0% found this document useful (0 votes)
11 views10 pages

Final

The document outlines a Shiny dashboard application focused on various statistical models, including Multiple Linear Regression (MLR), General Linear Model (GLM), Linear Mixed Model (LMM), and General Linear Mixed Model (GLMM). Each section provides an introduction, mathematical models, assumptions, and applications of the respective statistical techniques. The project is submitted by Renalyn M. Cablo and is part of a final project for a statistical computing course.

Uploaded by

ranalym05.05
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views10 pages

Final

The document outlines a Shiny dashboard application focused on various statistical models, including Multiple Linear Regression (MLR), General Linear Model (GLM), Linear Mixed Model (LMM), and General Linear Mixed Model (GLMM). Each section provides an introduction, mathematical models, assumptions, and applications of the respective statistical techniques. The project is submitted by Renalyn M. Cablo and is part of a final project for a statistical computing course.

Uploaded by

ranalym05.05
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

final.

r2530289

2024-12-10

install.packages(c("shiny", "shinydashboard", "shinythemes"))

## Installing packages into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'


## (as 'lib' is unspecified)
# Load required libraries
library(shiny)
library(shinydashboard)

##
## Attaching package: 'shinydashboard'
## The following object is masked from 'package:graphics':
##
## box
library(shinythemes)

# UI function
header <- dashboardHeader(title = "Statistical Models")

sidebar <- dashboardSidebar(


sidebarMenu(
menuItem("Introduction", tabName = "Home", icon = icon("home")),
menuItem("MLR", tabName = "mlr", icon = icon("chart-line")),
menuItem("GLM", tabName = "glm", icon = icon("chart-bar")),
menuItem("LMM", tabName = "lmm", icon = icon("project-diagram")),
menuItem("GLMM", tabName = "glmm", icon = icon("cogs")),
menuItem("Bayesian Regression", tabName = "bayesian", icon = icon("brain"))
)
)

body <- dashboardBody(


tabItems(
tabItem(
tabName = "Home",
h1("Statistical Models"),
h2("Submitted by: Renalyn M. Cablo"),
h2("Submitted to: Carlito Daarol"),
h3("Final Project On STT126 Statistical Computing II"),
h4("Date Publish: December 10, 2024")

),
# Page 1: MLR

1
tabItem(
tabName = "mlr",
fluidRow(
box(
title = "Multiple Linear Regression (MLR)",
width = 12,

# Introduction
h3("Multiple Linear Regression Model"),
p("Multiple Linear Regression (MLR) is a statistical technique used to model the relationship

# Mathematical Model
h4("Mathematical Model"),
withMathJax("$$y_i = \\beta_0 + \\beta_1 x_{i1} + \\beta_2 x_{i2} + \\dots + \\beta_p x_{ip} +

p("Where:"),
tags$ul(
tags$li(" \\( y_i \\): The dependent (response) variable for observation \\( i \\)."),
tags$li(" \\( \\beta_0 \\): The intercept term, representing the expected value of \\( y \\)
tags$li(" \\( \\beta_1, \\beta_2, \\dots, \\beta_p \\): The regression coefficients for the
tags$li(" \\( x_{ij} \\): The value of the \\( j \\)-th independent variable for observation
tags$li(" \\( \\epsilon_i \\): The error term for observation \\( i \\)."),
tags$li(" \\( n \\): The number of observations."),
tags$li(" \\( p \\): The number of predictors (independent variables).")
),
# Matrix Form Representation
h4("Matrix Form Representation"),
p("The MLR model can also be represented in matrix notation as:"),
withMathJax("$$\\mathbf{y} = \\mathbf{X} \\boldsymbol{\\beta} + \\boldsymbol{\\epsilon}$$"),

