110 kV Cable Sizing Calculation Guide
110 kV Cable Sizing Calculation Guide
Revision 1.0
2
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Summary
Preface 4
Codes and Standards 5
Standards 5
Specifications 5
Sources 6
Documents/drawings included in this report 6
System description 7
Load capacity study(Ampacity) 8
Inputs 8
Rated current per cable/conductor 10
Thermal resistivity 10
Partial drying-out and ground water level 10
Cable laying and pulling recommendations 11
Calculations 12
Results 12
Short-circuit withstand 13
Inputs for ETAP simulation 13
Layout 14
Cable/conductor calculation conform short-circuit 15
Conclusion 17
Cable sheath grounding 18
Sheath both ends grounded 19
Sheath single grounded 20
Conclusion 21
Cable trench for K-110-01 23
Annex 1: Cable configurations 24
Annex 2: 64/110 kV Cable and Conductor SAL 910 25
Annex 3: Ampacity calculation reports 26
Annex 4: ETAP-report Short-circuit 27
Annex 5: Cable sheath double grounded 28
Annex 6: Cable sheath single grounded 29
Annex 7: Single Line Diagram 30
3
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Preface
For the Ampacity calculation, the IEC 60287-1.1 & IEC 60287-2.1 are followed as well as the
IEC 61597
From now on, the cable/conductor designation will be the following:
- K-110-01: Isolated cable between substation Westermeerdijk and NOP substation
- K-110-02: flexible conductor used at the NOP substation
- K-110-03: Bus-bar conductor used at the NOP sub substation
This document will prove that these two requirements are met for all conductors, K-110-01;
K-110-02 & K-110-03.
4
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Standards
In addition to the general codes and standards, the following specific norms are relevant to this
document:
Specifications
The following client specifications must be followed for the calculation:
Table 2
5
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Sources
In addition the specifications, the following sources documents/software have been used in the
preparation of this document.
6
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
System description
This document describes the design requirements, starting points and design choices that were taken
into account during the design process of the installations concerned.
The calculation methods must meet the IEC standards and the client specifications.
The design of the 110 kV isolated cable and conductor cross-section is part of the engineering of the
primary installation.
The design must result in an installation that, among other things, complies with the European
standards IEC 60287 and IEC 60865-1 as well as IEC 61597 applicable to such a high voltage installations.
7
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
(*) Cable supplier is not chosen yet, therefore a cable 400 mm2 from ELAND has been selected for the
first calculation. Once the cable brand is definitive, a new document revision will be done incorporating
the real info from the picked supplier.
8
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
• Bus-bar Ø80/10 mm
9
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Thermal resistivity
The minimum cable laying depth is 1 m below surface, consequently, partial drying-out is not applicable
10
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
11
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Calculations
Current flowing through a cable generates heat through the resistive losses in the conductors.
This heat must be within certain limits in order not to reduce the cable life-time and for a healthy
operation.
The insulation will be XLPE, so the cable can be loaded continuously to a conductor temperature of 90
˚C.
Conductors, K-110-02 & K-110-03, have a maximum operation temperature of 80 ˚C, in accordance with
the technical specification included in Annex 2.
The method and formulas used are based on the following standards:
- Cable K-110-01: calculation in accordance with IEC 60287-1-1 and IEC 60287-2-1
- Conductor K-110-02 and conductor K-110-03: calculation in accordance with IEC 61597
Results
The cable capacity calculation for the buried section of cable K-110-01 is performed by the software
ETAP 22.0.2C, module “Underground Raceway Systems”. ETAP shows the steady-state temperature of
the cable when it works with the maximum load, (maximum temperature allowed 90 ᵒC). The software
bases the calculations on the standard IEC 60287
The conductor capacity calculation is performed in an excel sheet, which is based on the standards IEC
60287 and IEC 61597. This excel sheet also includes the corona effect calculation.
ETAP calculation:
Configur Max op.
Cable Cross-section Op. Temp. Comments
ation temp.
01 K-110-01 3x(1x400 mm2) Al 44,6 ᵒC 90 ᵒC ETAP-report NOP-CAL-ELEC-PRI-002
Table 10
(*) Worst case scenario is taken, Cables exposed to solar radiation in Summer. See the rest of conditions
in Annex 3
12
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Short-circuit withstand
During a short-circuit, a high amount of current can flow through a cable for a short period of time. This
surge in current flow causes a temperature rise within the cable.
The short-circuit value will be the worst possible scenario for the 110 kV voltage step.
A short-circuit simulation is performed with ETAP 22.0.2C in accordance with the standard IEC 60909
The ETAP report with the maximum short-circuit values is included in Annex 4.
In order to calculate the short-circuit values at NOP substation, the design inputs are the following:
110 kV:
- 3-fase short-circuit: 40 kA (Substation Westermeerdijk, TenneT short-circuit requirements)
- 1-fase short-circuit: 40 kA (Substation Westermeerdijk, TenneT short-circuit requirements)
33 kV:
- It is assumed that the contribution to the short-circuit will be only from the 110 kV.
