = 1,00  fh 0,82 (for HIT-RE 500-SD with HIT-V
5.8, size M12)
c = 100 mm hef = 70 mm c/hef = 1,43
 f4 1,28
s = 150 mm hef = 70 mm s/hef = 2,14 Influencing factors may be
hef = 70 mm d= 12 mm hef/d = 5,83  fhef 0,97 interpolated.
c= 100 mm d= 12 mm c/d = 8,33  fc 0,67
0
VRd,c = V Rd,c fB fß fh f4 fhef fc = 12,3 kN

Shear design resistance: lowest value VRd = 12,3 kN

Combined tension and shear loading


EN

The following equation must be satisfied for combined tension and shear
loads: 1,2
(Eq. 1)
1,5 1,5
(E N) + (EV)  1 (Eq. 1)
1
EN (EV ) ratio between design action and design (Eq. 2)
resistance for tension (shear) loading 0,8

According to ETAG 001, Annex C, the following simplified equation may 0,6
be applied: 0,4
(Eq. 2) E N + E V  1,2 and E N  1, E V  1
0,2
Example (load values are valid for one anchor) 0 EV
NSd
(1)
= 7,5 kN (1)
EN = NSd /NRd = 0,500 1 3 0 0,2 0,4 0,6 0,8 1 1,2
VSd
(1)
= 7,5 kN (1)
EV = VSd /VRd = 0,612 1 3
NRd = 15,0 kN
EN + EV = 1,112  1,2 3
VRd = 12,3 kN 1,5
(E N) + (E V )
1,5
= 0,832 1 3

56 6 / 2010

You might also like