0% found this document useful (0 votes)
103 views105 pages

110 kV Cable Sizing Calculation Guide

The document NOP-CAL-ELEC-PRI-001 outlines the cable sizing calculations for a 110 kV high voltage system at the NOP Solar Park, detailing the design requirements, ampacity calculations, and compliance with relevant IEC standards. It includes specifications for various cable types, their thermal resistivity, and short-circuit withstand capabilities, ensuring that the installations meet operational safety and efficiency standards. The document also provides recommendations for cable laying and installation practices to maintain performance and longevity.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
103 views105 pages

110 kV Cable Sizing Calculation Guide

The document NOP-CAL-ELEC-PRI-001 outlines the cable sizing calculations for a 110 kV high voltage system at the NOP Solar Park, detailing the design requirements, ampacity calculations, and compliance with relevant IEC standards. It includes specifications for various cable types, their thermal resistivity, and short-circuit withstand capabilities, ensuring that the installations meet operational safety and efficiency standards. The document also provides recommendations for cable laying and installation practices to maintain performance and longevity.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 105

110 KV CABLE SIZING CALCULATION

NOP SOLAR PARK

DOCUMENT NUMBER: NOP-CAL-ELEC-PRI-001

Revision 1.0

Project number: PR00108881


110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Rev. Date Description Author Reviewer Release

1.0 02-06-2023 First Edition M. M. Berzosa A. Grijseels R. Baggerman

2
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Summary

Preface 4
Codes and Standards 5
Standards 5
Specifications 5
Sources 6
Documents/drawings included in this report 6
System description 7
Load capacity study(Ampacity) 8
Inputs 8
Rated current per cable/conductor 10
Thermal resistivity 10
Partial drying-out and ground water level 10
Cable laying and pulling recommendations 11
Calculations 12
Results 12
Short-circuit withstand 13
Inputs for ETAP simulation 13
Layout 14
Cable/conductor calculation conform short-circuit 15
Conclusion 17
Cable sheath grounding 18
Sheath both ends grounded 19
Sheath single grounded 20
Conclusion 21
Cable trench for K-110-01 23
Annex 1: Cable configurations 24
Annex 2: 64/110 kV Cable and Conductor SAL 910 25
Annex 3: Ampacity calculation reports 26
Annex 4: ETAP-report Short-circuit 27
Annex 5: Cable sheath double grounded 28
Annex 6: Cable sheath single grounded 29
Annex 7: Single Line Diagram 30

3
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Preface

This document, NOP-CAL-ELEC-PRI-001, describes 110 kV high voltage cable capacity


calculation.
That covers the following cable routes:
1. 110 kV Isolated cable, connecting substation Westermeerdijk 110 kV with NOP
substation(Buried installation)
2. Flexible cable conductor used at the NOP substation, 110 kV outdoor installation(Air
installation)
3. Bus-bar conductor used at the NOP substation, 110 kV outdoor installation(Air
installation)

For the Ampacity calculation, the IEC 60287-1.1 & IEC 60287-2.1 are followed as well as the
IEC 61597
From now on, the cable/conductor designation will be the following:
- K-110-01: Isolated cable between substation Westermeerdijk and NOP substation
- K-110-02: flexible conductor used at the NOP substation
- K-110-03: Bus-bar conductor used at the NOP sub substation

The cable/conductor calculation is verified in accordance with two different premises:


• Capacity
• Short-circuit

This document will prove that these two requirements are met for all conductors, K-110-01;
K-110-02 & K-110-03.

4
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Codes and Standards

Standards
In addition to the general codes and standards, the following specific norms are relevant to this
document:

Norm Year Description Status


Electric cables – Calculations of the current rating – Part 1-1: Current rating
IEC 60287-1-1 2001 Definitive
equations (100 % load factor) and calculation losses – General
IEC 60287-2-1 2001 Electric cables – Calculation of the current rating Definitive
IEC 60287-2-1 Amd. 1 2001 Amendment 1 Definitive
IEC 60287-2-1 Amd. 2 2006-03 Amendment 2 Definitive
Electric cables – Calculation of the current rating – Part 3-1: Sections on
IEC 60287-3-1 1999 operating conditions – Reference operating conditions and selection of Definitive
cable type
IEC 60287-3-1 Amd. 1 Amendment 1 Definitive
Overhead electrical conductors – Calculation methods for stranded bare
IEC 61597 2021 Definitive
conductors
IEC 60228 2004 Conductors of insulated cables Definitive
Calculation of thermally permissible short-circuit currents, taking in to
IEC 60949 1988 Definitive
account non-adiabatic heating effects
Short-circuit currents – Calculation of effects – Part 1: Definitions and
IEC 60865-1 1993 Definitive
calculation methods
Table 1

Specifications
The following client specifications must be followed for the calculation:

Code Revision Date Description

Table 2

5
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Sources
In addition the specifications, the following sources documents/software have been used in the
preparation of this document.

Description Document nr Revision Date


Underground Raceway Systems ETAP 22.0.2C 22.0 -
Grounding Grid System Analysis CDEGS - -
NOP Solar Park SLD NOP-TAP-ELEC-LAY- 2.0 17-04-2023
001-001
Table 3

Documents/drawings included in this report

Description Drawing/document Rev. Revision date


Cable capacity calculation K-110-01 Configuration 01 ETAP-report NOP-CAL-ELEC-PRI-002 1.0 02-06-2023
Cable capacity calculation K-110-01 Configuration 02 Report NOP-CAL-ELEC-PRI-003 1.0 02-06-2023
Conductor capacity calculation K-110-02 Configuration 03 Report NOP-CAL-ELEC-PRI-004 1.0 02-06-2023
Conductor capacity calculation K-110-03 Configuration 04 Report NOP-CAL-ELEC-PRI-005 1.0 02-06-2023
Short-circuit calculation report ETAP-report NOP-CAL-ELEC-PRI-010 1.0 02-06-2023
Table 4

6
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

System description
This document describes the design requirements, starting points and design choices that were taken
into account during the design process of the installations concerned.

The proper sizing of an electrical cable is important to ensure the following:

1) Operate continuously under full load without being damaged (Ampacity)


2) Withstand the worst short circuit currents flowing through the cable (Short-circuit withstand)

The calculation methods must meet the IEC standards and the client specifications.

The design of the 110 kV isolated cable and conductor cross-section is part of the engineering of the
primary installation.

The design must result in an installation that, among other things, complies with the European
standards IEC 60287 and IEC 60865-1 as well as IEC 61597 applicable to such a high voltage installations.

The Single Line Diagram of the substation is included in Annex 7

7
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Load capacity study(Ampacity)


Inputs

• Cable 64/110 kV 400 mm2 *

Feature Value Comments


Calculation standard IEC 60287
Cross-section 400 mm2
Conductor material Al
Shield material Cu
Shield cross-section 95 mm2
Shield grounding Single bonded See point 6
Soil temperature 20 ᵒC Conform NPR 3626
Cable laying depth 1,0 m
Rated voltage 110 kV
Ro(20ᵒC) 0,0778 Ω/km See Annex 2
Constant mass temperature coef 4,03·10-3 1/K Conform IEC 6087-1-1, table 1
Max. operating temperature 90 ᵒC See Annex 2
Conductor/shield temperature
90/70 ᵒC
before short-circuit
Max. short-circuit temp conductor 250 ᵒC See Annex 2
Outer diameter 67,4 mm See Annex 2
Operating reactance trefoil See Annex 2
0,1 Ω/km
arrangement
Relative permeability ε 2,5 See Annex 2
Operating capacitance 0,32 µF/km See Annex 2
Table 5

(*) Cable supplier is not chosen yet, therefore a cable 400 mm2 from ELAND has been selected for the
first calculation. Once the cable brand is definitive, a new document revision will be done incorporating
the real info from the picked supplier.

• Flexible conductor SAL 910

Feature Value Comments


Calculation standard IEC 61597
Ambient temperature 40 ᵒC Conform NPR 3626
Rated voltage 110 kV
Ro(20ᵒC) 0,0357 Ω/km See Annex 2
Constant mass temperature See Annex 2
3,6·10-3 1/K
coef
Max. operating See Annex 2
80 ᵒC
temperature
Conductor diameter 39,2 mm See Annex 2
Table 6

8
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

• Bus-bar Ø80/10 mm

Feature Value Comments


Calculation standard IEC 61597
Ambient temperature 40 ᵒC Conform NPR 3626
Rated voltage 110 kV
Resistivity 3,33·10-8 Ωm Conform IEC 60287-1-1 table 1
Constant mass temperature
3,6·10-3 1/K Conform IEC 60287-1-1 table 1
coef
Max. operating
80 ᵒC
temperature
Conductor diameter ext 80 mm
Conductor thickness 10 mm
Table 7

9
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Rated current per cable/conductor

Cable/conductor Value Comments


K-110-01 315 A Power transformer 60 MVA
K-110-02 315 A Power transformer 60 MVA
K-110-03 315 A Power transformer 60 MVA
Table 8

Thermal resistivity

Place Value Comments


Soil 1.00 K·m/W Conform NPR 3626
PVC 6.00 K·m/W Conform IEC 60287-2-1_table 1
PE 3.50 K·m/W Conform IEC 60287-2-1_table 1
Table 9

Partial drying-out and ground water level


Partial drying-out does not apply to this project, because the ground water level is higher than the
location of cable K-110-01. In accordance with dinoloket, the ground water level is approx. 0,7 m below
surface.