For the calculation of the cross-section is used the worst scenario, meaning maximum short circuit per
cable.
13
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Layout
Short-circuit
Bus Comments
(conform IEC 60909)
I’’k = 40,2 kA
Westermeerdijk See Annex 4, document NOP-CAL-ELEC-PRI-010
I’’k = 40,2 kA
I’’k = 39 kA
NOP Substation See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 35 kA
I’’k = 39 kA
T1 110 kV See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 35 kA
I’’k = 9,8 kA
T1 33 kV See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 9,4 kA
I’’k = 9,8 kA
33 kV switchboard See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 9,4 kA
Table 12
14
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
15
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Shield 95 mm2
16
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Conclusion
De 110 kV isolated cable, the flexible conductor and the bus-bar have been calculated/controlled in two
different premises:
- Ampacity verification
The calculation complies with the standard IEC 60287
The calculation shows that both the cable and the conductors do not reach the maximum
operation temperature during normal operation, 90 ᵒC en 80 ᵒC respectively, see table 10 and table
11
- Short-circuit verification
The calculation of the short-circuit is based on the standard IEC 60909. The software ETAP, version
22.0.2C has been used.
The short-circuit values are used for the calculation of the minimum cross-section with regard to
short-circuit current according to the standards IEC 60949 and IEC 60865-1
The calculation shows that the minimum cross-section is smaller than the cross-section of the
selected cable, cable shield and conductors, see tables 13, 14 and 15
Cable/con
From To Length Cross-section
ductor
Westermeerdijk TenneT Cable terminal
K-110-01 300 m * 3x(1x400 mm2)
Substation 110/33 kV Substation
Cable terminal 110/33 kV 60 MVA power
K-110-02 20 m 3x(1x910 mm2)
Substation transformer
Grounding switch 110/33 kV Surge arresters
K-110-03 10 m Ø80/10 mm
Substation 110/33 kV Substation
Table 16
(*) cable routing is not definitive yet, so cable distance may vary. Once the cable routing is completed,
the calculation will be updated.
17
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
This point focuses on the simulation of two different cable sheath configurations:
Cross-bonding is not even considerer because of the short length of cable K-110-01, approx. 300 m.
Firstly, demonstrate how high the induced currents may be in case the cable sheaths are both ends
grounded.
Secondly, analyze the consequences of single bonding of the cable sheaths for cable K-110-01 and try to
show that this is the best option for this installation.
In case the cable sheath is double-bonded, the induced current running through the cable sheath will
originate an extra heating which will impact on the ampacity cable calculation.
This problem is avoided keeping one side open, but there are also some cons with this option, the
induced voltage on the open side may be high enough to compromise the cable sheath insulation.
18
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Where:
- In Rated current through the cable (A)
- Ia Induced current through the sheath (A)
19
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Where:
- In Rated current through the cable (A)
- Ia Induced current through the sheath (A)
- Vg Induced voltage on the sheath, NOP Substation side (V)
20
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
Conclusion
An excessive heating on cables K-110-01 may happen if both cables sheath sides are bonded, due to the
induced current going through the cable sheaths. This happens specially when the cable is working 100
%, that means, with 315 A. This is logical because the induced current is being generated by the
magnetic field created by the current through the core cable, and the higher the current through the
core is, the higher the magnetic field will be and consequently, the induced current will be also high.
A model has been done with the software CDEGS in order to determine the value of this induced
currents, and the value could reach up to 50 % of the rated current. This value heats the cable up
leading to a premature cable deterioration as well as lifespan reduction
In order to avoid the extra heating, SPIE proposes to unground the cable sheaths in one side, 110/33 kV
substation side.
This document presents the calculation/simulation of two grounding sheath configurations performed
with the software CDEGS in steady-state scenario with maximum rated current:
- Cable sheath doubly bonded
- Cable sheath single bonded, 110/33 substation open side
21
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
- Those SVL’s will be installed only at Substation 110/33 kV, in the following way:
Westermeerdijk side
22
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
23
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
24
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
25
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable
APPLICATION STANDARDS
The HV power cables contained within this datasheet are IEC 60840, HRN HD 632, IEC/EN 60228
suitable for the primary distribution of power up to a maximum
network voltage of 110kV. The cables are triple extruded to the
latest IEC standards using proprietary materials on modern THE CABLE LAB®
catenary line equipment. The foil laminate layer provides
an effective moisture barrier and imparts a limited increase AN ISO/IEC 17025 AND IECEE CBTL ACCREDITED FACILITY
in mechanical protection although it should be noted that Our world-class testing facility assures the quality and compliance of this cable
these cables should be adequately protected from potential through a continuous and rigorous testing regime.
mechanical damage. Waterblocking tape options ensure that,
should the cable be damaged, repair lengths and associated
works are kept to a minimum. The cables are provided with a
High Density Polyethylene sheath selected to offer the best
compromise between abrasion resistance and flexibility. The
range can be customised to meet specific project requirements
SUSTAINABILITY COMMITMENT
We are on a journey to Net Zero.
