0% found this document useful (0 votes)
29 views10 pages

Solution

The document is a key sheet for the JEE-MAIN exam conducted on January 10, 2024, covering Physics, Chemistry, and Mathematics sections with a total of 300 marks. It includes question numbers and corresponding answer keys for each subject, along with detailed solutions for various problems in Physics and Chemistry. The document serves as a reference for students preparing for the exam, providing essential solutions and methodologies for problem-solving.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views10 pages

Solution

The document is a key sheet for the JEE-MAIN exam conducted on January 10, 2024, covering Physics, Chemistry, and Mathematics sections with a total of 300 marks. It includes question numbers and corresponding answer keys for each subject, along with detailed solutions for various problems in Physics and Chemistry. The document serves as a reference for students preparing for the exam, providing essential solutions and methodologies for problem-solving.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

Sec: SR.

IIT_*CO-SC(MODEL-A,B&C) GTM-12(N) Date: 10-01-24


Time: 3 HRS JEE-MAIN Max. Marks: 300
KEY SHEET
PHYSICS
1 2 2 1 3 4 4 3 5 1
6 4 7 2 8 1 9 4 10 3
11 3 12 1 13 3 14 1 15 1
16 3 17 2 18 4 19 4 20 1
21 8 22 0 23 25 24 13 25 1
26 180 27 1 28 5 29 1 30 0

CHEMISTRY
31 4 32 2 33 3 34 1 35 1
36 3 37 2 38 1 39 4 40 1
41 2 42 1 43 2 44 3 45 3
46 4 47 3 48 3 49 4 50 1
51 2 52 138 53 7 54 9 55 158
56 6 57 7 58 144 59 26 60 12

MATHEMATICS
61 B 62 B 63 A 64 A 65 B
66 B 67 A 68 A 69 B 70 C
71 C 72 D 73 D 74 D 75 B
76 D 77 A 78 A 79 B 80 D
81 5 82 7 83 0 84 2 85 2
86 6 87 5 88 3 89 4 90 0
Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
SOLUTIONS
PHYSICS
1. v cos  300   v0 cos 600
v0
v
3
v0
1
e 2 3 
v0 3 3
2
2. P  2 Pl  Pm
3. Conceptual
4. Applying conservation of energy
2
1 1 1  5v  9 MR 2
Mgh  Mv02  I 02  M  0   I 
2 2 2  4  16
3R
Mx 2  I  x 
4
n3
5. For conservative forces, dU   dW
U f  U i  Wi  f
Or Wi  f  U i  U f  q Vi  V f 
5  105  2  106  2a  0.1  0
2
 
Or a  1.25  10 V / m  1250 V / m 2
3 2

6. Magnetic moment M  NIA


3
  3
2
M  I0 2a  I0a2
4 2
7.

Mass of coal

P 1
8. S av   0 cE02
4 R 2
2
P
 E0 
2 R 2 0 c
3

2  3.14  100  8.85  1012  3  108
=1.34 V/m

SR.IIT_*CO-SC Page NO: 2


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
4
9. Mass of the sphere is given by M   y 3 
3
4 
G   y3  m
Gravitational force F   
3
2
y
F
a .
m
a0 g
10.  tan   a0 
g 3
11. v cos 370  20cos 530
3
v cos 37 0  20   v  15m / s
5
m
12.  
l r 2
 m 2r l
  
 m r l
0.003 2  0.005 0.06 4
     4%
0.3 0.5 6 100
D   2D 
13.  n  1 t  
d d
 
 n  1 t  5892 A
2
3
14.  2v0   e  v0  3e
2
Here, v0  gR
kT
15.    p  constant
2 D 2 p
16. Conceptual
17. Since ML = Pt
Pt
L
M
18. When one e is removed from neutral helium atom, it
For one e species we know
13.6Z 2
En  eV/atom
n2
For helium ion, Z=2 and for first orbit n=1
13.6 2
 E1   2  54.4eV
1
2

 Energy required to removed this e =+54.4eV


 total energy required =54.4+24.6=79eV
103
19. n
200  106  1.6  10 19
20. use wheatstone bridge condition
21. Wave velocity as a function of distance (x) from top is

SR.IIT_*CO-SC Page NO: 3


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
T
v  g 9  x

2h
g
h
dx  2h 
   dt  time takenby stone  
0 g 9  x  0  g 
 h  8m
22. At steady state 10 resistor will be short circuited
u2
23.  100
g
  450
u 2 sin 2 
 25m
2g
24. Heat is extracted from the source in path DA and AB is
3  PV  5  2 PV  13
Q  R  0 0   R  0 0   PV 0 0
2  R  2  R  2
  
25. B  B1  B2
  
B  0  B1   B2
0 I 0 0 I1
 0
2 d 2 R
I R
I1  0
d
1
s1   60 18 
26. 2
s2  40  18
27. Conceptual
20   3
t

28. I1  1  e 5104
   1.5 A
10   2
4

20V
L  5mH

I1

6
5

5
20V I2

C  0.1mF

SR.IIT_*CO-SC Page NO: 4


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
t
20 103
I2  e  1.0 A
10
From superposition I  I1  I 2  2.5 A
dl
29.  dR  k  l
R1  k 2 l

R2  k 2  2 l 
R1  R2
30. No current flow through capacitor, it remains un charged

CHEMISTRY
31. Hybradisation
7.8
32. S  10 4 mol / l  10 5 mol / l
78
K SP  4 S 3  4  10 15
log10 K SP  log 4  15  14.4
33. Friedal Crafts alkylation, rearrangement
34.
35. Conceptual
36. H  H
C   A
0.06 0.001
Ecell   log  0.06 log 2  102  0.06  0.3  2   0.06  2.3  138V
1 0.2

37. A  I 2 , B  IO3
38. Conceptual
39. Ncert Points
40. Conceptual
41. BCD are correct
42. H  120  350  380  610 Kj / mol
43. Conceptual
44. Conceptual
45. Sulphur
46. Conceptual
47. Conceptual
48. Conceptual
49. T f  K f mi  5  0.4  3  6
50. Conceptual
51. 2 r  n , 2  0.53  2  
OH
COOH

52.
53. Conceptual
54. Conceptual
55.

