Superposition P2 V2 2
Superposition P2 V2 2
1 (a) A microphone and cathode-ray oscilloscope (CRO) are used to analyse a sound wave of
frequency 5000 Hz. The trace that is displayed on the screen of the CRO is shown in Fig. 5.1.
1.0 cm
1.0 cm
Fig. 5.1
(ii) The intensity of the sound detected by the microphone is now increased from its initial
value of I to a new value of 3I. The frequency of the sound is unchanged. Assume that
the amplitude of the trace on the CRO screen is proportional to the amplitude of the
sound wave.
On Fig. 5.1, sketch the new trace shown on the screen of the CRO. [3]
(b) An arrangement for demonstrating interference using light is shown in Fig. 5.2.
3.6 × 10–4 m P
Coherent light waves from the slits form an interference pattern of bright and dark fringes on
the screen. The distance between the centres of two adjacent bright fringes is 4.0 × 10–3 m.
The central bright fringe is formed at point P.
(i) Explain why a bright fringe is produced by the waves meeting at point P.
...........................................................................................................................................
..................................................................................................................................... [1]
D = ...................................................... m [3]
(c) The wavelength λ of the light in (b) is now varied. This causes a variation in the distance x
between the centres of two adjacent bright fringes on the screen. The distance D and the
separation of the two slits are unchanged.
On Fig. 5.3, sketch a graph to show the variation of x with λ from λ = 400 nm to λ = 700 nm.
Numerical values of x are not required.
0
400 700
λ / nm
Fig. 5.3
[1]
[Total: 10]
9702/21/M/J/16/Q5
2 The variation with time t of the displacement y of a wave X, as it passes a point P, is shown in
Fig. 5.1.
4.0
3.0
\ / cm
ZDYH;
2.0
1.0
0
0 1.0 2.0 3.0 4.0 5.0
W / ms
–1.0
–2.0
–3.0
–4.0
Fig. 5.1
(b) A second wave Z with the same frequency as wave X also passes point P.
Wave Z has intensity 2I. The phase difference between the two waves is 90°.
On Fig. 5.1, sketch the variation with time t of the displacement y of wave Z.
[3]
(c) A double-slit interference experiment is used to determine the wavelength of light emitted
from a laser, as shown in Fig. 5.2.
0.45 mm
laser light
The separation of the slits is 0.45 mm. The fringes are viewed on a screen at a distance D
from the double slit.
The fringe width x is measured for different distances D. The variation with D of x is shown in
Fig. 5.3.
5.0
4.0
[ / mm
3.0
2.0
1.0
0
1.5 2.0 2.5 3.0 3.5
'/m
Fig. 5.3
(i) Use the gradient of the line in Fig. 5.3 to determine the wavelength, in nm, of the laser
light.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
[Total: 11]
9702/22/M/J/16/Q5
3 (a) Light of a single wavelength is incident on a diffraction grating. Explain the part played by
diffraction and interference in the production of the first order maximum by the diffraction
grating.
diffraction: .................................................................................................................................
...................................................................................................................................................
interference: ..............................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
[3]
(b) The diffraction grating illustrated in Fig. 5.1 is used with light of wavelength 486 nm.
second order
first order
light
wavelength 486 nm
59.4° zero order
diffraction
grating first order
The orders of the maxima produced are shown on the screen in Fig. 5.1. The angle between
the two second order maxima is 59.4°.
[Total: 6]
9702/23/M/J/16/Q7
4 (a) Apparatus used to produce stationary waves on a stretched string is shown in Fig. 7.1.
frequency
generator light string
pulley
vibrator wheel
masses
Fig. 7.1
(i) Describe two adjustments that can be made to the apparatus to produce stationary
waves on the string.
1. .......................................................................................................................................
...........................................................................................................................................
2. .......................................................................................................................................
...........................................................................................................................................
[2]
(ii) Describe the features that are seen on the stretched string that indicate stationary waves
have been produced.
...................................................................................................................................... [1]
(b) The variation with time t of the displacement x of a particle caused by a progressive wave R is
shown in Fig. 7.2. For the same particle, the variation with time t of the displacement x caused
by a second wave S is also shown in Fig. 7.2.
4.0
R
3.0
x / cm 2.0
S
1.0
0
0 0.2 0.4 0.6 0.8 1.0
t /s
ï
ï
ï
ï
Fig. 7.2
(i) Determine the phase difference between wave R and wave S. Include an appropriate
unit.