CHARACTERISTICS We've committed to near-term emissions reductions and a net-zero target with the
Voltage Rating (Uo/U)(Um) Science Based Targets initiative and we're a signatory to the United Nations Global
64/110kV (123kV) Compact Sustainable Development Goals.
Highest Network Voltage: 123kV Learn more about embodied carbon and our carbon emissions reduction actions,
our comprehensive recycling services, and wider ESG activities for sustainable
Temperature Rating operations at: www.elandcables.com/company/about-us/esg-sustainability
Short Circuit Temperature: +250°C
Operating Temperature: -30°C to 90°C
Minimum Installation Temperature: -20°C
CONSTRUCTION
Conductor
Class 2 copper or aluminium, compacted or segment REGULATORY COMPLIANCE
This cable meets the requirements of the RoHS Directive 2011/65/EU.
Conductor Screen RoHS compliance has been tested and confirmed by The Cable Lab® as
Extruded semi-conductive XLPE (Cross-Linked Polyethylene) meeting the requirements of the BSI RoHS Trusted KitemarkTM.
KM 634267
Insulation Screen
Extruded semi-conductive XLPE (Cross-Linked Polyethylene)
Separator
Water swellable semi-conductive tape
Screen
Copper wire screen, with a counter helix of copper tape
Separator
Water swellable semi-conductive tape
Moisture Barrier
Aluminium or Copper tape with copolymer
Sheath
HDPE (High Density Polyethylene)
(To be specified at time of order. Other options available)
Sheath Colour
Black
UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com
International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 1 of 3
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable
DIMENSIONS
2XS(FL)2Y Copper Conductor
ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMAL FORCE
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING OF DRAGGING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) (CONDUCTOR PULLING)
mm mm mm mm mm kN
* Milliken conductor
CONDUTORS
Class 2 Stranded Conductors for Single Core and Multi-Core Cables
NOMINAL CROSS MINIMUM NO. OF WIRES IN CONDUCTOR MAXIMUM RESISTANCE OF CONDUCTOR AT 20ºC
SECTIONAL AREA ohms/km
mm2
Circular Circular Compacted Annealed Copper Conductor Aluminium or Aluminium
Cu Al Cu Al Plain Wires Alloy Conductor
ELECTRICAL CHARACTERISTICS
CONDUCTOR TYPE COPPER CONDUCTOR ALUMINIUM CONDUCTOR
METHOD OF
Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil
INSTALLATION
METHOD OF
EARTHING
NOMINAL CROSS
CURRENT RATINGS
SECTIONAL AREA
Amps
mm²
150 435 406 410 406 551 515 478 473 335 325 320 320 431 415 373 373
185 490 448 465 453 630 574 546 538 380 363 360 358 494 465 425 423
240 570 505 540 519 740 659 645 628 445 416 420 416 583 541 504 499
300 640 535 610 580 805 685 710 685 495 445 475 460 625 565 550 540
400 720 595 690 650 915 775 820 785 565 500 540 525 715 640 640 625
500 825 650 785 730 1060 860 945 895 645 555 620 595 835 725 745 720
630 940 705 890 810 1235 950 1085 1010 740 610 710 670 975 820 865 830
800 1055 755 1000 885 1415 1040 1235 1130 845 665 805 745 1130 910 995 940
1000 - - - - - - - - 950 720 900 820 1295 1005 1135 1055
1200* - - - - - - - - 1025 755 970 870 1420 1070 1235 1140
= cross-bonding of grounding
As per IEC 60287. Calculated pursuant to the standard IEC 60287 for the maximal conductor temperature of 90ºC.
Earth temperature: 20ºC
Specific Earth Resistance: 1.0km/W
Air temperature: 30ºC
Depth of Laying: 1m
DE-RATING FACTORS
AMBIENT TEMPERATURE 10ºC 15ºC 20ºC 25ºC 30ºC 35ºC 40ºC 45ºC 50ºC 55ºC 60ºC 65ºC 70ºC
In Ground 1.07 1.04 1.00 0.96 0.93 0.89 0.85 0.80 0.76 0.71 0.65 0.60 0.53
In Air 1.15 1.12 1.08 1.04 1.00 0.96 0.91 0.87 0.82 0.76 0.71 0.65 0.58
The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is
believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.
26
Project: NOP Solar Park ETAP Page: 1
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature
CONFIGURATION 01 1 0
Cable Data:
Individual Conductor Insulation
0.00 Growth Load 0.00
Rated Current Factor Factor Per Thickness Thermal R
ID Size kV Amp % % No. Type Phase Construction Type mm Ohm-m
K-110-01 400 123.000 315.00 100 100 1/C AL 1 ConRnd-NT XLPE 15.0 0.531
* End Connection is flagged as "Grounded" if any of the metallic layers (Shield/Sheath/Armor) is grounded at both ends.