The minimum cable laying depth is 1 m below surface, consequently, partial drying-out is not applicable

10
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Cable laying and pulling recommendations


• Bending radius
Cables must not be bent sharp to a small radius either while handling or in installation
The minimum bending radius must be provided by the supplier during installation as well as after
installation
• Laying
The laying will be directly in ground, where no frequent excavations are likely to be encountered
and where re-excavation is easily possible without affecting other services
• Trench
The trench will be excavated in reasonably straight lines. Wherever there is a change in the
direction, a suitable curvature will be adopted complying with the bending radius
The bottom of the trench will be level and free from stones, brick bats…
The excavated soil will be stacked firmly by the side of the trench such that it may not fall back into
the trench
• Sand cushioning
The trench will be provided with a layer sand cushion of not less than 8 cm in depth, before laying
the cables therein. Sand that will be used is the excavated sand
• Laying of the single core cables
The cables will be laid in trefoil formation and will be bound together at intervals op approximately
1m
• Sand covering
Cables will have a covering of sand of 20 cm above the base cushion of sand. Sand that will be used
is the excavated sand
• Mechanical protection over the covering
Mechanical protection, will be provided over the sand covering to provide warning to the future
excavations of the presence of the cable. Sand that will be used is the excavated sand
• Back filling
After the mechanical protection, the trench will be back-filled with excavated sand

11
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Calculations
Current flowing through a cable generates heat through the resistive losses in the conductors.

This heat must be within certain limits in order not to reduce the cable life-time and for a healthy
operation.

The insulation will be XLPE, so the cable can be loaded continuously to a conductor temperature of 90
˚C.

Conductors, K-110-02 & K-110-03, have a maximum operation temperature of 80 ˚C, in accordance with
the technical specification included in Annex 2.

The method and formulas used are based on the following standards:

- Cable K-110-01: calculation in accordance with IEC 60287-1-1 and IEC 60287-2-1
- Conductor K-110-02 and conductor K-110-03: calculation in accordance with IEC 61597

The cable characteristics can be found in Annex 2.

Results
The cable capacity calculation for the buried section of cable K-110-01 is performed by the software
ETAP 22.0.2C, module “Underground Raceway Systems”. ETAP shows the steady-state temperature of
the cable when it works with the maximum load, (maximum temperature allowed 90 ᵒC). The software
bases the calculations on the standard IEC 60287

The conductor capacity calculation is performed in an excel sheet, which is based on the standards IEC
60287 and IEC 61597. This excel sheet also includes the corona effect calculation.

All calculations are included in Annex 3.

ETAP calculation:
Configur Max op.
Cable Cross-section Op. Temp. Comments
ation temp.
01 K-110-01 3x(1x400 mm2) Al 44,6 ᵒC 90 ᵒC ETAP-report NOP-CAL-ELEC-PRI-002
Table 10

Excel sheet calculation:


Max op
Cofigur Op. Max op.
Cable Cross-section current> op Comments
ation current current
current
02 K-110-01 3x(1x400 mm2) Al 315 A 725 A * Ja Report NOP-CAL-ELEC-PRI-003
03 K-110-02 3x1x910 mm2 Al 315 A 1237 A Ja Report NOP-CAL-ELEC-PRI-004
04 K-110-03 Ø80/10 mm Al 315 A 2505 A Ja Report NOP-CAL-ELEC-PRI-004
Table 11

(*) Worst case scenario is taken, Cables exposed to solar radiation in Summer. See the rest of conditions
in Annex 3

12
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Short-circuit withstand
During a short-circuit, a high amount of current can flow through a cable for a short period of time. This
surge in current flow causes a temperature rise within the cable.
The short-circuit value will be the worst possible scenario for the 110 kV voltage step.
A short-circuit simulation is performed with ETAP 22.0.2C in accordance with the standard IEC 60909
The ETAP report with the maximum short-circuit values is included in Annex 4.

In order to calculate the short-circuit values at NOP substation, the design inputs are the following:
110 kV:
- 3-fase short-circuit: 40 kA (Substation Westermeerdijk, TenneT short-circuit requirements)
- 1-fase short-circuit: 40 kA (Substation Westermeerdijk, TenneT short-circuit requirements)
33 kV:
- It is assumed that the contribution to the short-circuit will be only from the 110 kV.

For the calculation of the cross-section is used the worst scenario, meaning maximum short circuit per
cable.

Inputs for ETAP simulation


- Inputs TenneT:
3-phase short-circuit: 40 kA/0,1 s (Cable differential relay)
1-phase short-circuit: 40 kA/0,1 s (Cable differential relay)
R/X = 0,042
- Trafo 110/33 kV
Maximum power: 60 MVA
Zcc = 12 %
- Trafo 33/0,8 kV
Power: 4,5/5 MVA
Units: 5
Zcc = 4 %
- Trafo 33/0,8 kV
Power: 6/7 MVA
Units: 6
Zcc = 6 %

ETAP-report in Annex 4, document NOP-CAL-ELEC-PRI-010

13
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Layout

Short-circuit
Bus Comments
(conform IEC 60909)
I’’k = 40,2 kA
Westermeerdijk See Annex 4, document NOP-CAL-ELEC-PRI-010
I’’k = 40,2 kA
I’’k = 39 kA
NOP Substation See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 35 kA
I’’k = 39 kA
T1 110 kV See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 35 kA
I’’k = 9,8 kA
T1 33 kV See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 9,4 kA
I’’k = 9,8 kA
33 kV switchboard See Annex 4, document NOP-CAL-ELEC-PRI-010
I’k = 9,4 kA
Table 12

14
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Cable/conductor calculation conform short-circuit


Inputs:

Cable 400 mm2


K = 148 for Al material
β = 228 ˚C for Al material
K = 226 for Cu material (shield)
β = 234,5 ˚C for Cu materiaal (shield)
Cable temperature, rated current,: θb = 90 ᵒC, worst case-scenario
Maximum withstand cable temperature, during short-circuit: θe = 250 ᵒC

Flexible conductor SAL 910 and Bus-bar Ø80/10 mm


Conductor temperature, rated current: θb = 80 ᵒC, worst case-scenario
Maximum withstand conductor temperature, during short-circuit: θe = 200 ᵒC, conform IEC 60865-1,
table 6

Minimum cross-section conform short-circuit:

Cable 400 mm2

Minimun cross- Cable cross- Cable cross-section > min.


Cable I’’k Operation time
section section cross-section I’’k
K-110-01 40 kA 0,1 s (Diff protect) 136 mm2 400 mm2 Yes
Table 13

15
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Shield 95 mm2

Grounding arrangement: single-bonding

Minimun shield Shield-cross Shield cross-section > min.


Cable I’k Operation time
cross-section section shield cross-section I’k
K-110-01 40 kA 0,1 s (Diff protect) 83 mm2 95 mm2 Yes
Table 14

Conductor SAL 910

Operation Minimun cross- Cable cross-section Geleiderdoorsnede > min.


Conductor I’’k
time section doorsnede conform I’’k
K-110-02 40 kA 1s 396 mm2 910 mm2 Ja
K-110-03 40 kA 1s 471 mm2 2200 mm2(Ø80/10mm)
Table 15

De calculation of the conductors cross-section in accordance with short-circuit is included in Annex 3,


documents NOP-CAL-ELEC-PRI-004 and NOP-CAL-ELEC-PRI-005, conform de standard IEC 60865-1.

16
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Conclusion
De 110 kV isolated cable, the flexible conductor and the bus-bar have been calculated/controlled in two
different premises:
- Ampacity verification
The calculation complies with the standard IEC 60287
The calculation shows that both the cable and the conductors do not reach the maximum
operation temperature during normal operation, 90 ᵒC en 80 ᵒC respectively, see table 10 and table
11
- Short-circuit verification
The calculation of the short-circuit is based on the standard IEC 60909. The software ETAP, version
22.0.2C has been used.
The short-circuit values are used for the calculation of the minimum cross-section with regard to
short-circuit current according to the standards IEC 60949 and IEC 60865-1
The calculation shows that the minimum cross-section is smaller than the cross-section of the
selected cable, cable shield and conductors, see tables 13, 14 and 15

Cable/con
From To Length Cross-section
ductor
Westermeerdijk TenneT Cable terminal
K-110-01 300 m * 3x(1x400 mm2)
Substation 110/33 kV Substation
Cable terminal 110/33 kV 60 MVA power
K-110-02 20 m 3x(1x910 mm2)
Substation transformer
Grounding switch 110/33 kV Surge arresters
K-110-03 10 m Ø80/10 mm
Substation 110/33 kV Substation
Table 16

(*) cable routing is not definitive yet, so cable distance may vary. Once the cable routing is completed,
the calculation will be updated.

17
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Cable sheath grounding


The cable sheath grounding design may play a big role in the cable ampacity calculation.

This point focuses on the simulation of two different cable sheath configurations:

- Cable sheath both ends grounded


- Cable sheath single grounded

Cross-bonding is not even considerer because of the short length of cable K-110-01, approx. 300 m.

With this two configuration simulations, two things are checked:

Firstly, demonstrate how high the induced currents may be in case the cable sheaths are both ends
grounded.

Secondly, analyze the consequences of single bonding of the cable sheaths for cable K-110-01 and try to
show that this is the best option for this installation.

In case the cable sheath is double-bonded, the induced current running through the cable sheath will
originate an extra heating which will impact on the ampacity cable calculation.