[Total: 6]
9702/21/M/J/17/Q4
5 (a) State the conditions required for the formation of stationary waves.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) One end of a string is attached to a vibrator. The string is stretched by passing the other end
over a pulley and attaching a load, as illustrated in Fig. 4.1.
string
pulley
A B
vibrator
support for
pulley
load
Fig. 4.1
The frequency of vibration of the vibrator is adjusted to 250 Hz and a transverse wave travels
along the string with a speed of 12 m s–1. The wave is reflected at the pulley and a stationary
wave forms on the string.
Fig. 4.2 shows the string between points A and B at time t = t1.
string
A B
Fig. 4.2
[3]
[Total: 7]
9702/22/M/J/17/Q6
6 (a) Interference fringes may be observed using a light-emitting laser to illuminate a double slit.
The double slit acts as two sources of light.
Explain
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) the reason why a double slit is used rather than two separate sources of light.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[1]
(b) A laser emitting light of a single wavelength is used to illuminate slits S1 and S2, as shown in
Fig. 6.1.
S1
laser
0.48 mm
light S2
screen
2.4 m
An interference pattern is observed on the screen AB. The separation of the slits is 0.48 mm.
The slits are 2.4 m from AB. The distance on the screen across 16 fringes is 36 mm, as
illustrated in Fig. 6.2.
16 fringes
36 mm
Fig. 6.2
P
7.2 cm
D1
11.2 cm water
D2
The wavelength of the waves is 1.6 cm. The phase difference between the waves produced
at D1 and D2 is zero.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) State and explain the effect on the answer to (c)(i) if the apparatus is changed so that,
separately,
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
2. the intensity of the wave from D1 is less than the intensity of that from D2.
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
[2]
[Total: 10]
9702/23/M/J/17/Q5
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
....................................................................................................................................
[3]
(b) A diffraction grating is used with different wavelengths of light. The angle θ of the second
order maximum is measured for each wavelength. The variation with wavelength λ of sin θ is
shown in Fig. 5.1.
0.60
sin θ
0.50
0.40
0.30
0.20
0.10
300 350 400 450 500 550
λ / nm
Fig. 5.1
(i) Determine the gradient of the line shown in Fig. 5.1.
gradient = ...........................................................[2]
(ii) Use the gradient determined in (i) to calculate the slit separation d of the diffraction
grating.
d = .......................................................m [2]
(iii) On Fig. 5.1, sketch a line to show the results that would be obtained for the first order
maxima. [1]
[Total: 10]
9702/21/M/J/18/Q5
8 (a) When monochromatic light is incident normally on a diffraction grating, the emergent light
waves have been diffracted and are coherent.
...........................................................................................................................................
.......................................................................................................................................[1]
...........................................................................................................................................
.......................................................................................................................................[1]
(b) Light consisting of only two wavelengths λ1 and λ2 is incident normally on a diffraction grating.
The third order diffraction maximum of the light of wavelength λ1 and the fourth order
diffraction maximum of the light of wavelength λ2 are at the same angle θ to the direction of
the incident light.
(i)
λ
Show that the ratio 2 is 0.75.
λ1
Explain your working.
[2]
λ1 = .................................................... nm [1]
[Total: 5]
9702/22/M/J/18/Q4
...........................................................................................................................................
.......................................................................................................................................[1]
...........................................................................................................................................
.......................................................................................................................................[1]
(b) A loudspeaker producing sound of constant frequency is placed near the open end of a pipe,
as shown in Fig. 4.1.
pipe piston
loudspeaker
Fig. 4.1
A movable piston is at distance x from the open end of the pipe. Distance x is increased from
x = 0 by moving the piston to the left with a constant speed of 0.75 cm s–1.
(i) A much louder sound is first heard when x = 4.5 cm. Assume that there is an antinode of
a stationary wave at the open end of the pipe.
(ii) After a time interval, a second much louder sound is heard. Calculate the time interval
between the first louder sound and the second louder sound being heard.
[Total: 7]
9702/23/M/J/18/Q5
10 (a) State the relationship between the intensity and the amplitude of a wave.
...................................................................................................................................................
...............................................................................................................................................[1]
(b) Microwaves of the same amplitude and wavelength are emitted in phase from two sources P
and Q. The sources are arranged as shown in Fig. 5.1.
P
1.840 m
2.020 m
path of detector
Q
Fig. 5.1
A microwave detector is moved along a path that is parallel to the line joining P and Q. A series
of intensity maxima and intensity minima are detected.