Project: NOP Solar Park ETAP Page: 3
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature
Yc = Increment of AC/DC resistance ratio due to AC current skin and proximity effect
Ys = Increment of AC/DC resistance ratio due to losses of circulation and eddy current effect in shield, sheath and armor
Project: NOP Solar Park ETAP Page: 4
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature
F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
* Indicates a cable temperature exceeding its limit
# Indicates a cable temperature exceeding its marginal limit
NOP Solarpark
K-110-01 POWER CABLE CALCULATION
CALCULATION - DETAIL DESIGN
TABLE OF CONTENTS
1.0 INTRODUCTION 3
2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Climate conditions 4
2.6 Cable dimensions 5
2.7 Cable Electrical parameters 5
2.8 Laying characteristics 5
7.0 CONCLUSION 19
ANNEX 1 20
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
1.0 INTRODUCTION
SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of the detail engineering
and construction for project NOP Solarpark.
Part of the above asigment is the calculation of the cable K-110-01 for the substation 110/33 kV substation, close to
TenneT substation Westermeerdijk 110 kV.
This document includes these calculations for the verification of the 110 kV power cable for substation NOP
Solarpark 110/33 kV. All calculations have been performed in accordance with the standards IEC 60287-1.1 and IEC
60287-2.1
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
2.0 INPUTS
2.1 Standards/Regulations
2.2 Documents
Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD
2.4 Constants
Location : Outdoor
Solar radiation H = 1000 W/m2
Conductor operating temp max θc = 90 °C
Standard ambient temp Summer θo = 30 °C
Standard ambient temp Winter θow = 15 °C
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
(See Annex 1)
Conductor material Al
2
Cross-section Sc = 400 mm
Conductor Ø dc = 23 mm
Thickness of conductor screen tic = 2,3 mm
Conductor screen Ø Dic = 27,6 mm
Insulation thickness ti = 15 mm
Insulation Ø Di = 57,6 mm
Insulation screen thickness tiu = 0,525 mm
Insulation screen Ø Du = 58,65 mm
Al sheath thickness til = 0,5 mm
Al sheath inner Ø Dil = 59,7 mm
Al sheath outer Ø Dol = 60,7 mm
Outer sheath thickness te = 3,85 mm
Outer sheath Ø De = 67,4 mm
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
3.1 DC resistance @ θc
System frequency f = 50 Hz
=
192 + 0,8 ·
Skin effect ys ys = 0,008212 (IEC 60287-1-1;cl 2.1.2)
System frequency f = 50 Hz
1,18
= 0,312 + (IEC 60287-1-1;cl 2.1.4.1)
192 + 0,8 ·
+ 0,27
192 + 0,8 ·
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
3.4 AC resistance @ θc
Sheath mean Ø
%&/ + % /
=
2
Al sheath inner Ø Dil = 59,7 mm (See Annex 1)
ds = 60,2 mm
Sheath cross-section
0 = · · ,&/
As = 9,45622E-05 m2
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Sheath resistance
1
= 1+ − 20 (IEC 60287-1-1;cl 2.3)
0
4 5
23 =
10 1
3,
,&/ 7
6 = 1+ 23 · % / · 10 − 1,6
%/
5
9= 10
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Centre cable
9
ʎ =6
1+9 2·
3, ·=> ,
∆3 = 0,86 · 97, <
2·
9
ʎ = 1,5
1+9 2·
3, ·=> ,
∆3 = 0,86 · 97, <
2·
3, ·=>@, A
∆ = 21 · 97,7
2·
9
ʎ = 1,5
1+9 2·
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
,@ =>3
0,74 9 + 2 9
∆3 = −
2 + 9 − 0,3 2·
3, ·=>@, A
∆ = 21 · 97,7
2·
23 · ,&/
ʎ3 = 6 ·ʎ 1 + ∆3 + ∆ +
12 · 103
2·
B = 2 · 5 · 10 #$ (IEC 60287-1-1;cl 2.3.3)
Sheath mean Ø ds = 60 mm
C=
B + B=
M = 0,670568511 (IEC 60287-1-1;cl 2.3.5)
D=
B=
B−
3
N = 0,822349067 (IEC 60287-1-1;cl 2.3.5)
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
4·C D + C+D
E= (IEC 60287-1-1;cl 2.3.5)
4 C +1 D +1
F = 0,35443852 (IEC 60287-1-1;cl 2.3.5)
(*) For the calculation of total losses in the sheath the centre cable is used, worst scenario
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
1H 2 · ,&
G3 = #$ 1 + (IEC 60287-2-1;cl 2.1.1.1)
2
1 2 · ,J
G7 = 1I · #$ 1 + (IEC 60287-2-1;cl 2.1.3)
2 %/
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 12
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
· %J∗ · ℎ G3
PQ = + G 1 + ʎ3 + G7 1 + ʎ3 + ʎ (IEC 60287-2-1;cl 3.2)
1 + ʎ3 + ʎ $
1 1 $·ʎ ·G
∆ ) = () − G − (IEC 60287-2-1;cl 3.2)
1 + ʎ3 + ʎ 2 3 1 + ʎ3 + ʎ
1
G = (IEC 60287-2-1;cl 2.2.1.1)
· %J∗ ·ℎ ∆ 3/
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 13
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 14
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
,@
∆ − () 0,5 · G3 + $ G + G7 + G − T · %J∗ · U · G
S= (IEC 60287-1-1;1.4.4.1)
G3 + $ 1 + ʎ3 G + $ 1 + ʎ3 + ʎ G7 + G
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 15
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 16
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
6.1 Inputs
6.2 K factor
P
%`$ = (IEC 60865-1;cl A.9)
,
SV
Ha = ·$
%`$
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 17
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Al cable
Cu Sheath
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 18
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
7.0 CONCLUSION
A 110 kV cable current capacity calculation have been made in this document in the following conditions:
The calculations have been performed in compliance with the standards, IEC 60287-1.1 amd IEC 60287-2.1