This problem is avoided keeping one side open, but there are also some cons with this option, the
induced voltage on the open side may be high enough to compromise the cable sheath insulation.

The software used for all simulations is CDEGS.

18
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Sheath both ends grounded

Where:
- In Rated current through the cable (A)
- Ia Induced current through the sheath (A)

Cable Cross-section Phase In Ia Comments

Fase 1 315<60 A 123<-67,6 A Annex 5


K-110-02 3(1x400 mm2) Al Fase 2 308<-1,2 A 104<-128 A Annex 5
Fase 3 315<-60 A 165<133 A Annex 5
Table 17

19
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Sheath single grounded

Where:
- In Rated current through the cable (A)
- Ia Induced current through the sheath (A)
- Vg Induced voltage on the sheath, NOP Substation side (V)

Cable Cross-section Phase In Ia Vg Comments


Fase 1-1 315<60,2 A 2<-161 A 103<-94 A Annex 6
K-110-02 3(1x400 mm2) Al Fase 2-1 308<-1,4 A 1,5<155 A 104<93 A Annex 6
Fase 3-1 315<-59,8 A 2,3<-168 A 102<90,5 A Annex 6
Table 18

20
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Conclusion
An excessive heating on cables K-110-01 may happen if both cables sheath sides are bonded, due to the
induced current going through the cable sheaths. This happens specially when the cable is working 100
%, that means, with 315 A. This is logical because the induced current is being generated by the
magnetic field created by the current through the core cable, and the higher the current through the
core is, the higher the magnetic field will be and consequently, the induced current will be also high.
A model has been done with the software CDEGS in order to determine the value of this induced
currents, and the value could reach up to 50 % of the rated current. This value heats the cable up
leading to a premature cable deterioration as well as lifespan reduction
In order to avoid the extra heating, SPIE proposes to unground the cable sheaths in one side, 110/33 kV
substation side.
This document presents the calculation/simulation of two grounding sheath configurations performed
with the software CDEGS in steady-state scenario with maximum rated current:
- Cable sheath doubly bonded
- Cable sheath single bonded, 110/33 substation open side

Analyzing the results, we find the following conclusions:


- The induced currents through the sheath in cable K-110-01, when both sides are grounded and the
Solar Park is working at full power, may reach a value of approximately 165 A, which is
approximately half of the max rated current
- Once the cable sheaths are single bonded, the induced current is neglectable and consequently the
heating is reduced.
- If the cable sheath is single bonded, the induced voltage generated on the open side of the sheath
may compromise the cable insulation. For that, the simulation is done and the values Vg have been
analyzed in steady state conditions.
- The simulation for single bonded cable sheath proves that the voltages on the open sheath side are
100 V; these induced voltage on the open side is highly depending on the cable length, so that’s the
reason why the values are not high.
- During short-circuit conditions, the induced voltage reaches higher values, so in order to guarantee
the sheath insulation is not being compromised, and also taking into account that the safe voltage
limit acc to NEN 50522 for 1 s is 117 V, SPIE advices the installation of Sheath Voltage Limiters(SVL)

21
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

- Those SVL’s will be installed only at Substation 110/33 kV, in the following way:

110/33 kV substation side

Westermeerdijk side

- The SVL will be defined in the following project stage


- In order to connect both grounding networks, Substation Westermeerdijk and 110 kV/33
Substation, SPIE proposes to run a grounding bare conductor, Cu 120 mm2, close to the cable K-110-
01, to join both substation grounding networks.

22
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Cable trench for K-110-01

23
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 1: Cable configurations

24
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 2: 64/110 kV Cable and Conductor SAL 910

25
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

High Voltage / 2XS(FL)2Y, A2XS(FL)2Y


110kV Power Cable

Eland Product Group: A9K

APPLICATION STANDARDS
The HV power cables contained within this datasheet are IEC 60840, HRN HD 632, IEC/EN 60228
suitable for the primary distribution of power up to a maximum
network voltage of 110kV. The cables are triple extruded to the
latest IEC standards using proprietary materials on modern THE CABLE LAB®
catenary line equipment. The foil laminate layer provides
an effective moisture barrier and imparts a limited increase AN ISO/IEC 17025 AND IECEE CBTL ACCREDITED FACILITY
in mechanical protection although it should be noted that Our world-class testing facility assures the quality and compliance of this cable
these cables should be adequately protected from potential through a continuous and rigorous testing regime.
mechanical damage. Waterblocking tape options ensure that,
should the cable be damaged, repair lengths and associated
works are kept to a minimum. The cables are provided with a
High Density Polyethylene sheath selected to offer the best
compromise between abrasion resistance and flexibility. The
range can be customised to meet specific project requirements
SUSTAINABILITY COMMITMENT
We are on a journey to Net Zero.
CHARACTERISTICS We've committed to near-term emissions reductions and a net-zero target with the
Voltage Rating (Uo/U)(Um) Science Based Targets initiative and we're a signatory to the United Nations Global
64/110kV (123kV) Compact Sustainable Development Goals.
Highest Network Voltage: 123kV Learn more about embodied carbon and our carbon emissions reduction actions,
our comprehensive recycling services, and wider ESG activities for sustainable
Temperature Rating operations at: www.elandcables.com/company/about-us/esg-sustainability
Short Circuit Temperature: +250°C
Operating Temperature: -30°C to 90°C
Minimum Installation Temperature: -20°C

CONSTRUCTION
Conductor
Class 2 copper or aluminium, compacted or segment REGULATORY COMPLIANCE
This cable meets the requirements of the RoHS Directive 2011/65/EU.
Conductor Screen RoHS compliance has been tested and confirmed by The Cable Lab® as
Extruded semi-conductive XLPE (Cross-Linked Polyethylene) meeting the requirements of the BSI RoHS Trusted KitemarkTM.

Insulation RoHS Trusted


XLPE (Cross-Linked Polyethylene) KITEMARK™

KM 634267

Insulation Screen
Extruded semi-conductive XLPE (Cross-Linked Polyethylene)

Separator
Water swellable semi-conductive tape

Screen
Copper wire screen, with a counter helix of copper tape

Separator
Water swellable semi-conductive tape

Moisture Barrier
Aluminium or Copper tape with copolymer

Sheath
HDPE (High Density Polyethylene)
(To be specified at time of order. Other options available)

Sheath Colour
Black
UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com
International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 1 of 3
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

DIMENSIONS
2XS(FL)2Y Copper Conductor
ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMAL FORCE
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING OF DRAGGING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) (CONDUCTOR PULLING)
mm mm mm mm mm kN

A9K2XSFL150 1 150 95 14.1 18 54.9 64.9 5035 970 7.5


A9K2XSFL185 1 185 95 15.7 17 54.5 64.5 5272 960 9.2
A9K2XSFL240 1 240 95 18 16 54.8 64.8 5742 970 12
A9K2XSFL300 1 300 95 20.3 15 55.1 65.1 6210 980 15
A9K2XSFL400 1 400 95 23 15 57.6 67.4 7208 1010 20
A9K2XSFL500 1 500 95 26.5 15 61.3 71.7 8322 1070 25
A9K2XSFL630 1 630 95 30.3 15 64.5 75.2 9886 1200 31.5
A9K2XSFL800 1 800 95 36.9 15 71.8 82.6 12042 1240 40

A2XS(FL)2Y Aluminium Conductor


ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMUM
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING PULLING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) FORCE
mm mm mm mm mm kN

A9KA2XSFL150 1 150 95 14.1 18 54.9 64.9 4128 970 4.5


A9KA2XSFL185 1 185 95 15.7 17 54.5 64.5 4153 960 5.5
A9KA2XSFL240 1 240 95 18 16 54.8 64.8 4283 970 7.2
A9KA2XSFL300 1 300 95 20.3 15 55.1 65.1 4397 980 9
A9KA2XSFL400 1 400 95 23 15 57.6 67.4 4880 1010 12
A9KA2XSFL500 1 500 95 26.5 15 61.3 71.7 5433 1070 15
A9KA2XSFL630 1 630 95 30.3 15 64.5 75.2 6064 1200 18.9
A9KA2XSFL800 1 800 95 36.9 15 71.8 82.6 7100 1240 24
A9KA2XSFL1000 1 1000 95 37.9 15 72.8 84.7 7795 1270 30
A9KA2XSFL1200* 1 1200* 95 44 15 78 95.7 8350 1400 36

* Milliken conductor

CONDUTORS
Class 2 Stranded Conductors for Single Core and Multi-Core Cables
NOMINAL CROSS MINIMUM NO. OF WIRES IN CONDUCTOR MAXIMUM RESISTANCE OF CONDUCTOR AT 20ºC
SECTIONAL AREA ohms/km
mm2
Circular Circular Compacted Annealed Copper Conductor Aluminium or Aluminium
Cu Al Cu Al Plain Wires Alloy Conductor

150 37 37 18 15 0.124 0.206


185 37 37 30 30 0.0991 0.164
240 37 37 34 30 0.0754 0.125
300 61 61 34 30 0.0601 0.1
400 61 61 53 53 0.047 0.0778
500 61 61 53 53 0.0366 0.0605
630 91 91 53 53 0.0283 0.0469
800 91 91 53 53 0.0221 0.0367
1000 91 91 53 53 0.0176 0.0291
1200* - - - - - 0.0247

The above table is in accordance with EN 60228

UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com


2 of 3 | technicalspecification International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