When the detector is at a point X, the distance PX is 1.840 m and the distance QX is 2.020 m.
The microwaves have a wavelength of 6.0 cm.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[3]
(iii) Describe the effect on the interference pattern along the path of the detector due to each
of the following separate changes.
....................................................................................................................................
....................................................................................................................................
2. The phase difference between the microwaves emitted from the sources changes to
180°.
....................................................................................................................................
....................................................................................................................................
[2]
[Total: 8]
9702/21/M/J/19/Q5
11 (a) A loudspeaker oscillates with frequency f to produce sound waves of wavelength λ. The
loudspeaker makes N oscillations in time t.
(i) State expressions, in terms of some or all of the symbols f, λ and N, for:
distance = ...............................................................
2. time t.
time t = ...............................................................
[2]
(ii) Use your answers in (i) to deduce the equation relating the speed v of the sound wave to
f and λ.
[1]
(b) The waveform of a sound wave is displayed on the screen of a cathode-ray oscilloscope
(c.r.o.), as shown in Fig. 5.1.
1.0 cm
1.0 cm
Fig. 5.1
S1
X
L
Q
S2
L
7.40 m Q
L
Y
The sources emit coherent sound waves of wavelength 0.85 m. A sound detector is moved
parallel to the line S1S2 from a point X to a point Y. Alternate positions of maximum loudness
L and minimum loudness Q are detected, as illustrated in Fig. 5.2.
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) State the phase difference between the two waves arriving at the position of minimum
loudness Q that is closest to point X.
[Total: 9]
9702/22/M/J/19/Q4
(i) displacement
...........................................................................................................................................
.......................................................................................................................................[1]
(ii) amplitude.
...........................................................................................................................................
.......................................................................................................................................[1]
(b) Two coherent waves X and Y meet at a point and superpose. The phase difference between
the waves at the point is 180°. Wave X has an amplitude of 1.2 cm and intensity I. Wave Y
has an amplitude of 3.6 cm.
(c) (i) Monochromatic light is incident on a diffraction grating. Describe the diffraction of the
light waves as they pass through the grating.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) A parallel beam of light consists of two wavelengths 540 nm and 630 nm. The light is
incident normally on a diffraction grating. Third-order diffraction maxima are produced for
each of the two wavelengths. No higher orders are produced for either wavelength.
d = ...................................................... m [3]
(iii) The beam of light in (c)(ii) is replaced by a beam of blue light incident on the same
diffraction grating.
State and explain whether a third-order diffraction maximum is produced for this blue
light.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
[Total: 11]
9702/23/M/J/19/Q5
13 A vertical tube of length 0.60 m is open at both ends, as shown in Fig. 5.1.
tube
N 0.60 m
direction of
incident
sound wave
Fig. 5.1
An incident sinusoidal sound wave of a single frequency travels up the tube. A stationary wave
is then formed in the air column in the tube with antinodes A at both ends and a node N at the
midpoint.
(a) Explain how the stationary wave is formed from the incident sound wave.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) On Fig. 5.2, sketch a graph to show the variation of the amplitude of the stationary wave with
height h above the bottom of the tube.
amplitude
0
0 0.20 0.40 0.60
h/m
Fig. 5.2
[2]
(c) For the stationary wave, state:
(i) the direction of the oscillations of an air particle at a height of 0.15 m above the bottom of
the tube
.......................................................................................................................................[1]
(ii) the phase difference between the oscillations of a particle at a height of 0.10 m and a
particle at a height of 0.20 m above the bottom of the tube.
Determine the frequency of the wave when a stationary wave is next formed.
[Total: 9]
9702/21/M/J/20/Q4
14 (a) (i) By reference to the direction of propagation of energy, state what is meant by a
longitudinal wave.
...........................................................................................................................................
..................................................................................................................................... [1]
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
(b) The wavelength of light from a laser is determined using the apparatus shown in Fig. 4.1.
double
slit screen
light
3.7 × 10 –4 m
2.3 m
The light from the laser is incident normally on the plane of the double slit.
The separation of the two slits is 3.7 × 10–4 m. The screen is parallel to the plane of the double
slit. The distance between the screen and the double slit is 2.3 m.
A pattern of bright fringes and dark fringes is seen on the screen. The separation of adjacent
bright fringes on the screen is 4.3 × 10–3 m.
Compare the appearance of the fringes before and after the change of intensity.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
[Total: 8]
9702/22/M/J/20/Q4
15 (a) State the difference between progressive waves and stationary waves in terms of the transfer
of energy along the wave.