p("Where:"),
tags$ul(
tags$li(" \\( \\mathbf{y} \\) is the \\( n \\times 1 \\) vector of dependent variable values
withMathJax("$$
\\mathbf{y} =
\\begin{bmatrix}
y_1 \\\\ y_2 \\\\ \\vdots \\\\ y_n
\\end{bmatrix}
$$"),
tags$li(" \\( \\mathbf{X} \\) is the \\( n \\times (p+1) \\) design matrix of independent va
withMathJax("$$
\\mathbf{X} =
\\begin{bmatrix}
1 & x_{11} & x_{12} & \\dots & x_{1p} \\\\
1 & x_{21} & x_{22} & \\dots & x_{2p} \\\\
\\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\
1 & x_{n1} & x_{n2} & \\dots & x_{np}
\\end{bmatrix}
$$"),
tags$li(" \\( \\boldsymbol{\\beta} \\) is the \\( (p+1) \\times 1 \\) vector of coefficients
withMathJax("$$
\\boldsymbol{\\beta} =
\\begin{bmatrix}

2
\\beta_0 \\\\ \\beta_1 \\\\ \\vdots \\\\ \\beta_p
\\end{bmatrix}
$$"),
tags$li(" \\( \\boldsymbol{\\epsilon} \\) is the \\( n \\times 1 \\) vector of error terms:"
withMathJax("$$
\\boldsymbol{\\epsilon} =
\\begin{bmatrix}
\\epsilon_1 \\\\ \\epsilon_2 \\\\ \\vdots \\\\ \\epsilon_n
\\end{bmatrix}
$$")
),

# Assumptions of the Model


h4("Assumptions of the Model"),
p("To ensure valid inferences, the MLR model relies on the following assumptions:"),
tags$ol(
tags$li("**Linearity**: The relationship between the independent variables and the dependent
tags$li("**Independence**: Observations are independent of each other."),
tags$li("**Homoscedasticity**: The variance of the error terms is constant across all levels
tags$li("**Normality**: The error terms are normally distributed."),
tags$li("**No Multicollinearity**: Independent variables are not highly correlated with each
),

# Estimation of Coefficients
h4("Estimation of Coefficients"),
p("The coefficients \\( \\boldsymbol{\\beta} \\) are typically estimated using the method of *
withMathJax("$$\\hat{\\boldsymbol{\\beta}} = (\\mathbf{X}ˆT \\mathbf{X})ˆ{-1} \\mathbf{X}ˆT \\
p("Multiple Linear Regression is a foundational tool in statistical modeling, providing insigh
)
)
)
,

# Page 2: GLM
tabItem(
tabName = "glm",
fluidRow(
box(
title = "General Linear Model (GLM)",
width = 12,

# Introduction
h3("General Linear Model"),
p("The General Linear Model (GLM) is a flexible statistical framework that extends linear regr

# Mathematical Model
h4("Mathematical Model"),
p("The GLM consists of three components:"),
tags$ol(
tags$li("**Random Component**: Specifies the probability distribution of the dependent varia
tags$li("**Systematic Component**: Describes the linear predictor as a linear combination of
tags$li("**Link Function**: Connects the linear predictor to the mean of the dependent varia
),

3
p("The general form of the GLM is given by:"),
withMathJax("$$g(\\mu_i) = \\eta_i = \\beta_0 + \\beta_1 x_{i1} + \\beta_2 x_{i2} + \\dots + \

p("Where:"),
tags$ul(
tags$li("\\( g(\\cdot) \\): The **link function** that relates the expected value \\( \\mu_i
tags$li("\\( \\eta_i \\): The **linear predictor**, a linear combination of independent vari
tags$li("\\( \\beta_0, \\beta_1, \\dots, \\beta_p \\): The regression coefficients to be est
tags$li("\\( x_{ij} \\): The \\( j \\)-th independent variable for observation \\( i \\)."),
tags$li("\\( n \\): The number of observations."),
tags$li("\\( p \\): The number of predictors (independent variables).")
),