ELECTRICAL CHARACTERISTICS
CONDUCTOR TYPE COPPER CONDUCTOR ALUMINIUM CONDUCTOR

INSTALLATION GROUND AIR GROUND AIR

METHOD OF
Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil
INSTALLATION

METHOD OF
EARTHING

NOMINAL CROSS
CURRENT RATINGS
SECTIONAL AREA
Amps
mm²

150 435 406 410 406 551 515 478 473 335 325 320 320 431 415 373 373
185 490 448 465 453 630 574 546 538 380 363 360 358 494 465 425 423
240 570 505 540 519 740 659 645 628 445 416 420 416 583 541 504 499
300 640 535 610 580 805 685 710 685 495 445 475 460 625 565 550 540
400 720 595 690 650 915 775 820 785 565 500 540 525 715 640 640 625
500 825 650 785 730 1060 860 945 895 645 555 620 595 835 725 745 720
630 940 705 890 810 1235 950 1085 1010 740 610 710 670 975 820 865 830
800 1055 755 1000 885 1415 1040 1235 1130 845 665 805 745 1130 910 995 940
1000 - - - - - - - - 950 720 900 820 1295 1005 1135 1055
1200* - - - - - - - - 1025 755 970 870 1420 1070 1235 1140

= cross-bonding of grounding

= both ends grounded


* Milliken conductor

As per IEC 60287. Calculated pursuant to the standard IEC 60287 for the maximal conductor temperature of 90ºC.
Earth temperature: 20ºC
Specific Earth Resistance: 1.0km/W
Air temperature: 30ºC
Depth of Laying: 1m

Space between cables: 70mm + D (external diameter of cable)

Maximum Short Circuit Current


95mm2 Copper Wire Screen = 15kA/1 Second
Other sizes available on request to meet your protection requirements.

DE-RATING FACTORS
AMBIENT TEMPERATURE 10ºC 15ºC 20ºC 25ºC 30ºC 35ºC 40ºC 45ºC 50ºC 55ºC 60ºC 65ºC 70ºC
In Ground 1.07 1.04 1.00 0.96 0.93 0.89 0.85 0.80 0.76 0.71 0.65 0.60 0.53
In Air 1.15 1.12 1.08 1.04 1.00 0.96 0.91 0.87 0.82 0.76 0.71 0.65 0.58

The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is
believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.

UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com


International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 3 of 3
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 3: Ampacity calculation reports

26
Project: NOP Solar Park ETAP Page: 1
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature

Electrical Transient Analyzer Program

Underground Cable Raceway Systems

Cable Temperature Analysis

Method: IEC 287

U/G System Number of Number of


ID Cable Raceways Ext. Heat Sources

CONFIGURATION 01 1 0

Soil Temperature Limits

RHO Ambient Temperature Alarm Warning


Type °C-cm/Watt °C °C °C

Clay Dry 100.0 20.0 90.0 88.0

Multiplying Factors (MF)

Application MF: Not Considered

Individual Growth Factor: Not Considered

Global Growth Factor: 100 %


Project: NOP Solar Park ETAP Page: 2
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature

Underground Cable Raceway Systems (Westermeerdijk-NOP substation)

Direct Buried Raceway Data:


Reference Distance Dimension Fill Number Number
Horizontal Vertical Height Width RHO of of
ID cm cm cm cm Type °C-cm/Watt Locations Cables

Westermeerdijk-NOP substation 0.00 80.00 40.00 40.00 Sandy Dry 100.0 1 1

Cable Location Data:


Reference Distance
0.00
Horizontal Vertical
ID (cm) (cm)

Loc-01 20.00 25.00

Cable Data:
Individual Conductor Insulation
0.00 Growth Load 0.00
Rated Current Factor Factor Per Thickness Thermal R
ID Size kV Amp % % No. Type Phase Construction Type mm Ohm-m

K-110-01 400 123.000 315.00 100 100 1/C AL 1 ConRnd-NT XLPE 15.0 0.531

Shielding Jacket 0.00


Rdc Outside
Thickness Sheath Armor End Thickness @ 20°C Diameter
ID Status Type mm Type Type Connection* Type mm µOhm/m cm

K-110-01 None COPPER SHEATH PE 2.85 77.80 6.74

* End Connection is flagged as "Grounded" if any of the metallic layers (Shield/Sheath/Armor) is grounded at both ends.
Project: NOP Solar Park ETAP Page: 3
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature

Analysis Results (Westermeerdijk-NOP substation)


0.00
Conductor Energized Rdc @ Dielectric Conductor
per Conductor Final Temp. Losses Losses Current Temp.
No. Cable ID Conduit/Location ID Cable per Cable µOhm/m Watt/m Yc Ys Watt/m Amp °C

1 K-110-01-1C Loc-01 1 1 85.50 0.211 0.017 0.066 8.625 315.00 44.58

2 K-110-01-1B Loc-01 1 1 85.50 0.211 0.017 0.066 8.625 315.00 44.58

3 K-110-01-1A Loc-01 1 1 85.50 0.211 0.017 0.066 8.625 315.00 44.58

Yc = Increment of AC/DC resistance ratio due to AC current skin and proximity effect
Ys = Increment of AC/DC resistance ratio due to losses of circulation and eddy current effect in shield, sheath and armor
Project: NOP Solar Park ETAP Page: 4
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Study Case: NOP-CAL-ELEC-PRI-002 Revision: 1.0
Filename: SolarfarmNOP Study: Steady-State Temperature

Summary (Westermeerdijk-NOP substation)


0.00
Current Temp.
No. Cable ID Conduit/Location ID Size Amp °C

1 K-110-01-1C Loc-01 400 315.00 44.58

2 K-110-01-1B Loc-01 400 315.00 44.58 2.00


3 K-110-01-1A Loc-01 400 315.00 44.58 3.00

F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
* Indicates a cable temperature exceeding its limit
# Indicates a cable temperature exceeding its marginal limit
NOP Solarpark
K-110-01 POWER CABLE CALCULATION
CALCULATION - DETAIL DESIGN

Station 110/33 kV Substation


110 kV

REVISION DATE DESCRIPTION


1.0 2-6-2023 First Edition

Project name : NOP Solarpark


Project number : PR00108881
Document number : NOP-CAL-ELEC-PRI-003
Date : 2 juni 2023
Status : First Edition

Prepared by: Verified by:


Mariano M Berzosa Robert Baggerman
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

TABLE OF CONTENTS

1.0 INTRODUCTION 3

2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Climate conditions 4
2.6 Cable dimensions 5
2.7 Cable Electrical parameters 5
2.8 Laying characteristics 5

3.0 CALCULATION OF LOSSES 6


3.1 DC resistance @ θc 6
3.2 Skin effect 6
3.3 Proximity effect 6
3.4 AC resistance @ θc 7
3.5 Dielectric losses 7
3.6 Resistance of the sheath 7
3.7 Circulating currents 8
3.8 Eddy currents 8
3.9 Total power loss in the sheath 10
3.10 Armour losses 11

4.0 THERMAL RESISTANCE CALCULATION 12


4.1 Thermal resistance between one conductor and sheath 12
4.2 Thermal resistance between sheath and armour 12
4.3 Thermal resistance of outer covering 12
4.4 External thermal resistance 12

5.0 CURRENT CAPACITY CALCULATION 15


5.1 Cables protected from solar radiation 15
5.2 Cables directly exposed to solar radiation 15
5.3 Cables protected from solar radiation Winter 16
5.4 Cables directly exposed to solar radiation Winter 16

6.0 CALCULATION CONFORM I''k 17


6.1 K factor 17
6.2 Current density 17
6.3 Minimum cross-section 17
6.4 Comparison with installed cable 18

7.0 CONCLUSION 19

ANNEX 1 20

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

1.0 INTRODUCTION

SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of the detail engineering
and construction for project NOP Solarpark.

Part of the above asigment is the calculation of the cable K-110-01 for the substation 110/33 kV substation, close to
TenneT substation Westermeerdijk 110 kV.

This document includes these calculations for the verification of the 110 kV power cable for substation NOP
Solarpark 110/33 kV. All calculations have been performed in accordance with the standards IEC 60287-1.1 and IEC
60287-2.1

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

2.0 INPUTS

2.1 Standards/Regulations

- NEN-EN-IEC 60865-1 Kortsluitstromen - Berekening van de werking - Deel 1: Termen en


definities en berekeningsmethoden
- NEN-EN-IEC 62271-1 Hoogspanningsschakelmaterieel - Deel 1: Algemene specificaties

- NEN-EN-IEC 60287-1-1 Kabels voor sterkstroom - Berekening van de toelaatbare stroom -


Deel 1-1: Berekeningsmethode voor de continu toelaatbare stroom en
voor de verliezen - Algemeen
- NEN-EN-IEC 60287-2-1 Kabels voor sterkstroom - Berekening van de toelaatbare stroom -
Deel 2-1: Thermische weerstand - Berekening van de thermische weerstand

- NEN-EN-IEC 60228 Geleiders van geïsoleerde elektrische leidingen

- IEC 61914 Cable cleats for electrical installations

2.2 Documents

Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD

2.3 Electrical parameters


(acc. SLD)
Rated voltage Un = 110 kV
Frequency f = 50 Hz
Short-circuit I"k = 40,00 kA (TenneT requirement)
Short-circuit duration t = 0,1 s (Cable diff protection)

2.4 Constants

Absortion coefficient σ = 0,4 (IEC 60287-1-1_Tabel 3)