...................................................................................................................................................
............................................................................................................................................. [1]
(b) A progressive wave travels from left to right along a stretched string. Fig. 4.1 shows part of
the string at one instant.
R direction of
wave travel
Q
P
string
0.48 m
Fig. 4.1
P, Q and R are three different points on the string. The distance between P and R is 0.48 m.
The wave has a period of 0.020 s.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
(c) A stationary wave is formed on a different string that is stretched between two fixed points
X and Y. Fig. 4.2 shows the position of the string when each point is at its maximum
displacement.
X Y
Z
Fig. 4.2
..................................................................................................................................... [1]
(ii) State the number of antinodes of the wave shown in Fig. 4.2.
(iii) State the phase difference between points W and Z on the string.
(iv) A new stationary wave is now formed on the string. The new wave has a frequency
that is half of the frequency of the wave shown in Fig. 4.2. The speed of the wave is
unchanged.
On Fig. 4.3, draw a position of the string, for this new wave, when each point is at its
maximum displacement.
X Y
Fig. 4.3
[1]
[Total: 11]
9702/23/M/J/20/Q4
16 Two progressive sound waves Y and Z meet at a fixed point P. The variation with time t of the
displacement x of each wave at point P is shown in Fig. 4.1.
4 wave Y
x / μm
2
0
0 1.0 2.0 3.0 t / ms 4.0
–2
wave Z
–4
–6
Fig. 4.1
(a) Use Fig. 4.1 to state one quantity of waves Y and Z that is:
..................................................................................................................................... [1]
(ii) different.
..................................................................................................................................... [1]
...................................................................................................................................................
............................................................................................................................................. [1]
(d) The two waves superpose at P. Use Fig. 4.1 to determine the resultant displacement at time
t = 0.75 ms.
[Total: 10]
9702/21/M/J/21/Q4
...................................................................................................................................................
............................................................................................................................................. [1]
(c) The light from the laser is incident normally on a diffraction grating.
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(d) A diffraction grating is used with different wavelengths of visible light. The angle θ of the
fourth-order maximum from the zero-order (central) maximum is measured for each
wavelength. The variation with wavelength λ of sin θ is shown in Fig. 4.1.
sin θ
0
0 400 700
λ / nm
Fig. 4.1
(i) The gradient of the graph is G.
Determine an expression, in terms of G, for the distance d between the centres of two
adjacent slits in the diffraction grating.
d = ......................................................... [2]
(ii) On Fig. 4.1, sketch a graph to show the results that would be obtained for the
second-order maxima. [2]
[Total: 10]
9702/22/M/J/21/Q4
...................................................................................................................................................
............................................................................................................................................. [1]
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(c) Electromagnetic waves of wavelength 0.040 m are emitted in phase from two sources X and
Y and travel in a vacuum. The arrangement of the sources is shown in Fig. 4.1.
X path of
detector
1.380 m
Y 1.240 m
A detector moves along a path that is parallel to the line XY. A pattern of intensity maxima and
minima is detected.
(i) State the name of the region of the electromagnetic spectrum that contains the waves
from X and Y.
..................................................................................................................................... [1]
[1]
(v) The waves from X alone have the same amplitude at point Z as the waves from Y alone.
..................................................................................................................................... [1]
(vi) The frequencies of the waves from X and Y are both decreased to the same lower value.
The waves stay within the same region of the electromagnetic spectrum.
Describe the effect of this change on the pattern of intensity maxima and minima along
the path of the detector.
...........................................................................................................................................
..................................................................................................................................... [1]
[Total: 11]
9702/23/M/J/21/Q4
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(b) Two waves, with intensities I and 4I, superpose. The waves have the same frequency.
(c) Coherent light of wavelength 550 nm is incident normally on a double slit of slit separation
0.35 mm. A series of bright and dark fringes forms on a screen placed a distance of 1.2 m
from the double slit, as shown in Fig. 4.1. The screen is parallel to the double slit.
screen
1.2 m
light
0.35 mm
wavelength
550 nm double
slit
(ii) The light of wavelength 550 nm is replaced with red light of a single frequency.
State and explain the change, if any, in the distance between the centres of adjacent
bright fringes.
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [1]
[Total: 8]
9702/21/M/J/22/Q5
20 A horizontal string is stretched between two fixed points A and B. A vibrator is used to oscillate the
string and produce an observable stationary wave.
point P
A B
Fig. 5.1
The dots in the diagram represent the positions of the nodes on the string. Point P on the string is
moving downwards.