The maximum currents the cable is able to widthstand with a maximum temperature operation of 90 ˚C is the
following:
Short-circuit calculation
A short-circuit verification is also acomplished. The short-circuit value and duration is being extracted from the
TenneT requiremens:
- 40 kA
Two different parts are being analyzed, conductor and cable sheath with the following results:
Conductor:
The minimum cable cross section for 40 kA/0,1s is 43,02 mm2, smaller than the nominal cable cross section 400
mm2, so the cable will withdstand 40 kA/0,1s
Sheath
The minimum sheat cross section for 40 kA/0,1s is 26,4 mm2, smaller than the nominal sheath cross section 95 mm2,
so the sheath will withdstand 40 kA/0,1s
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 19
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-003.xlsx 20
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable
APPLICATION STANDARDS
The HV power cables contained within this datasheet are IEC 60840, HRN HD 632, IEC/EN 60228
suitable for the primary distribution of power up to a maximum
network voltage of 110kV. The cables are triple extruded to the
latest IEC standards using proprietary materials on modern THE CABLE LAB®
catenary line equipment. The foil laminate layer provides
an effective moisture barrier and imparts a limited increase AN ISO/IEC 17025 AND IECEE CBTL ACCREDITED FACILITY
in mechanical protection although it should be noted that Our world-class testing facility assures the quality and compliance of this cable
these cables should be adequately protected from potential through a continuous and rigorous testing regime.
mechanical damage. Waterblocking tape options ensure that,
should the cable be damaged, repair lengths and associated
works are kept to a minimum. The cables are provided with a
High Density Polyethylene sheath selected to offer the best
compromise between abrasion resistance and flexibility. The
range can be customised to meet specific project requirements
SUSTAINABILITY COMMITMENT
We are on a journey to Net Zero.
CHARACTERISTICS We've committed to near-term emissions reductions and a net-zero target with the
Voltage Rating (Uo/U)(Um) Science Based Targets initiative and we're a signatory to the United Nations Global
64/110kV (123kV) Compact Sustainable Development Goals.
Highest Network Voltage: 123kV Learn more about embodied carbon and our carbon emissions reduction actions,
our comprehensive recycling services, and wider ESG activities for sustainable
Temperature Rating operations at: www.elandcables.com/company/about-us/esg-sustainability
Short Circuit Temperature: +250°C
Operating Temperature: -30°C to 90°C
Minimum Installation Temperature: -20°C
CONSTRUCTION
Conductor
Class 2 copper or aluminium, compacted or segment REGULATORY COMPLIANCE
This cable meets the requirements of the RoHS Directive 2011/65/EU.
Conductor Screen RoHS compliance has been tested and confirmed by The Cable Lab® as
Extruded semi-conductive XLPE (Cross-Linked Polyethylene) meeting the requirements of the BSI RoHS Trusted KitemarkTM.
KM 634267
Insulation Screen
Extruded semi-conductive XLPE (Cross-Linked Polyethylene)
Separator
Water swellable semi-conductive tape
Screen
Copper wire screen, with a counter helix of copper tape
Separator
Water swellable semi-conductive tape
Moisture Barrier
Aluminium or Copper tape with copolymer
Sheath
HDPE (High Density Polyethylene)
(To be specified at time of order. Other options available)
Sheath Colour
Black
UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com
International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 1 of 3
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable
DIMENSIONS
2XS(FL)2Y Copper Conductor
ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMAL FORCE
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING OF DRAGGING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) (CONDUCTOR PULLING)
mm mm mm mm mm kN
* Milliken conductor
CONDUTORS
Class 2 Stranded Conductors for Single Core and Multi-Core Cables
NOMINAL CROSS MINIMUM NO. OF WIRES IN CONDUCTOR MAXIMUM RESISTANCE OF CONDUCTOR AT 20ºC
SECTIONAL AREA ohms/km
mm2
Circular Circular Compacted Annealed Copper Conductor Aluminium or Aluminium
Cu Al Cu Al Plain Wires Alloy Conductor
ELECTRICAL CHARACTERISTICS
CONDUCTOR TYPE COPPER CONDUCTOR ALUMINIUM CONDUCTOR
METHOD OF
Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil
INSTALLATION
METHOD OF
EARTHING
NOMINAL CROSS
CURRENT RATINGS
SECTIONAL AREA
Amps
mm²
150 435 406 410 406 551 515 478 473 335 325 320 320 431 415 373 373
185 490 448 465 453 630 574 546 538 380 363 360 358 494 465 425 423
240 570 505 540 519 740 659 645 628 445 416 420 416 583 541 504 499
300 640 535 610 580 805 685 710 685 495 445 475 460 625 565 550 540
400 720 595 690 650 915 775 820 785 565 500 540 525 715 640 640 625
500 825 650 785 730 1060 860 945 895 645 555 620 595 835 725 745 720
630 940 705 890 810 1235 950 1085 1010 740 610 710 670 975 820 865 830
800 1055 755 1000 885 1415 1040 1235 1130 845 665 805 745 1130 910 995 940
1000 - - - - - - - - 950 720 900 820 1295 1005 1135 1055
1200* - - - - - - - - 1025 755 970 870 1420 1070 1235 1140
= cross-bonding of grounding
As per IEC 60287. Calculated pursuant to the standard IEC 60287 for the maximal conductor temperature of 90ºC.