# Exponential Family
h4("Exponential Family of Distributions"),
p("The random component specifies the distribution of \\( y_i \\), often from the exponential
withMathJax("$$f(y_i | \\theta_i, \\phi) = \\exp\\left( \\frac{y_i \\theta_i - b(\\theta_i)}{a

p("Where:"),
tags$ul(
tags$li("\\( \\theta_i \\): The canonical parameter."),
tags$li("\\( \\phi \\): The dispersion parameter."),
tags$li("\\( a(\\phi), b(\\theta_i), c(y_i, \\phi) \\): Functions defining the exponential f
),

# Common Link Functions


h4("Common GLM Link Functions and Applications"),
tags$table(
class = "table table-striped",
tags$thead(
tags$tr(
tags$th("Link Function"),
tags$th("Mathematical Form"),
tags$th("Application")
)
),
tags$tbody(
tags$tr(
tags$td("Identity Link"),
tags$td("$$g(\\mu) = \\mu$$"),
tags$td("Linear Regression")
),
tags$tr(
tags$td("Log Link"),
tags$td("$$g(\\mu) = \\log(\\mu)$$"),
tags$td("Poisson Regression (Count Data)")
),
tags$tr(
tags$td("Logit Link"),
tags$td("$$g(\\mu) = \\log\\left(\\frac{\\mu}{1-\\mu}\\right)$$"),
tags$td("Logistic Regression (Binary Outcomes)")
),
tags$tr(

4
tags$td("Probit Link"),
tags$td("$$g(\\mu) = \\Phiˆ{-1}(\\mu)$$"),
tags$td("Probit Regression (Binary Outcomes)")
)
)
),

# Assumptions
h4("Assumptions of the GLM"),
p("To ensure the validity of the model, the following assumptions are typically made:"),
tags$ol(
tags$li("The dependent variable \\( y \\) follows a distribution from the exponential family
tags$li("The relationship between the dependent variable's mean \\( \\mu \\) and the linear
tags$li("Observations are independent of each other.")
),

# Estimation of Parameters
h4("Estimation of Parameters"),
p("The regression coefficients \\( \\boldsymbol{\\beta} \\) are estimated using the method of
withMathJax("$$L(\\boldsymbol{\\beta}) = \\prod_{i=1}ˆn f(y_i | \\theta_i, \\phi)$$"),
p("The log-likelihood is maximized to obtain parameter estimates:"),
withMathJax("$$\\ell(\\boldsymbol{\\beta}) = \\sum_{i=1}ˆn \\log f(y_i | \\theta_i, \\phi)$$")

# Conclusion
h4("Conclusion"),
p("The General Linear Model provides a unified framework for modeling diverse data types. By s
)
)
)
,

# Page 3: LMM
tabItem(
tabName = "lmm",
fluidRow(
box(
title = "Linear Mixed Model (LMM)",
width = 12,

# Introduction
h3("Linear Mixed Model"),
p("A Linear Mixed Model (LMM) is an extension of the linear regression model that includes bot

# Mathematical Model
h4("Mathematical Model"),
p("The general form of the LMM is:"),
withMathJax("$$\\mathbf{y} = \\mathbf{X} \\boldsymbol{\\beta} + \\mathbf{Z} \\mathbf{u} + \\bo
p("Where:"),
tags$ul(
tags$li("\\( \\mathbf{y} \\): The \\( n \\times 1 \\) vector of observed responses."),
tags$li("\\( \\mathbf{X} \\): The \\( n \\times p \\) fixed-effects design matrix, relating
tags$li("\\( \\boldsymbol{\\beta} \\): The \\( p \\times 1 \\) vector of fixed-effects coeff
tags$li("\\( \\mathbf{Z} \\): The \\( n \\times q \\) random-effects design matrix, relating

5
tags$li("\\( \\mathbf{u} \\): The \\( q \\times 1 \\) vector of random effects, assumed to f
withMathJax("$$\\mathbf{u} \\sim \\mathcal{N}(\\mathbf{0}, \\mathbf{G})$$"),
tags$li("\\( \\boldsymbol{\\epsilon} \\): The \\( n \\times 1 \\) vector of residual errors,
withMathJax("$$\\boldsymbol{\\epsilon} \\sim \\mathcal{N}(\\mathbf{0}, \\sigmaˆ2 \\mathbf{I}
tags$li("\\( \\mathbf{G} \\): Covariance matrix of the random effects."),
tags$li("\\( \\sigmaˆ2 \\): The residual variance.")
),

p("The random effects introduce dependencies among observations, accommodating correlations wi