The wave on the string has a speed of 35 m s–1 and a period of 0.040 s.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(b) On Fig. 5.1, sketch a line to show a possible position of the string a quarter of a cycle later
than the position shown in the diagram. [1]
[Total: 8]
9702/22/M/J/22/Q5
21 Light from a laser is used to produce an interference pattern on a screen, as shown in Fig. 5.1.
The light of wavelength 660 nm is incident normally on two slits that have a separation of 0.44 mm.
The double slit is parallel to the screen. The perpendicular distance between the double slit and
the screen is 1.8 m.
The central bright fringe on the screen is formed at point O. The next dark fringe below point O
is formed at point P. The next bright fringe and the next dark fringe below point P are formed at
points Q and R respectively.
(a) The light waves from the two slits are coherent.
...................................................................................................................................................
............................................................................................................................................. [1]
(i) the difference in their path lengths, in nm, from the slits
(d) The intensity of the light incident on the double slit is increased without changing the
frequency.
Describe how the appearance of the fringes after this change is different from, and similar to,
their appearance before the change.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [3]
(e) The light of wavelength 660 nm is now replaced by blue light from a laser.
State and explain the change, if any, that must be made to the separation of the two slits so
that the fringe separation on the screen is the same as it was for light of wavelength 660 nm.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
[Total: 11]
9702/23/M/J/22/Q5
22 (a) Parallel light rays from the Sun are incident normally on a magnifying glass. The magnifying
glass directs the light to an area A of radius r, as shown in Fig. 5.1.
A 5.5 cm
magnifying glass
The magnifying glass is circular in cross‑section with a radius of 5.5 cm. The intensity of the
light from the Sun incident on the magnifying glass is 1.3 kW m–2.
Assume that all of the light incident on the magnifying glass is transmitted through it.
(i) Calculate the power of the light from the Sun incident on the magnifying glass.
[2]
(ii) State the region of the electromagnetic spectrum to which these waves belong.
..................................................................................................................................... [1]
(iii) The beam from the laser now passes through a diffraction grating with 2400 lines per
millimetre. A detector sensitive to the waves emitted by the laser is moved through an
arc of 180° in order to detect the maxima produced by the waves passing through the
grating, as shown in Fig. 5.2.
detector
diffraction grating
laser
beam from
laser detector moves
along this line
Fig. 5.2
Calculate the number of maxima detected as the detector moves through 180° along the
line shown in Fig. 5.2. Show your working.
(iv) The laser is now replaced with one that emits electromagnetic waves with a wavelength
of 300 nm.
Explain, without calculation, what happens to the number of maxima now detected.
Assume that the detector is also sensitive to this wavelength of electromagnetic waves.
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
[Total: 12]
9702/21/O/N/16/Q5
...................................................................................................................................................
...............................................................................................................................................[2]
(b) Laser light of wavelength 500 nm is incident normally on a diffraction grating. The resulting
diffraction pattern has diffraction maxima up to and including the fourth-order maximum.
Calculate, for the diffraction grating, the minimum possible line spacing.
(c) The light in (b) is now replaced with red light. State and explain whether this is likely to result
in the formation of a fifth-order diffraction maximum.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
[Total: 7]
9702/22/O/N/16/Q4
...................................................................................................................................................
...............................................................................................................................................[2]
(b) An arrangement for demonstrating the interference of light is shown in Fig. 4.1.
'
double slit screen
The wavelength of the light from the laser is 580 nm. The separation of the slits is 0.41 mm.
The perpendicular distance between the double slit and the screen is D.
Coherent light emerges from the slits and an interference pattern is observed on the screen.
The central bright fringe is produced at point X. The closest dark fringes to point X are
produced at points Y and Z. The distance XY is 2.0 mm.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) State the difference in the distances, in nm, from each slit to point Y.
D = ...................................................... m [3]
(iv) The intensity of the light passing through the two slits was initially the same. The intensity
of the light through one of the slits is now reduced. Compare the appearance of the
fringes before and after the change of intensity.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
[Total: 10]
9702/21/O/N/17/Q3
25 (a) State the difference between a stationary wave and a progressive wave in terms of
...........................................................................................................................................
.......................................................................................................................................[1]
...........................................................................................................................................