Earth temperature: 20ºC
Specific Earth Resistance: 1.0km/W
Air temperature: 30ºC
Depth of Laying: 1m
DE-RATING FACTORS
AMBIENT TEMPERATURE 10ºC 15ºC 20ºC 25ºC 30ºC 35ºC 40ºC 45ºC 50ºC 55ºC 60ºC 65ºC 70ºC
In Ground 1.07 1.04 1.00 0.96 0.93 0.89 0.85 0.80 0.76 0.71 0.65 0.60 0.53
In Air 1.15 1.12 1.08 1.04 1.00 0.96 0.91 0.87 0.82 0.76 0.71 0.65 0.58
The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is
believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.
TABLE OF CONTENTS
1.0 INTRODUCTION 3
2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Ambient conditions 4
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
1.0 INTRODUCTION
SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of
the detail engineering and construction for project NOP Solarpark.
Part of the above asigment is the calculation of the condurtor K-110-02 for the substation
110/33 kV substation, close to TenneT substation Westermeerdijk 110 kV.
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
2.0 INPUTS
2.2 Documents
Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD
2.4 Constants
(acc. IEC 61597)
Nussel Nu = 20,52656307
Steffan-Boltzmann sb = 5,67E-08 W/m2K4
Reynolds Re = 1250,374924
Warmtegeleiding λ = 0,02585 W/mK
Location : Outdoor
Absortion coefficient ɣ = 0,6
Sun radiation Si = 1000 W/m2
Emission coefficient Ke = 0,6
Wind speed v = 0,6 m/s
Ambient temperature T1 = 40 °C
Operation conductor temperature T2 = 80 °C
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
3.1 Material
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
( (
#$ =%· · · &' − (acc. IEC 61597)
Prad
Heat loss by radiation of the conductor = 24,88 W/m
#$ + −
)*$+ = (acc. IEC 61597)
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
5.1 Inputs
5.2 K value
Short-circuit duration t = 1 s
&
82 = (acc. IEC 60865-1;cl A.9)
9
),;;
!:= · <=2>18
82
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
2
Min cross-section conform I"k Sth = 400,0 mm
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
7.1 Introduction
- Corona
Corona is the conduction of air under the influence of a high electric field strength, without a
complete discharge path is created.
Small channels with ionized gas are created around the conductor, in which the positive and negative
charge carriers shift relative to each other, thus de-energizing the field.
Corona can be avoided by constructing conductors in such a way that the outer surfaces are sufficient
be smooth on all scales.
- Ec (CIV)
The Ec value (Corona discharge) is the lowest voltage when the corona effect occurs.
- To avoid power loss, electromagnetic interference, noise pollution and possible damage to components
an installation must be free of corona during normal use. It can be expected that this is reached
when the corona quenching voltage (Ec) is higher than the minimum corona quenching voltage (Umin)
Ec > Umin
7.2 Calculation
- CIV
? =21,1· @ · · A ; · 12
#B
Ec CIV (kV)
mc Conductor factor
fc Air tightness factor
r' Conductor radius (cm)
d Phase-phase distance (cm)
3,926 · ℎ
=
273 + 9*
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
K19
ln ℎ = ln 76 −
18336
- Conductor radius
- Phase-phase distance
7.3 Inputs
7.4 Results
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Conductor calculation:
The flexible conductor K-110-02 is being controled in accordance with rated current (In) and short-circuit (I''k)
and the conclusion is that both premises are verified and met.
Coronadischarge
It can be expected that no corona will occur when the corona quenching voltage (Ec)
higher than the minimum corona due to voltage (Umin)
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Bundel
1 A; = A
r' 1,96 cm
2 A; = A · M
r' n.v.t. cm
3 A; = N
A·M·M
r' n.v.t. cm
4 O
A; = A·M·M· 2·M
r' n.v.t. cm
________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 12
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Phase-phase distances
N
d= > ·> P ·> P
d 283 cm
________________________________________________________________________________________
NOP-CAL-ELEC-PRI-004.xlsx 13
NOP Solarpark
K-110-03 BUS-BAR CALCULATION
CALCULATION - DETAIL DESIGN
TABLE OF CONTENTS
1.0 INTRODUCTION 3
2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Ambient conditions 4
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
1.0 INTRODUCTION
SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of
the detail engineering and construction for project NOP Solarpark.