Heat resistance coefficient XLPE ρt = 3,5 K·m/W (IEC 60287-2-1_Tabel 1)
HDPE heat resistance coefficient ρT = 3,5 K·m/W (IEC 60287-2-1_Tabel 1)
Loss factor tanδ = 0,0 (IEC 60287-1-1_Tabel 3)

2.5 Climate conditions

Location : Outdoor
Solar radiation H = 1000 W/m2
Conductor operating temp max θc = 90 °C
Standard ambient temp Summer θo = 30 °C
Standard ambient temp Winter θow = 15 °C

2.6 Cable dimensions

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

(See Annex 1)
Conductor material Al
2
Cross-section Sc = 400 mm
Conductor Ø dc = 23 mm
Thickness of conductor screen tic = 2,3 mm
Conductor screen Ø Dic = 27,6 mm
Insulation thickness ti = 15 mm
Insulation Ø Di = 57,6 mm
Insulation screen thickness tiu = 0,525 mm
Insulation screen Ø Du = 58,65 mm
Al sheath thickness til = 0,5 mm
Al sheath inner Ø Dil = 59,7 mm
Al sheath outer Ø Dol = 60,7 mm
Outer sheath thickness te = 3,85 mm
Outer sheath Ø De = 67,4 mm

2.7 Cable Electrical parameters

Cable dc resistance @ 20°C Ro = 0,0000778 Ω/m (See Annex 1)


Temperature coefficient α20 = 4,03E-03 (IEC 60287-1-1_Table 1)
Max temp under normal op θc = 90 °C (See Annex 1)
Max temp under short-circ θcc = 250 °C (See Annex 1)
Max temp under normal op sheath θsc = 70 °C (See Annex 1)
Capacitance C = 0,23 µF/km (See Annex 1)

2.8 Laying characteristics

Cable laying depth P = 1000 mm


Distance between phases S = 2250 mm

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

3.0 CALCULATION OF LOSSES

3.1 DC resistance @ θc

= 1+ − 20 (IEC 60287-1-1;cl 2.1.1)

Cable dc resistance @ 20°C Ro = 0,0000778 Ω/m (See Annex 1)

Temperature coefficient α20 = 4,03E-03 (IEC 60287-1-1;table 1)

Max temp under normal op θc = 90 °C (See Annex 1)

Dc resistance @ θc R' = 9,975E-05 Ω/m (IEC 60287-1-1;cl 2.1.1)

3.2 Skin effect

Skin effect factor ys


8
= 10 (IEC 60287-1-1;cl 2.1.2)

System frequency f = 50 Hz

Skin effect coefficient ks = 1,0E+00 (IEC 60287-1-1;table 1)

= 1,3E+00 (IEC 60287-1-1;cl 2.1.2)

=
192 + 0,8 ·
Skin effect ys ys = 0,008212 (IEC 60287-1-1;cl 2.1.2)

3.3 Proximity effect

Proximity effect factor yp


8
= 10 (IEC 60287-1-1;cl 2.1.3)

System frequency f = 50 Hz

Proximity effect coefficient kp = 1,0E+00 (IEC 60287-1-1;table 1)

= 1,3E+00 (IEC 60287-1-1;cl 2.1.4)

1,18
= 0,312 + (IEC 60287-1-1;cl 2.1.4.1)
192 + 0,8 ·
+ 0,27
192 + 0,8 ·

Conductor Ø dc = 23,0 mm (See Annex 1)

Distance between phases S = 2250,0 mm

Proximitty effect yp = 0,0000036 (IEC 60287-1-1;cl 2.1.4.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

3.4 AC resistance @ θc

= 1+ + (IEC 60287-1-1;cl 2.1)

AC resistance @ θc R = 0,00010057 Ω/m (IEC 60287-1-1;cl 2.1)

3.5 Dielectric losses


" '
!= 10
%&
18 · #$

Relative permittivity of insul Ɛ = 2,5 (IEC 60287-1-1;table 3)

Insulation Ø Di = 57,6 mm (See Annex 1)

Conductor Ø dc = 23,0 mm (See Annex 1)

Capacitance C = 0,00000000015 F/m (IEC 60287-1-1;cl 2.2)

() = * · ! · + · ,-$. (IEC 60287-1-1;cl 2.2)

Pulse w = 2·π·f 1/s

Voltage phase-ground Uo = 63,5 kV

Loss factor tgδ = 0,001 (IEC 60287-1-1;table 3)

Dielectric loss Wd = 0,191701898 W/m (IEC 60287-1-1;cl 2.2)

3.6 Resistance of the sheath

Sheath mean Ø
%&/ + % /
=
2
Al sheath inner Ø Dil = 59,7 mm (See Annex 1)

Al sheath outer Ø Dol = 60,7 mm (See Annex 1)

ds = 60,2 mm

Sheath cross-section

0 = · · ,&/

Al sheath thickness til = 0,5 mm (See Annex 1)

As = 9,45622E-05 m2

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

Sheath resistance
1
= 1+ − 20 (IEC 60287-1-1;cl 2.3)
0

Sheath resistivity @ 20 ˚C ρs = 1,724E-08 Ω·m (IEC 60287-1-1;table 1)

Max temp normal op sheath θsc = 70 °C (See Annex 1)

Temperature coefficient α20 = 3,93E-03 (IEC 60287-1-1;table 1)

Sheath resistance @ θsc Rs = 0,000210974 Ω/m (IEC 60287-1-1;cl 2.3)

3.7 Circulating currents

Sheath bonded in one side ʎ' = 0 Ω/m (IEC 60287-1-1;cl 2.3)

3.8 Eddy currents

4 5
23 =
10 1

Sheath resistivity @ 20 ˚C ρs = 0,000210974 Ω·m (IEC 60287-1-1;table 1)

β1 = 151,3 (IEC 60287-1-1;cl 2.3.6.1)

3,
,&/ 7
6 = 1+ 23 · % / · 10 − 1,6
%/

Al sheath thickness til = 0,5 mm (See Annex 1)

Al sheath outer Ø Dol = 60,7 mm (See Annex 1)

gs = 1,0 (IEC 60287-1-1;cl 2.3.6.1)

5
9= 10

Sheath resistance @ θsc Rs = 0,000210974 Ω/m (IEC 60287-1-1;cl 2.3)

m = 0,1489 (IEC 60287-1-1;cl 2.3.6.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

Centre cable

9
ʎ =6
1+9 2·

Sheath mean Ø ds = 60,2 mm

Distance between phases S = 2250,0 mm

ʎo = 0,0000233 (IEC 60287-1-1;cl 2.3.6.1)

3, ·=> ,
∆3 = 0,86 · 97, <

Δ1 = 0,0000484 (IEC 60287-1-1;cl 2.3.6.1)

Δ2 = 0,0 (IEC 60287-1-1;cl 2.3.6.1)

Outer cable leading phase

9
ʎ = 1,5
1+9 2·

ʎo = 0,0000058 (IEC 60287-1-1;cl 2.3.6.1)

3, ·=> ,
∆3 = 0,86 · 97, <

Δ1 = 0,00020 (IEC 60287-1-1;cl 2.3.6.1)

3, ·=>@, A
∆ = 21 · 97,7

Δ2 = 0,0000000000 (IEC 60287-1-1;cl 2.3.6.1)

Outer cable lagging phase

9
ʎ = 1,5
1+9 2·

ʎo = 0,0000058234 (IEC 60287-1-1;cl 2.3.6.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

,@ =>3
0,74 9 + 2 9
∆3 = −
2 + 9 − 0,3 2·

Δ1 = -0,0021346996 (IEC 60287-1-1;cl 2.3.6.1)

3, ·=>@, A
∆ = 21 · 97,7

Δ2 = 0,00000008 (IEC 60287-1-1;cl 2.3.6.1)

Eddy current losses

23 · ,&/
ʎ3 = 6 ·ʎ 1 + ∆3 + ∆ +
12 · 103

Centre cable ʎ''1 = 0,00001938 (IEC 60287-1-1;cl 2.3.6.1)

Outer cable leading phase ʎ''1 = 0,00000637 (IEC 60287-1-1;cl 2.3.6.1)

Outer cable lagging phase ʎ''1 = 0,00000636 (IEC 60287-1-1;cl 2.3.6.1)

3.9 Total power loss in the sheath


B = 2 · 5 · 10 #$ (IEC 60287-1-1;cl 2.3.3)

Distance between phases S = 2250 mm

Sheath mean Ø ds = 60 mm

Reactance of sheath X = 0,000271067 Ω/m (IEC 60287-1-1;cl 2.3.3)

B= = 2 · 5 · 10 #$ 2 (IEC 60287-1-1;cl 2.3.3)

Reactance of sheath Xm = 4,35518E-05 Ω/m (IEC 60287-1-1;cl 2.3.3)

C=
B + B=
M = 0,670568511 (IEC 60287-1-1;cl 2.3.5)

D=
B=
B−
3
N = 0,822349067 (IEC 60287-1-1;cl 2.3.5)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

4·C D + C+D
E= (IEC 60287-1-1;cl 2.3.5)
4 C +1 D +1
F = 0,35443852 (IEC 60287-1-1;cl 2.3.5)

ʎ3 = ʎ3 + E · ʎ3 (IEC 60287-1-1;cl 2.3)

ʎ'1 = 0,0 (IEC 60287-1-1;cl 2.3)