.......................................................................................................................................[1]
(b) A tube is open at both ends. A loudspeaker, emitting sound of a single frequency, is placed
near one end of the tube, as shown in Fig. 3.1.
tube
A A A A
loudspeaker
0.60 m
Fig. 3.1
The speed of the sound in the tube is 340 m s–1. The length of the tube is 0.60 m.
A stationary wave is formed with an antinode A at each end of the tube and two antinodes
inside the tube.
...........................................................................................................................................
.......................................................................................................................................[1]
1. the wavelength,
[Total: 8]
9702/21/O/N/18/Q4
...................................................................................................................................................
...................................................................................................................................................
.............................................................................................................................................. [2]
(b) An arrangement for demonstrating the interference of light is shown in Fig. 4.1.
B
P D
Q B
D
light central
wavelength a 22 mm B bright
610 nm fringe
D
B
D
B
2.7 m
screen
double
slit
The wavelength of the light is 610 nm. The distance between the double slit and the screen
is 2.7 m.
An interference pattern of bright fringes and dark fringes is observed on the screen. The
centres of the bright fringes are labelled B and centres of the dark fringes are labelled D.
Point P is the centre of a particular dark fringe and point Q is the centre of a particular bright
fringe, as shown in Fig. 4.1. The distance across five bright fringes is 22 mm.
(i) The light waves leaving the two slits are coherent.
...........................................................................................................................................
...................................................................................................................................... [1]
(ii) 1. State the phase difference between the waves meeting at Q.
a = ...................................................... m [3]
(iv) A higher frequency of visible light is now used. State and explain the change to the
separation of the fringes.
...........................................................................................................................................
...................................................................................................................................... [1]
(v) The intensity of the light incident on the double slit is now increased without altering
its frequency. Compare the appearance of the fringes after this change with their
appearance before this change.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [2]
[Total: 11]
9702/22/O/N/18/Q5
27 Red light of wavelength 640 nm is incident normally on a diffraction grating having a line spacing
of 1.7 × 10–6 m, as shown in Fig. 5.1.
second order
The second order diffraction maximum of the light is at an angle θ to the direction of the incident
light.
[3]
(b) Determine a different wavelength of visible light that will also produce a diffraction maximum
at an angle of 49°.
[Total: 5]
9702/23/O/N/18/Q4
28 (a) On Fig. 4.1, complete the two graphs to illustrate what is meant by the amplitude A, the
wavelength λ and the period T of a progressive wave.
0 0
Fig. 4.1
[3]
(b) A horizontal string is stretched between two fixed points X and Y. A vibrator is used to oscillate
the string and produce a stationary wave. Fig. 4.2 shows the string at one instant in time.
string
X Y
Fig. 4.2
The speed of a progressive wave along the string is 30 m s–1. The stationary wave has a
period of 40 ms.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) A particle on the string oscillates with an amplitude of 13 mm. At time t, the particle has
zero displacement.
Calculate
displacement = ........................................................ mm
2. the total distance moved by the particle from time t to time (t + 100 ms).
distance = ........................................................ mm
[3]
(iii) Determine
[Total: 12]
9702/21/O/N/19/Q5
D1 D2
Fig. 5.1
The lines in the diagram represent crests. The waves have a wavelength of 6.0 cm.
(a) One condition that is required for an observable interference pattern is that the waves must
be coherent.
(i) Describe how the apparatus is arranged to ensure that the waves from the dippers are
coherent.
...........................................................................................................................................
..................................................................................................................................... [1]
(ii) State one other condition that must be satisfied by the waves in order for the interference
pattern to be observable.
...........................................................................................................................................
..................................................................................................................................... [1]
(b) Light from a lamp above the ripple tank shines through the water onto a screen below the
tank. Describe one way of seeing the illuminated pattern more clearly.
...................................................................................................................................................
............................................................................................................................................. [1]
(c) The speed of the waves is 0.40 m s–1. Calculate the period of the waves.
(d) Fig. 5.1 shows a point X that lies on a crest of the wave from D1 and midway between two
adjacent crests of the wave from D2.
(e) On Fig. 5.1, draw one line, at least 4 cm long, which joins points where only maxima of the
interference pattern are observed. [1]
[Total: 8]
9702/22/O/N/19/Q5
...................................................................................................................................................
............................................................................................................................................. [1]
(b) A cathode-ray oscilloscope (CRO) is used to analyse a sound wave. The screen of the CRO
is shown in Fig. 5.1.