# Components
h4("Components of the Model"),
tags$ol(
tags$li("**Fixed Effects**: Population-level effects, common to all groups or clusters. For
tags$li("**Random Effects**: Group-specific effects that vary across clusters or levels of a
),

# Assumptions
h4("Model Assumptions"),
tags$ol(
tags$li("**Linearity**: The relationship between the fixed effects and the response variable
tags$li("**Normality of Random Effects**: The random effects \\( \\mathbf{u} \\) are normall
tags$li("**Homoscedasticity**: The residual variance \\( \\sigmaˆ2 \\) is constant across al
tags$li("**Independence**: The residual errors \\( \\boldsymbol{\\epsilon} \\) are independe
),

# Parameter Estimation
h4("Estimation of Parameters"),
p("The parameters of an LMM include \\( \\boldsymbol{\\beta} \\), the fixed effects, and the v
p("The log-likelihood function under REML is:"),
withMathJax("$$\\ell_{\\text{REML}} = -\\frac{1}{2} \\left[ \\log|\\mathbf{V}| + \\log|\\mathb
p("Where:"),
tags$ul(
tags$li("\\( \\mathbf{V} = \\mathbf{Z} \\mathbf{G} \\mathbf{Z}ˆT + \\sigmaˆ2 \\mathbf{I} \\)
),

# Applications
h4("Applications"),
p("LMMs are widely used in fields such as:"),
tags$ul(
tags$li("**Longitudinal Data Analysis**: Modeling repeated measurements on the same subjects
tags$li("**Hierarchical Data**: Analyzing data with nested structures, such as students with
tags$li("**Clustered Data**: Accounting for correlations within clusters, such as geographic
),

# Conclusion
h4("Conclusion"),
p("Linear Mixed Models are a powerful tool for analyzing data with complex dependency structur
)
)
)
,

6
# Page 4: GLMM
tabItem(
tabName = "glmm",
fluidRow(
box(
title = "General Linear Mixed Model (GLMM)",
width = 12,

# Introduction
h3("General Linear Mixed Model"),
p("The General Linear Mixed Model (GLMM) is an extension of the Linear Mixed Model (LMM) that

# Mathematical Model
h4("Mathematical Model"),
p("The GLMM combines fixed effects, random effects, and a link function to model the mean of t
withMathJax("$$g(\\mu_i) = \\mathbf{x}_iˆ\\top \\boldsymbol{\\beta} + \\mathbf{z}_iˆ\\top \\ma
p("Where:"),
tags$ul(
tags$li("\\( g(\\cdot) \\): The link function that relates the expected value \\( \\mu_i = \
tags$li("\\( \\mu_i \\): The mean of the dependent variable \\( y_i \\), where \\( y_i \\) f
tags$li("\\( \\mathbf{x}_i \\): The vector of fixed-effect covariates for observation \\( i
tags$li("\\( \\boldsymbol{\\beta} \\): The vector of fixed-effect coefficients."),
tags$li("\\( \\mathbf{z}_i \\): The vector of random-effect covariates for observation \\( i
tags$li("\\( \\mathbf{u} \\): The vector of random effects, assumed to follow:"),
withMathJax("$$\\mathbf{u} \\sim \\mathcal{N}(\\mathbf{0}, \\mathbf{G}),$$"),
tags$li("\\( \\mathbf{G} \\): The covariance matrix of the random effects.")
),

p("The response variable \\( y_i \\) is modeled using a probability distribution from the expo
withMathJax("$$f(y_i | \\theta_i, \\phi) = \\exp\\left( \\frac{y_i \\theta_i - b(\\theta_i)}{a
p("Where:"),
tags$ul(
tags$li("\\( \\theta_i \\): The canonical parameter related to \\( \\mu_i \\) through \\( \\
tags$li("\\( \\phi \\): The dispersion parameter."),
tags$li("\\( a(\\phi), b(\\theta_i), c(y_i, \\phi) \\): Functions defining the exponential f
),