ʎ''1 = 0,0000194 * (IEC 60287-1-1;cl 2.3.6.1)

ʎ1 = 0,0000194 (IEC 60287-1-1;cl 2.3)

(*) For the calculation of total losses in the sheath the centre cable is used, worst scenario

3.10 Armour losses

ʎ2 = 0,0 * (IEC 60287-1-1;cl 2.4.2)

(*) Cable does not include armour

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

4.0 THERMAL RESISTANCE CALCULATION

4.1 Thermal resistance between one conductor and sheath

1H 2 · ,&
G3 = #$ 1 + (IEC 60287-2-1;cl 2.1.1.1)
2

Heat resistance coeff XLPE ρt = 3,5 K·m/W (IEC 60287-2-1_Tabel 1)

Insulation thickness ti = 1,5E+01 mm (See Annex 1)

Conductor Ø dc = 23 mm (See Annex 1)

T1 = 4,650E-01 K·m/W (IEC 60287-2-1;cl 2.1.1.1)

4.2 Thermal resistance between sheath and armour

T2 = 0,0E+00 * K·m/W (IEC 60287-2-1;cl 2.1.2.1)

(*) Cable does not included armour

4.3 Thermal resistance of outer covering

1 2 · ,J
G7 = 1I · #$ 1 + (IEC 60287-2-1;cl 2.1.3)
2 %/

Heat resistance coeff HDPE ρT = 3,5 K·m/W (IEC 60287-2-1_Table 1)

Outer sheath thickness te = 3,9 mm (See Annex 1)

Al sheath outer Ø Dol = 61 mm (See Annex 1)

T3 = 0,0665269 K·m/W (IEC 60287-2-1;cl 2.1.3)

4.4 External thermal resistance


L
ℎ= +O (IEC 60287-2-1;cl 2.2.1.1)
%J∗ N

Z = 0,21 (IEC 60287-2-1;Table 2)

E = 3,94 (IEC 60287-2-1;Table 2)

g = 0,60 (IEC 60287-2-1;Table 2)

Outer sheath Ø De* = 0,067 m (See Annex 1)

Heat dissipation coefficient h = 5,00 (IEC 60287-2-1;cl 2.2.1.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 12
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

· %J∗ · ℎ G3
PQ = + G 1 + ʎ3 + G7 1 + ʎ3 + ʎ (IEC 60287-2-1;cl 3.2)
1 + ʎ3 + ʎ $

ʎ1 = 1,93829E-05 (IEC 60287-1-1;cl 2.3)

ʎ2 = 0 (IEC 60287-1-1;cl 2.4.2)

Heat dissipation coefficient h = 5,00 (IEC 60287-2-1;cl 2.2.1.1)

Outer sheath Ø De* = 0,067 m (See Annex 1)

Number of cond per cable n = 1

Thermal resist cond-sheath T1 = 0,4650 K·m/W (IEC 60287-2-1;cl 2.1.1.1)

Thermal resist sheath-armour T2 = 0,0 K·m/W (IEC 60287-2-1;cl 2.1.2.1)

Thermal resist outer covering T3 = 0,06653 K·m/W (IEC 60287-2-1;cl 2.1.3)

KA = 0,56267 (IEC 60287-2-1;cl 3.2)

1 1 $·ʎ ·G
∆ ) = () − G − (IEC 60287-2-1;cl 3.2)
1 + ʎ3 + ʎ 2 3 1 + ʎ3 + ʎ

Dielectric loss Wd = 0,19170 W/m (IEC 60287-1-1;cl 2.2)

ʎ1 = 0,00002 (IEC 60287-1-1;cl 2.3)

ʎ2 = 0 (IEC 60287-1-1;cl 2.4.2)

Number of cond per cable n = 1

Thermal resist cond-sheath T1 = 0,465017 K·m/W (IEC 60287-2-1;cl 2.1.1.1)

Thermal resist sheath-armour T2 = 0 K·m/W (IEC 60287-2-1;cl 2.1.2.1)

Δθd = 0,044571 K (IEC 60287-2-1;cl 3.2)

1
G = (IEC 60287-2-1;cl 2.2.1.1)
· %J∗ ·ℎ ∆ 3/

Cables protected from solar radiation

Permissible temp rise Δθ = 60 K

Δθds = 0 K (IEC 60287-2-1;cl 3.2)

Δθ+Δθd+Δθds = 60,0446 K (IEC 60287-2-1;Table 8)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 13
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

(Δθs)1/4 = 2,29 K (IEC 60287-2-1;Table 8)

T4 = 0,4125 K·m/W (IEC 60287-2-1;cl 2.2.1.1)

Cables exposed to solar radiation

Permissible temp rise Δθ = 60 K

Δθds = 14,330 K (IEC 60287-2-1;cl 3.2)

Δθ+Δθd+Δθds = 74,375 K (IEC 60287-2-1;Table 8)

(Δθs)1/4 = 2,38 K (IEC 60287-2-1;Table 8)

T4 = 0,3969 K·m/W (IEC 60287-2-1;cl 2.2.1.2.1)

Cables protected from solar radiation Winter

Permissible temp rise Δθw = 75 K

Δθds = 0 K (IEC 60287-2-1;cl 3.2)

Δθ+Δθd+Δθds = 75,045 K (IEC 60287-2-1;Table 8)

(Δθs)1/4 = 2,40 K (IEC 60287-2-1;Table 8)

T4 = 0,3936 K·m/W (IEC 60287-2-1;cl 2.2.1.2.1)

Cables exposed to solar radiation Winter

Permissible temp rise Δθw = 75 K

Δθds = 14,330 K (IEC 60287-2-1;cl 3.2)

Δθ+Δθd+Δθds = 89,375 K (IEC 60287-2-1;Table 8)

(Δθs)1/4 = 2,43 K (IEC 60287-2-1;Table 8)

T4 = 0,3888 K·m/W (IEC 60287-2-1;cl 2.2.1.2.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 14
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

5.0 CURRENT CAPACITY CALCULATION

,@
∆ − () 0,5 · G3 + $ G + G7 + G − T · %J∗ · U · G
S= (IEC 60287-1-1;1.4.4.1)
G3 + $ 1 + ʎ3 G + $ 1 + ʎ3 + ʎ G7 + G

Dielectric loss Wd = 0,19170 W/m (IEC 60287-1-1;cl 2.2)

Thermal resist cond-sheath T1 = 0,46502 K·m/W (IEC 60287-2-1;cl 2.1.1.1)

Thermal resist sheath-armour T2 = 0 K·m/W (IEC 60287-2-1;cl 2.1.2.1)

Thermal resist outer covering T3 = 0,06653 K·m/W (IEC 60287-2-1;cl 2.1.3)

Absortion coefficient exp σ = 0,4 (IEC 60287-1-1_Tabel 3)

Absortion coefficient prot σ = 0,0 (IEC 60287-1-1_Tabel 3)

Outer sheath Ø De* = 0,067 m (See Annex 1)

Solar radiation H = 1000,0 W/m2 (IEC 60287-2-1;cl 2.2.1.2.1)

AC resistance @ θc R = 0,00010057 Ω/m (IEC 60287-1-1;cl 2.1)

Number of cond per cable n = 1

ʎ1 = 0,000019 (IEC 60287-1-1;cl 2.3)

ʎ2 = 0 (IEC 60287-1-1;cl 2.4.2)

5.1 Cables protected from solar radiation Summer

Permissible temp rise Δθ = 60 K

External thermal resistance T4 = 0,412518666 K·m/W (IEC 60287-2-1;cl 2.2.1.1)

Max current through the cable I = 794,06 A (IEC 60287-1-1;1.4.4.1)

5.2 Cables directly exposed to solar radiation Summer

Permissible temp rise Δθ = 60 K

External thermal resistance T4 = 0,396919221 K·m/W (IEC 60287-2-1;cl 2.2.1.1)

Max current through the cable I = 725,64 A (IEC 60287-1-1;1.4.4.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 15
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

5.3 Cables protected from solar radiation Winter

Permissible temp rise Δθ = 75 K

External thermal resistance T4 = 0,393611561 K·m/W (IEC 60287-2-1;cl 2.2.1.1)

Max current through the cable I = 897,01 A (IEC 60287-1-1;1.4.4.1)

5.4 Cables directly exposed to solar radiation Winter

Permissible temp rise Δθ = 75 K

External thermal resistance T4 = 0,388752159 K·m/W (IEC 60287-2-1;cl 2.2.1.1)

Max current through the cable I = 834,05 A (IEC 60287-1-1;1.4.4.1)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 16
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

6.0 CALCULATION CONFORM I''k

6.1 Inputs

Specific thermal capacity c = 910 J/kg°C (IEC 60865-1;cl A.9)


Specific mass ρ = 2700 kg/m3 (IEC 60865-1;cl A.9)
Specific conductivity ĸ20 = 34800000 1/Ωm (IEC 60865-1;cl A.9)
Temperature coefficient α = 3,93E-03 1/°C (IEC 60865-1;cl A.9)
Cable temp nominal op θb = 90 °C
Sheath temp nominal op θbs = 70 °C
Final temp during short-circ θe = 250 °C

6.2 K factor

VWX · ·Y 3>Z [\ (IEC 60865-1;cl A.9)


K= #$
Z 3>Z([^ )

K factor for cable K = 92,97 (IEC 60865-1;cl A.9)

K factor for sheath K = 151,57 (IEC 60865-1;cl A.9)