1 cm
1 cm
Fig. 5.1
20.8 m C
A
8.0 m
reflecting
B surface
Distance AB is 8.0 m and distance AC is 20.8 m. Angle ABC is 90°. Assume that there is no
phase change of the sound wave due to the reflection at point B. The wavelength of the
waves is 1.6 m.
(i) Show that the waves meeting at C have a path difference of 6.4 m.
[1]
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
(iii) Determine the difference between the times taken for the sound to travel from the source
to point C along the two different paths.
(iv) The wavelength of the sound is gradually increased. Calculate the wavelength of the
sound when an intensity maximum is next detected at point C.
[Total: 9]
9702/23/O/N/19/Q5
31 (a) Light waves emerging from the slits of a diffraction grating are coherent and produce an
interference pattern.
(i) coherence
...........................................................................................................................................
..................................................................................................................................... [1]
(ii) interference.
...........................................................................................................................................
..................................................................................................................................... [1]
(b) A narrow beam of light from a laser is incident normally on a diffraction grating, as shown in
Fig. 5.1.
second order
maximum spot
Spots of light are seen on a screen positioned parallel to the grating. The angle corresponding
to each of the second order maxima is 51°. The number of lines per unit length on the
diffraction grating is 6.7 × 105 m–1.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[1]
[Total: 5]
9702/21/O/N/20/Q6
32 (a) Describe the conditions required for two waves to be able to form a stationary wave.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(b) A stationary wave on a string has nodes and antinodes. The distance between a node and an
adjacent antinode is 6.0 cm.
..................................................................................................................................... [1]
(ii) Calculate the wavelength of the two waves forming the stationary wave.
(iii) State the phase difference between the particles at two adjacent antinodes of the
stationary wave.
[Total: 5]
9702/22/O/N/20/Q5
33 Microwaves with the same wavelength and amplitude are emitted in phase from two sources X
and Y, as shown in Fig. 5.1.
path of detector
X
A microwave detector is moved along a path parallel to the line joining X and Y. An interference
pattern is detected. A central intensity maximum is located at point A and there is an adjacent
intensity minimum at point B. The microwaves have a wavelength of 0.040 m.
Describe the effect, if any, on the intensity of the central maximum at point A.
...................................................................................................................................................
...................................................................................................................................................
............................................................................................................................................. [2]
(d) Describe the effect, if any, on the positions of the central intensity maximum and the adjacent
intensity minimum due to the following separate changes.
...........................................................................................................................................
..................................................................................................................................... [1]
(ii) The phase difference between the microwaves emitted by the sources X and Y changes
to 180°.
...........................................................................................................................................
..................................................................................................................................... [1]
[Total: 9]
9702/23/O/N/20/Q5
1.0 cm
1.0 cm
Fig. 5.1
(ii) The intensity of the sound wave is now doubled. The frequency is unchanged. Assume
that the amplitude of the trace is proportional to the amplitude of the sound wave.
On Fig. 5.1, sketch the new trace shown on the screen. [2]
...........................................................................................................................................
..................................................................................................................................... [1]
(b) A beam of light of a single wavelength is incident normally on a diffraction grating, as illustrated
in Fig. 5.2.
16°
zero order
light beam 16°
second order
Fig. 5.2 does not show all of the emerging beams from the grating. The angle between the
second-order emerging beam and the central zero-order beam is 16°. The grating has a line
spacing of 3.4 × 10–6 m.
(ii) Determine the highest order of emerging beam from the grating.
[Total: 9]
9702/22/O/N/21/Q5
35 A tube is initially fully submerged in water. The axis of the tube is kept vertical as the tube is slowly
raised out of the water, as shown in Fig. 5.1.
loudspeaker
surface of water
air column
water
wall of
tube
Fig. 5.1
A loudspeaker producing sound of frequency 530 Hz is positioned at the open top end of the tube
as it is raised. The water surface inside the tube is always level with the water surface outside the
tube. The speed of the sound in the air column in the tube is 340 m s–1.
(a) Describe a simple way that a student, without requiring any additional equipment, can detect
when a stationary wave is formed in the air column as the tube is being raised.
...................................................................................................................................................
............................................................................................................................................. [1]
(b) Determine the height of the top end of the tube above the surface of the water when a
stationary wave is first produced in the tube. Assume that an antinode is formed level with the
top of the tube.
[Total: 5]
9702/23/O/N/21/Q5
36 (a) For a progressive wave on a stretched string, state what is meant by amplitude.
...................................................................................................................................................
............................................................................................................................................. [1]
(c) A two-source interference experiment uses the arrangement shown in Fig. 5.1.