# Components of the Model


h4("Components of the Model"),
tags$ol(
tags$li("**Fixed Effects**: Represent the population-level effects, described by \\( \\bolds
tags$li("**Random Effects**: Capture group-level variability or hierarchical structure, repr
tags$li("**Link Function**: Connects the mean response \\( \\mu_i \\) to the linear predicto
),

# Common Distributions
h4("Common Distributions and Link Functions"),
p("GLMMs are highly flexible due to the choice of distribution and link function. Some common
tags$ul(
tags$li("**Binomial Distribution** with a **logit link** for binary data:"),
withMathJax("$$g(\\mu) = \\log\\left(\\frac{\\mu}{1-\\mu}\\right)$$"),
tags$li("**Poisson Distribution** with a **log link** for count data:"),
withMathJax("$$g(\\mu) = \\log(\\mu)$$"),

7
tags$li("**Normal Distribution** with an **identity link** for continuous data:"),
withMathJax("$$g(\\mu) = \\mu$$")
),

# Estimation of Parameters
h4("Estimation of Parameters"),
p("Parameter estimation in GLMMs involves estimating both fixed effects \\( \\boldsymbol{\\bet
tags$ul(
tags$li("**Maximum Likelihood Estimation (MLE)**: Maximizing the marginal likelihood of the
tags$li("**Restricted Maximum Likelihood (REML)**: Used for variance component estimation.")
),
p("The marginal likelihood is given by:"),
withMathJax("$$L(\\boldsymbol{\\beta}, \\mathbf{G}) = \\int \\prod_{i=1}ˆn f(y_i | \\mu_i, \\p
p("Where \\( \\mathbf{G} \\) is the covariance matrix of the random effects."),

# Model Assumptions
h4("Model Assumptions"),
tags$ol(
tags$li("The response variable follows a distribution from the exponential family."),
tags$li("Random effects \\( \\mathbf{u} \\) follow a multivariate normal distribution."),
tags$li("Observations within a group are independent, given the random effects."),
tags$li("The link function is correctly specified.")
),

# Applications
h4("Applications"),
p("GLMMs are widely used in:"),
tags$ul(
tags$li("**Ecology**: Modeling species count data with spatial or temporal random effects.")
tags$li("**Medicine**: Analyzing patient outcomes with random effects for clinics or doctors
tags$li("**Education**: Modeling test scores with random effects for schools or classrooms."
),

# Conclusion
h4("Conclusion"),
p("The General Linear Mixed Model is a powerful and flexible framework for analyzing hierarchi
)
)
)
,

# Page 5: Bayesian Regression


tabItem(
tabName = "bayesian",
fluidRow(
box(
title = "Bayesian Regression Model",
width = 12,

# Introduction
h3("Bayesian Regression"),
p("Bayesian regression provides a probabilistic approach to linear regression by combining pri

8
# Mathematical Model
h4("Mathematical Model"),
p("The Bayesian regression model is built upon the following components:"),

# Likelihood Function
h5("Likelihood Function"),
p("The likelihood function represents the probability of the observed data given the model par
withMathJax("$$y_i = \\mathbf{x}_iˆ\\top \\boldsymbol{\\beta} + \\epsilon_i, \\quad i = 1, 2,
p("Where:"),
tags$ul(
tags$li("\\( y_i \\): Response variable for observation \\( i \\),"),
tags$li("\\( \\mathbf{x}_i \\): \\( p \\)-dimensional vector of predictors for observation \
tags$li("\\( \\boldsymbol{\\beta} \\): \\( p \\)-dimensional vector of regression coefficien
tags$li("\\( \\epsilon_i \\sim \\mathcal{N}(0, \\sigmaˆ2) \\): Normally distributed errors w
),
p("The likelihood is given by:"),
withMathJax("$$p(\\mathbf{y} | \\mathbf{X}, \\boldsymbol{\\beta}, \\sigmaˆ2) = \\prod_{i=1}ˆn
p("Where \\( \\mathbf{y} \\) is the vector of observed responses and \\( \\mathbf{X} \\) is th