6.3 Current density

short-circuit duration t = 0,1 s (Cable diff protection)

P
%`$ = (IEC 60865-1;cl A.9)
,

Cable current density Den = 294,01 A/mm2

Sheath current density Den = 83,45 A/mm2

6.4 Minimum cross-section

Kortsluitstroom I"k = 40 kA (TenneT requirement)

SV
Ha = ·$
%`$

Min cross-section cable Sth = 136,05 mm2

Min cross-section sheath Sth = 83 mm2

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 17
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

6.5 Comparison with installed cable

Al cable

Sth < Sc 136,1 < 400 Yes

Cu Sheath

Sth < As 8,345E+01 < 94,6 Yes

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 18
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

7.0 CONCLUSION

Cable current capacity calculation

A 110 kV cable current capacity calculation have been made in this document in the following conditions:

- Cables protected from solar radiation Summer


- Cables exposed to solar radiation Summer
- Cables protected from solar radiation Winter
- Cables exposed to solar radiation Winter

The calculations have been performed in compliance with the standards, IEC 60287-1.1 amd IEC 60287-2.1

The maximum currents the cable is able to widthstand with a maximum temperature operation of 90 ˚C is the
following:

Protected from solar radiation S I = 794,1 A

Exposed to solar radiation S I = 725,6 A

Prot from solar radiation W I = 897,01 A

Exp to solar radiation W I = 834,05 A

Short-circuit calculation

A short-circuit verification is also acomplished. The short-circuit value and duration is being extracted from the
TenneT requiremens:
- 40 kA

The standard used for the calculation is IEC 60865-1

Two different parts are being analyzed, conductor and cable sheath with the following results:

Conductor:

The minimum cable cross section for 40 kA/0,1s is 43,02 mm2, smaller than the nominal cable cross section 400
mm2, so the cable will withdstand 40 kA/0,1s

Sheath

The minimum sheat cross section for 40 kA/0,1s is 26,4 mm2, smaller than the nominal sheath cross section 95 mm2,
so the sheath will withdstand 40 kA/0,1s

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 19
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

ANNEX 1 Cable technical data sheet

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-003.xlsx 20
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

High Voltage / 2XS(FL)2Y, A2XS(FL)2Y


110kV Power Cable

Eland Product Group: A9K

APPLICATION STANDARDS
The HV power cables contained within this datasheet are IEC 60840, HRN HD 632, IEC/EN 60228
suitable for the primary distribution of power up to a maximum
network voltage of 110kV. The cables are triple extruded to the
latest IEC standards using proprietary materials on modern THE CABLE LAB®
catenary line equipment. The foil laminate layer provides
an effective moisture barrier and imparts a limited increase AN ISO/IEC 17025 AND IECEE CBTL ACCREDITED FACILITY
in mechanical protection although it should be noted that Our world-class testing facility assures the quality and compliance of this cable
these cables should be adequately protected from potential through a continuous and rigorous testing regime.
mechanical damage. Waterblocking tape options ensure that,
should the cable be damaged, repair lengths and associated
works are kept to a minimum. The cables are provided with a
High Density Polyethylene sheath selected to offer the best
compromise between abrasion resistance and flexibility. The
range can be customised to meet specific project requirements
SUSTAINABILITY COMMITMENT
We are on a journey to Net Zero.
CHARACTERISTICS We've committed to near-term emissions reductions and a net-zero target with the
Voltage Rating (Uo/U)(Um) Science Based Targets initiative and we're a signatory to the United Nations Global
64/110kV (123kV) Compact Sustainable Development Goals.
Highest Network Voltage: 123kV Learn more about embodied carbon and our carbon emissions reduction actions,
our comprehensive recycling services, and wider ESG activities for sustainable
Temperature Rating operations at: www.elandcables.com/company/about-us/esg-sustainability
Short Circuit Temperature: +250°C
Operating Temperature: -30°C to 90°C
Minimum Installation Temperature: -20°C

CONSTRUCTION
Conductor
Class 2 copper or aluminium, compacted or segment REGULATORY COMPLIANCE
This cable meets the requirements of the RoHS Directive 2011/65/EU.
Conductor Screen RoHS compliance has been tested and confirmed by The Cable Lab® as
Extruded semi-conductive XLPE (Cross-Linked Polyethylene) meeting the requirements of the BSI RoHS Trusted KitemarkTM.

Insulation RoHS Trusted


XLPE (Cross-Linked Polyethylene) KITEMARK™

KM 634267

Insulation Screen
Extruded semi-conductive XLPE (Cross-Linked Polyethylene)

Separator
Water swellable semi-conductive tape

Screen
Copper wire screen, with a counter helix of copper tape

Separator
Water swellable semi-conductive tape

Moisture Barrier
Aluminium or Copper tape with copolymer

Sheath
HDPE (High Density Polyethylene)
(To be specified at time of order. Other options available)

Sheath Colour
Black
UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com
International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 1 of 3
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

DIMENSIONS
2XS(FL)2Y Copper Conductor
ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMAL FORCE
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING OF DRAGGING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) (CONDUCTOR PULLING)
mm mm mm mm mm kN

A9K2XSFL150 1 150 95 14.1 18 54.9 64.9 5035 970 7.5


A9K2XSFL185 1 185 95 15.7 17 54.5 64.5 5272 960 9.2
A9K2XSFL240 1 240 95 18 16 54.8 64.8 5742 970 12
A9K2XSFL300 1 300 95 20.3 15 55.1 65.1 6210 980 15
A9K2XSFL400 1 400 95 23 15 57.6 67.4 7208 1010 20
A9K2XSFL500 1 500 95 26.5 15 61.3 71.7 8322 1070 25
A9K2XSFL630 1 630 95 30.3 15 64.5 75.2 9886 1200 31.5
A9K2XSFL800 1 800 95 36.9 15 71.8 82.6 12042 1240 40

A2XS(FL)2Y Aluminium Conductor


ELAND PART NO. NO. OF NOMINAL CROSS ELECTRICAL NOMINAL NOMINAL NOMINAL NOMINAL NOMINAL MINIMUM MAXIMUM
CORES SECTIONAL AREA PROTECTION DIAMETER OF THICKNESS OF DIAMETER OVER OVERALL WEIGHT BENDING PULLING
mm2 mm2 CONDUCTOR NSULATION INSULATION DIAMETER kg/km RADIUS (FIXED) FORCE
mm mm mm mm mm kN

A9KA2XSFL150 1 150 95 14.1 18 54.9 64.9 4128 970 4.5


A9KA2XSFL185 1 185 95 15.7 17 54.5 64.5 4153 960 5.5
A9KA2XSFL240 1 240 95 18 16 54.8 64.8 4283 970 7.2
A9KA2XSFL300 1 300 95 20.3 15 55.1 65.1 4397 980 9
A9KA2XSFL400 1 400 95 23 15 57.6 67.4 4880 1010 12
A9KA2XSFL500 1 500 95 26.5 15 61.3 71.7 5433 1070 15
A9KA2XSFL630 1 630 95 30.3 15 64.5 75.2 6064 1200 18.9
A9KA2XSFL800 1 800 95 36.9 15 71.8 82.6 7100 1240 24
A9KA2XSFL1000 1 1000 95 37.9 15 72.8 84.7 7795 1270 30
A9KA2XSFL1200* 1 1200* 95 44 15 78 95.7 8350 1400 36

* Milliken conductor

CONDUTORS
Class 2 Stranded Conductors for Single Core and Multi-Core Cables
NOMINAL CROSS MINIMUM NO. OF WIRES IN CONDUCTOR MAXIMUM RESISTANCE OF CONDUCTOR AT 20ºC
SECTIONAL AREA ohms/km
mm2
Circular Circular Compacted Annealed Copper Conductor Aluminium or Aluminium
Cu Al Cu Al Plain Wires Alloy Conductor

150 37 37 18 15 0.124 0.206


185 37 37 30 30 0.0991 0.164
240 37 37 34 30 0.0754 0.125
300 61 61 34 30 0.0601 0.1
400 61 61 53 53 0.047 0.0778
500 61 61 53 53 0.0366 0.0605
630 91 91 53 53 0.0283 0.0469
800 91 91 53 53 0.0221 0.0367
1000 91 91 53 53 0.0176 0.0291
1200* - - - - - 0.0247

The above table is in accordance with EN 60228

UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com


2 of 3 | technicalspecification International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com
Click here for more information
elandcables.com | High Voltage / 2XS(F)2Y, A2XS(F)2Y 110kV Power Cable

ELECTRICAL CHARACTERISTICS
CONDUCTOR TYPE COPPER CONDUCTOR ALUMINIUM CONDUCTOR

INSTALLATION GROUND AIR GROUND AIR

METHOD OF
Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil Flat Spaced Trefoil
INSTALLATION

METHOD OF
EARTHING

NOMINAL CROSS
CURRENT RATINGS
SECTIONAL AREA
Amps
mm²

150 435 406 410 406 551 515 478 473 335 325 320 320 431 415 373 373
185 490 448 465 453 630 574 546 538 380 363 360 358 494 465 425 423
240 570 505 540 519 740 659 645 628 445 416 420 416 583 541 504 499
300 640 535 610 580 805 685 710 685 495 445 475 460 625 565 550 540
400 720 595 690 650 915 775 820 785 565 500 540 525 715 640 640 625
500 825 650 785 730 1060 860 945 895 645 555 620 595 835 725 745 720
630 940 705 890 810 1235 950 1085 1010 740 610 710 670 975 820 865 830
800 1055 755 1000 885 1415 1040 1235 1130 845 665 805 745 1130 910 995 940
1000 - - - - - - - - 950 720 900 820 1295 1005 1135 1055
1200* - - - - - - - - 1025 755 970 870 1420 1070 1235 1140

= cross-bonding of grounding

= both ends grounded


* Milliken conductor

As per IEC 60287. Calculated pursuant to the standard IEC 60287 for the maximal conductor temperature of 90ºC.
Earth temperature: 20ºC
Specific Earth Resistance: 1.0km/W
Air temperature: 30ºC
Depth of Laying: 1m

Space between cables: 70mm + D (external diameter of cable)

Maximum Short Circuit Current


95mm2 Copper Wire Screen = 15kA/1 Second
Other sizes available on request to meet your protection requirements.