D
light from laser,
wavelength λ double slit screen
Light from a laser is incident normally on a double slit. A screen is parallel to the double slit.
Interference fringes are seen on the screen at distance D from the double slit. The separation
of the centres of the slits is a. The light has wavelength λ.
The separation x of the centres of adjacent bright fringes is measured for different values of
distance D.
The variation with D of x is shown in Fig. 5.2.
0
0 D
Fig. 5.2
(i) Determine an expression, in terms of G and λ, for the separation a of the slits.
a = ......................................................... [2]
(ii) The experiment is repeated with slits of separation 2a. The wavelength of the light is
unchanged.
On Fig. 5.2, sketch a graph to show the results of this experiment. [2]
[Total: 8]
9702/21/O/N/22/Q4
37 (a) Polarisation is a phenomenon associated with light waves but not with sound waves.
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [1]
(ii) State why light waves can be plane polarised but sound waves cannot.
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [1]
(b) Two polarising filters A and B are positioned so that their planes are parallel to each other and
perpendicular to a central axis line XY, as shown in Fig. 4.1.
filter filter
A B
direction of
rotation
I0
X Y
unpolarised
light
vertical horizontal
transmission axis transmission axis
Fig. 4.1
The transmission axis of filter A is vertical and the transmission axis of filter B is horizontal.
Unpolarised light of a single frequency is directed along the line XY from a source positioned
at X. The light emerging from filter A is vertically plane polarised and has intensity I0.
Filter B is rotated from its starting position about the line XY, as shown in Fig. 4.1.
1
After rotation, the intensity of the light emerging from filter B is I0.
4
Calculate the angle of rotation of filter B from its starting position.
(c) A microwave of intensity I0 and amplitude A0 meets another microwave of the same frequency
1
and of intensity I0 travelling in the opposite direction. Both microwaves are vertically plane
4
polarised and superpose where they meet.
(i) Explain, without calculation, why these two waves cannot form a stationary wave with
zero amplitude at its nodes.
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... [2]
(ii) Determine, in terms of A0, the maximum amplitude of the wave formed.
[Total: 10]
9702/22/O/N/22/Q5
38 (a) Two progressive sound waves meet to form a stationary wave. The two waves have the
same amplitude, wavelength, frequency and speed.
State the other condition that must be fulfilled by the two waves in order for them to produce
the stationary wave.
............................................................................................................................................. [1]
(b) A stationary wave is formed on a string that is stretched between two fixed points A and B.
Fig. 5.1 shows the string at time t = 0 when each point is at its maximum displacement.
A B
Fig. 5.1
(i) On Fig. 5.1, sketch a solid line to show the position of the string:
vertically polarised
incident light 30° transmitted transmitted
beam, beam, beam,
intensity I0 intensity I1 intensity I2
Fig. 5.2
The transmitted light from the first polarising filter has intensity I1. This light is then incident
normally on a second polarising filter that has its transmission axis at 90° to the vertical. The
transmitted light from the second filter has intensity I2.
Calculate:
I1
(i) the ratio
I0
I1
= ......................................................... [2]
I0
I2
(ii) the ratio .
I0
I2
= ......................................................... [2]
I0
[Total: 10]
9702/23/O/N/22/Q4
39 (a) A progressive longitudinal wave travels through a medium from left to right. Fig. 4.1 shows
the positions of some of the particles of the medium at time t0 and a graph showing the
particle displacements at the same time t0.
X Y Z
displacement
0
distance
Fig. 4.1
Particle displacements to the right of their equilibrium positions are shown as positive on the
graph and particle displacements to the left are shown as negative on the graph.
(i) On Fig. 4.1, draw circles around two particles which are exactly one wavelength apart.
[1]
(ii) On Fig. 4.1, sketch a line on the graph to represent the displacements of the particles for
T
the longitudinal wave at time t0 + . [3]
4
T
(iii) State the direction of motion of particle Z at time t0 + .
4
..................................................................................................................................... [1]
(b) The frequency of the wave in (a) is 16 kHz. The distance between particles X and Y is 0.19 m.
(d) The sound wave in (c) now meets another sound wave travelling in the opposite direction.
(i) State a condition necessary for these two waves to form a stationary wave.
..................................................................................................................................... [1]
(ii) State two ways in which a stationary wave differs from a progressive wave.
1 ........................................................................................................................................
...........................................................................................................................................
2 ........................................................................................................................................
...........................................................................................................................................
[2]
[Total: 13]