SR.IIT_*CO-SC Page NO: 5


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
OH OH

Br Br

S= =331 T= =173

Br Br
56. Conceptual
57. Conceptual
58. x  6, y  0, z  4, p  2
0.693 2.303  0.3010
59. t1/ 2    0.3010
k 2.303
t75%  2t1/2  0.6020
2.303 100
t99%   log 2
2.303 1
 2  0.6020  2.6020
60. DU=12

MATHS
 8 
61. 61   cis  
 11 
1
Re     2   3   4   5   
2
1          ....    0
2 3 4 10

 2 Re     2  ....   5   1
62. Use the theory of combined mean and combined variance formulae
 1 1 1 1 1
63.  1  3    3  3    3  3       1
 2  2 3  3 4 
64. x 3  6x 2  3px  2p  0
x 4  x 2  x3  2
  
 0 
2 4 4
1 x
x2 x3
65. f  x   4e 2  1  x  
2 3
 7 1 1
g '    
 6  f ' 1 5

66. g  t    2 cot 1  3 t 
2
 
g   t    2 tan 1  3 t     2 cot 1  3 x 
2 2
 odd
1
g '  t   2. 2t
.3 t   log 3
1 3
 decreasing

SR.IIT_*CO-SC Page NO: 6


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
dy  1  cos x  
67.     sin x , f    1
dx  y  2
dy  sin x.y
 
dx 1  cos x
1 x
 dy   tan dx
y 2
x
log y  2 log sec    c
2
0   log 2  c
x
 y  2 cos 2  
2
y  0  2
x y
68.  1
a b
1 4
 1
a b
b
Sab  b
b4
4
 1 b 
b4
ds 4
 1
 b  4
2
db
b  4  2, 2
b  6, 2
b6;a 3
A9
69.  a  b  .c  1
c  a b
1
a  2, b  3, c 
3
1
   2  3  sin  
3
1
 sin  
3 2
  a  b  .c    2  3  sin 2    1
6sin   3 2
1
sin  
2


4

SR.IIT_*CO-SC Page NO: 7


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
x 1 y z  2
70. Any point on the line   is B  t  1, t , 2t  2  , t  R
1 1 2
Also AB is perpendicular true the line where A is (1,2,-4)
That is 1 t    t  2   2   2t  2   0
 t  1
 B=  0,1, 4 
 AB  2
71. Standard problem
x 1 x2  2 x2  x
72. ax 2  bx 6  cx 5  ....  h  x 2  x x  1 x2  1
x2  2 x2  x x  1
1 2 0
 h  0 1 1  1  2  2   5
2 0 1
73. sin 4 x   k  2  sin 2 x   k  3  0
k  2  k  3 1
 sin 2 x   k  3  sin 2 x  1  0
 0  k 3 1
 3  k  2 
74. 112012  232014  32012  1
1 1
I dx
0 1
1  x2  x 
x
1
x 
 dx 
0 1 x  x 1 x
2 2 4
2
75. A) Area  2  ydy
0

B) Standard formula
 1
C) Area  ab  ab .
4 2
2
D) Area   1dx
1

77. S  1, 2,3,........,50


Ways  250  225
 225  225  1
78. 1, 2,3,........,50
6m  9n multiple of 5
6m  6
9n  9 / 1
ways  50  25
63
79. P E  1
127

SR.IIT_*CO-SC Page NO: 8


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
tan 1  x  sin x cos x
80. Lim
x 0 x 1  x 
x  0 , n  0  x  x
x  0 , n  1  x  x  1
81. V  ai  bj  ck ; a, b, c  1,1
ways 8 C3  6 4 C3  8  7  6  4  25
82. 0  a, b, c, d  
2 cos a  6cos b  7 cos c  9 cos d  0
2 cos a  6sin b  7 cos c  9sin d  0
 4  81  36cos  a  d   36  4  84 cos  b  c 
cos  a  d  21 7
 
cos  b  c  9 3
a3 a7 a13
83. a4 a6 a12 
a5 a4 a11
16
 1  x  x 2    a r x16  r
8

r 0
So,   0
n  2  2r  1 
84. Sn   tan 1  
 4  r 2  r 2  2r  1 
r 1
 
n 
2
 tan 1  
2 
n
   lim   cot Sn 1  cot Sn 
n 
x2

  cot S1  cot Sn 
I    x 2  1   x  1 e x  dx
2
85.
x 2
 1 e x  t
  x  1 e x dx  dx
2

1

 x 2  1 e x 
2
I c
2
1
 f  x   c
2

2
2A  f  0   1  1  2
86. Basic type
A  95 
87. P     
 B   25  9  5 
 1 2 
 23  1
88. P E   
 1 1  2  2
 2 3

SR.IIT_*CO-SC Page NO: 9


Narayana IIT Academy 10-01-24_SR.IIT_*CO-SC(MODEL-A,B&C)_JEE-MAIN_GTM-12(N)_KEY&SOL
89. ways  D 4  D5
x  y
2
90. min
 x  2y   2
 x  y   2 1 y  y 
2 2

y
1 y  
2
3y y
 1, 1 
2 2
2
y , y2
3
y  2, x  2
2 2
y , x
3 3

SR.IIT_*CO-SC Page NO: 10

You might also like