Part of the above asigment is the calculation of the bus-bar K-110-03 for the substation
110/33 kV substation, close to TenneT substation Westermeerdijk 110 kV.
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
2.0 INPUTS
2.2 Documents
Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD
2.4 Constants
(acc. IEC 61597)
Nussel Nu = 31,13
Steffan-Boltzmann sb = 5,67E-08 W/m2K4
Reynolds Re = 2621,405
Warmtegeleiding λ = 0,02585 W/mK
Locatie : Outdoor
Absortion coefficient ɣ = 0,9
Sun radiation Si = 1000 W/m2
Emission coefficient Ke = 0,6
Wind speed v = 0,6 m/s
Ambient temperature T1 = 30 °C
Operation conductor temperature T2 = 80 °C
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
3.1 Material
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
& &
!" =#· · · $% − (acc. IEC 61597)
!" + −
'(") = (acc. IEC 61597)
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
5.1 Inputs
5.2 K value
Short-circuit duration t = 1 s
$
60 = (acc. IEC 60865-1;cl A.9)
7
Short-circuit I"k = 40 kA
'*99
8 =
60
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
2
Min cross-section conform I"k Sth = 396 mm
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
7.1 Introduction
- Corona
Corona is the conduction of air under the influence of a high electric field strength, without a
complete discharge path is created.
Small channels with ionized gas are created around the conductor, in which the positive and negative
charge carriers shift relative to each other, thus de-energizing the field.
Corona can be avoided by constructing conductors in such a way that the outer surfaces are sufficient
be smooth on all scales.
- Ec (CIV)
The Ec value (Corona discharge) is the lowest voltage when the corona effect occurs.
- To avoid power loss, electromagnetic interference, noise pollution and possible damage to components
an installation must be free of corona during normal use. It can be expected that this is reached
when the corona quenching voltage (Ec) is higher than the minimum corona quenching voltage (Umin)
Ec > Umin
7.2 Calculation
- CIV
: =21,1· ; · < · = · /0
!
Ec CIV (kV)
mc Conductor factor
fc Air tightness factor
r' Conductor radius (cm)
d Phase-phase distance (cm)
3,926 · ℎ
< =
273 + 7(
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
F/7
ln ℎ = ln 76 −
18336
- Conductor radius
- Phase-phase distance
7.3 Inputs
7.4 Results
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
Conductor calculation:
The bus-bar conductor K-110-03 is being controled in accordance with rated current (In) and short-circuit (I''k)
and the conclusion is that both premises are verified and met.
2
The min conductor cross-section is: S= 2200 mm
Coronadischarge
It can be expected that no corona will occur when the corona quenching voltage (Ec)
higher than the minimum corona due to voltage (Umin)
_______________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________
ANNEX A r en d calculation
Phase-phase distances
J
d= H ·H I ·H I
d = 283 cm
________________________________________________________________________________________
NOP-CAL-ELEC-PRI-005.xlsx 12
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
27
Project: NOP Solar Park ETAP Page: 1
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
Short-Circuit Analysis
Number of Buses: 1 0 34 35
Line/Cable/
XFMR2 XFMR3 Reactor Busway Impedance Tie PD Total
Number of Branches: 4 8 0 13 0 1 26
Output Filename:
Project: NOP Solar Park ETAP Page: 2
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
Adjustments
Apply Individual
Tolerance Adjustments /Global Percent
Transformer Impedance: Yes Individual
Reactor Impedance: No
Apply Individual
Temperature Correction Adjustments /Global Degree C
Transmission Line Resistance: No Global 20
35 Buses Total
ohms or siemens per 1000 m per Conductor (Cable) or per Phase (Line/Busway)
Line/Cable/Busway Length
K-33-01 33MCUS1 400 15.0 0.0 2 20 0.0501941 0.1160000 0.0000858 0.1581116 0.2853600
K-33-02 33MCUS1 630 5400.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-03 33MCUS1 630 11910.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-04 33MCUS1 630 110.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-05 33MCUS1 630 400.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-06 33MCUS1 300 700.0 0.0 1 20 0.0627427 0.1210000 0.0000782 0.1976395 0.2976600