# Prior Distribution
h5("Prior Distribution"),
p("In Bayesian regression, prior distributions are assigned to the parameters \\( \\boldsymbol
withMathJax("$$\\boldsymbol{\\beta} \\sim \\mathcal{N}(\\boldsymbol{\\mu}_0, \\mathbf{\\Sigma}
withMathJax("$$\\sigmaˆ2 \\sim \\text{Inverse-Gamma}(\\alpha_0, \\beta_0),$$"),
p("Where:"),
tags$ul(
tags$li("\\( \\boldsymbol{\\mu}_0 \\) and \\( \\mathbf{\\Sigma}_0 \\): Mean vector and covar
tags$li("\\( \\alpha_0 \\) and \\( \\beta_0 \\): Shape and scale parameters of the inverse-g
),

# Posterior Distribution
h5("Posterior Distribution"),
p("Using Bayes' theorem, the posterior distribution is proportional to the product of the like
withMathJax("$$p(\\boldsymbol{\\beta}, \\sigmaˆ2 | \\mathbf{y}, \\mathbf{X}) \\propto p(\\math
# Marginal and Predictive Distributions
h5("Marginal and Predictive Distributions"),
p("The marginal posterior of \\( \\boldsymbol{\\beta} \\) can be obtained by integrating out \
withMathJax("$$p(\\boldsymbol{\\beta} | \\mathbf{y}, \\mathbf{X}) = \\int p(\\boldsymbol{\\bet
p("The predictive distribution for a new observation \\( \\mathbf{x}_\\text{new} \\) is:"),
withMathJax("$$p(y_\\text{new} | \\mathbf{x}_\\text{new}, \\mathbf{y}, \\mathbf{X}) = \\int p(

# Model Components
h4("Model Components"),
tags$ol(
tags$li("**Likelihood**: Encodes the relationship between predictors and the response variab
tags$li("**Prior**: Introduces prior beliefs or information about the parameters."),
tags$li("**Posterior**: Combines the likelihood and the prior, representing updated beliefs
tags$li("**Predictive Distribution**: Provides probabilistic predictions for new data points
),

# Advantages
h4("Advantages of Bayesian Regression"),
tags$ul(

9
tags$li("Handles uncertainty by providing full posterior distributions."),
tags$li("Allows incorporation of prior knowledge or expert opinion."),
tags$li("Naturally extends to hierarchical and complex models."),
tags$li("Facilitates model comparison using metrics like Bayes factors.")
),

# Parameter Estimation
h4("Parameter Estimation"),
p("Bayesian regression often uses computational methods for posterior estimation, including:")
tags$ul(
tags$li("**Markov Chain Monte Carlo (MCMC)**: Sampling methods such as Gibbs sampling or Met
tags$li("**Variational Inference**: Approximates the posterior using optimization.")
),

# Applications
h4("Applications"),
p("Bayesian regression is widely used in:"),
tags$ul(
tags$li("**Economics**: Incorporating prior beliefs about economic relationships."),
tags$li("**Medicine**: Modeling patient outcomes with prior clinical knowledge."),
tags$li("**Engineering**: Reliability analysis with prior data from similar systems."),
tags$li("**Machine Learning**: As a foundation for Bayesian models in supervised learning.")
),

# Conclusion
h4("Conclusion"),
p("Bayesian regression offers a flexible and robust framework for modeling relationships betwe
)
)
)
)
)

ui <- dashboardPage(header, sidebar, body, skin = "blue")

# Server function
server <- function(input, output) {}

# Run the application


shinyApp(ui = ui, server = server)

10

You might also like