K-33-07 33MCUS1 150 110.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-33-08 33MCUS1 150 400.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-33-09 33MCUS1 300 400.0 0.0 1 20 0.0627427 0.1210000 0.0000782 0.1976395 0.2976600
K-33-10 33MCUS1 150 100.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-33-11 33MCUS1 150 1000.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-33-12 33MCUS1 150 4200.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-110-01 123NALN1 400 400.0 0.0 1 20 0.0793483 0.1304745 0.0000523 0.1027195 1.6696181 0.0000523
Grounding
Transformer Rating Conn. Primary Secondary
ID MVA Prim. kV Sec. kV Type Type kV Amp ohm Type kV Amp ohm
Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Secondary: 3.500 0.800 0 Zpt = 6.00 8.50 7.000 0 Std Pos. Seq. -30.0
Tertiary: 3.500 0.800 0 Zst = 6.00 8.50 7.000 0 Std Pos. Seq. -30.0
Project: NOP Solar Park ETAP Page: 6
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Secondary: 2.500 0.800 0 Zpt = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0
Tertiary: 2.500 0.800 0 Zst = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0
Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0
Secondary: 2.500 0.800 0 Zpt = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0
Tertiary: 2.500 0.800 0 Zst = 4.00 8.50 5.000 0 Std Pos. Seq. 0.0
Branch Connections
K-33-05 Cable PV Block MQ35 PV Block MQA34 0.12 0.40 0.41 0.0447361
K-33-06 Cable PV Block MQA34 PV Block MQA33 0.40 0.78 0.88 0.0596119
K-33-07 Cable PV Block MQA33 PV Block MQA32 0.13 0.14 0.19 0.0072952
Project: NOP Solar Park ETAP Page: 9
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
K-33-08 Cable PV Block MQA32 PV Block MQA31 0.46 0.50 0.68 0.0265280
K-33-09 Cable PV Block MQA13 PV Block MQA12 0.23 0.44 0.50 0.0340639
K-33-10 Cable PV Block MQA12 PV Block MQA11 0.11 0.12 0.17 0.0066320
K-33-11 Cable PV Block MQA11 PV Block MQA22 1.15 1.24 1.69 0.0663201
K-33-12 Cable PV Block MQA22 PV Block MQA21 4.81 5.21 7.09 0.2785444
K-110-01 Cable Westermeerdijk 110 kV NOP Substation 0.03 0.04 0.05 0.2529773
Project: NOP Solar Park ETAP Page: 10
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
% Impedance
Rating 100 MVA Base
Grounding
Power Grid ID Connected Bus ID MVASC kV R X" R/X" Type
TenneT Westermeerdijk 110 kV 7621.023 110.000 0.05508 1.31100 0.04 Wye - Solid
33 kV switchboard 33.000 9.745 25.831 9.745 9.407 24.936 9.407 9.407 8.511 22.559 8.511 8.511 10.150 26.904 10.150 10.150
NOP Substation 110.000 39.020 101.413 39.020 34.969 90.884 34.969 34.969 33.740 87.690 33.740 33.740 37.505 97.473 37.505 37.505
T1 110 kV 110.000 39.020 101.413 39.020 34.969 90.884 34.969 34.969 33.740 87.690 33.740 33.740 37.505 97.473 37.505 37.505
T2 33 kV 33.000 9.748 25.846 9.748 9.412 24.955 9.412 9.412 8.513 22.572 8.513 8.513 10.154 26.922 10.154 10.154
Westermeerdijk 110 kV 110.000 40.214 106.875 40.214 40.174 106.769 40.174 40.174 34.770 92.406 34.770 34.770 40.307 107.120 40.307 40.307
All fault currents are in rms kA. Current ip is calculated using Method C.
* LLG fault current is the larger of the two faulted line currents.
Project: NOP Solar Park ETAP Page: 12
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal
Bus Positive Seq. Imp. (ohm) Negative Seq. Imp. (ohm) Zero Seq. Imp. (ohm) Fault Zf (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance
33 kV switchboard 33.000 0.05700 2.28527 2.28598 0.05700 2.28527 2.28598 0.05860 2.34068 2.34142 0.00000 0.00000 0.00000
NOP Substation 110.000 0.10506 1.79713 1.80020 0.10506 1.79713 1.80020 0.11382 2.39876 2.40145 0.00000 0.00000 0.00000
T1 110 kV 110.000 0.10506 1.79713 1.80020 0.10506 1.79713 1.80020 0.11382 2.39876 2.40145 0.00000 0.00000 0.00000
T2 33 kV 33.000 0.05663 2.28440 2.28510 0.05663 2.28440 2.28510 0.05741 2.33854 2.33925 0.00000 0.00000 0.00000
Westermeerdijk 110 kV 110.000 0.07332 1.74494 1.74648 0.07332 1.74494 1.74648 0.07273 1.73091 1.73244 0.00000 0.00000 0.00000
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
28
HIFREQ (Job ID: NOP Solarpark)
Longitudinal Current Flowing in Origin of Conductor. Magnitude and Angle
In Ia
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
29
HIFREQ (Job ID: NOP Solarpark)
Longitudinal Current Flowing in Origin of Conductor. Magnitude and Angle
In Ia
HIFREQ (Job ID: NOP Solarpark)
GPR of Conductor Metal. Magnitude and Angle
Vn Vg
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0
30
PCC TENNET
SOLAR
PARK
Concept
Status:
NOP-TSP-ELEC-SLD-001 001
Tekeningnummer: blad