DE-RATING FACTORS
AMBIENT TEMPERATURE 10ºC 15ºC 20ºC 25ºC 30ºC 35ºC 40ºC 45ºC 50ºC 55ºC 60ºC 65ºC 70ºC
In Ground 1.07 1.04 1.00 0.96 0.93 0.89 0.85 0.80 0.76 0.71 0.65 0.60 0.53
In Air 1.15 1.12 1.08 1.04 1.00 0.96 0.91 0.87 0.82 0.76 0.71 0.65 0.58

The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is
believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.

UK T 020 7241 8787 | F 020 7241 8700 | sales@elandcables.com | www.elandcables.com


International T +44 20 7241 8740 | F +44 20 7241 8700 | international@elandcables.com technicalspecification | 3 of 3
NOP Solarpark
K-110-02 CONDUCTOR CALCULATION
CALCULATION - DETAIL DESIGN

Station 110/33 kV Substation


110 kV

REVISION DATE DESCRIPTION


1.0 2-6-2023 First Edition

Project name : NOP Solarpark


Project number : PR00108881
Document number : NOP-CAL-ELEC-PRI-004
Date : 2 juni 2023
Status : First Edition

Prepared by: Verified by:


Mariano M Berzosa Robert Baggerman
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

TABLE OF CONTENTS

1.0 INTRODUCTION 3

2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Ambient conditions 4

3.0 RESISTANCE CALCULATION 5


3.1 Material 5
3.2 DC conductor resistance @ T2 5
3.3 AC conductor resistance @ T2 5

4.0 CALCULATION CONFORM In 6


4.1 Heat loss by radiation of the conductor 6
4.2 Convection heat loss 6
4.3 Solar heat gain by the conductor @ T2 6
4.4 Maximum current through the cable 6
4.5 Conductor cross-section conform rated current 6

5.0 CALCULATION CONFORM I''k 7


5.1 Inputs 7
5.2 K value 7
5.3 Current density 7
5.4 Minimum conductor cross-section conform short-circuit 7

6.0 MINIMUM CONDUCTOR CROSS-SECTION 8


6.1 Comparison between Samp en Sth 8
6.2 Minimum conductor cross-section 8

7.0 CORONA EFFECT CALCULATION 9


7.1 Introduction 9
7.2 Calculation 9
7.3 Inputs 10
7.4 Results 10

8.0 CONCLUSIONS AND RESULTS 11

Annex A - r' en d calculation 12

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

1.0 INTRODUCTION

SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of
the detail engineering and construction for project NOP Solarpark.

Part of the above asigment is the calculation of the condurtor K-110-02 for the substation
110/33 kV substation, close to TenneT substation Westermeerdijk 110 kV.

In this document, this calculation is elaborated into a detailed design.

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

2.0 INPUTS

2.1 Standards / Regulations

- NEN-EN-IEC 60865-1 Kortsluitstromen - Berekening van de werking - Deel 1: Termen en


definities en berekeningsmethoden
- IEC 61597 Overhead electrical conductors - Calculation methods for stranded
bare conductors - Technical Report Type 3
- NEN-EN-IEC 62271-1 Hoogspanningsschakelmaterieel - Deel 1: Algemene specificaties

- NEN-EN-IEC 60287-1-1 Kabels voor sterkstroom - Berekening van de toelaatbare stroom -


Deel 1-1: Berekeningsmethode voor de continu toelaatbare stroom en
voor de verliezen - Algemeen

- NEN-EN-IEC 60228 Geleiders van geïsoleerde elektrische leidingen

2.2 Documents

Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD

2.3 Electrical parameters


(acc. SLD)
Rated voltage Un = 110 kV
Rated current In = 265 A
Frequency f = 50 Hz
Short-circuit I"k = 40,00 kA
Short-circuit duration t = 1,0 s

2.4 Constants
(acc. IEC 61597)
Nussel Nu = 20,52656307
Steffan-Boltzmann sb = 5,67E-08 W/m2K4
Reynolds Re = 1250,374924
Warmtegeleiding λ = 0,02585 W/mK

2.5 Ambient conditions

Location : Outdoor
Absortion coefficient ɣ = 0,6
Sun radiation Si = 1000 W/m2
Emission coefficient Ke = 0,6
Wind speed v = 0,6 m/s
Ambient temperature T1 = 40 °C
Operation conductor temperature T2 = 80 °C

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

3.0 RESISTANCE CALCULATION

3.1 Material

Conductor material : SAL 910 (acc. IEC 60287-1-1)


2
Conductor cross-section St = 910 mm
Conductor diameter D = 39,2 mm
Phase-phase distance d = 2,3 m
Resistivity ρ = 2,83E-08 Ωm (acc. IEC 60287-1-1;Tabel 1)
DC cond resistance @ 20°C R20 = 3,57E-05 Ω/m
Temperature coefficient α = 3,60E-03 (acc. IEC 60287-1-1;Tabel 1)

3.2 DC conductor resistance @ T2

= 1+ ( − 20) (acc. IEC 61597;hfd 4.2)

DC conductor resistance @ T2 Rtdc = 4,33E-05 Ω/m

3.3 AC conductor resistance @ T2

Ratio Rac/Rdc f(x) = 1,0276 (acc. IEC 61597)

= · ( ) (acc. IEC 61597)

AC cond resistance @ T2 Rt = 4,448E-05 Ω/m

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

4.0 CALCULATION CONFORM In

4.1 Heat loss by radiation of the conductor

( (
#$ =%· · · &' − (acc. IEC 61597)

Prad
Heat loss by radiation of the conductor = 24,88 W/m

4.2 Convection heat loss

= · − (acc. IEC 61597)

Convection heat loss Pconv = 66,68 W/m

4.3 Solar heat gain by the conductor @ T2

= · · !" (acc. IEC 61597)

Solar heat Psol = 23,52 W/m

4.4 Maximum current through the cable

#$ + −
)*$+ = (acc. IEC 61597)

Max current through the cable Imaxk = 1236,78 A

Conductors per bundle : 1

Max current thorugh bundle Imaxb = 1236,78 A

4.5 Conductor cross-section conform rated current

Rated current = 265 A

Maxcurrent for 1xSAL 910 = 1236,78 A

1380 A > 924 A Ja

Cross-section conform In Samp = 910 mm2

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

5.0 CALCULATION CONFORM I''k

5.1 Inputs

Specific thermal capacity c = 910 J/kg°C (acc. IEC 60865-1;cl A.9)


Specific mass ρ = 2700 kg/m3 (acc. IEC 60865-1;cl A.9)
Specific conductivity @ 20°C ĸ20 = 34800000 1/Ωm (acc. IEC 60865-1;cl A.9)
Temperature coefficient α = 3,60E-03 1/°C (acc. IEC 60287-1-1;Table 1)
Ambient temperature θb = 40 °C
Short-circuit cable temperature θe = 200 °C

5.2 K value

,-. · ·/ 30 4 6 (acc. IEC 60865-1;cl A.9)


K= 0
12 30(45 6
7 )

K value K = 101,06 (acc. IEC 60865-1;cl A.9)

5.3 Current density

Short-circuit duration t = 1 s

&
82 = (acc. IEC 60865-1;cl A.9)
9

Current density Den = 101,06 A/mm2

5.4 Minimum conductor cross-section conform short-circuit

Short-circuit I"k = 40,000 kA

),;;
!:= · <=2>18
82

Min cross-section conform I"k Sth = 395,79 mm2

Standaard cross-section Sth = 400,0 mm2

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

6.0 MINIMUM CONDUCTOR CROSS-SECTION

6.1 Comparison between Samp en Sth

Min cross-section conform In Samp = 910 mm2

2
Min cross-section conform I"k Sth = 400,0 mm

6.2 Minimum conductor cross-section

Min cross-section S = 910,0 mm2

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

7.0 CORONA EFFECT CALCULATION

7.1 Introduction

- Corona
Corona is the conduction of air under the influence of a high electric field strength, without a
complete discharge path is created.
Small channels with ionized gas are created around the conductor, in which the positive and negative
charge carriers shift relative to each other, thus de-energizing the field.
Corona can be avoided by constructing conductors in such a way that the outer surfaces are sufficient
be smooth on all scales.

- Ec (CIV)
The Ec value (Corona discharge) is the lowest voltage when the corona effect occurs.

- To avoid power loss, electromagnetic interference, noise pollution and possible damage to components
an installation must be free of corona during normal use. It can be expected that this is reached
when the corona quenching voltage (Ec) is higher than the minimum corona quenching voltage (Umin)

Ec > Umin

7.2 Calculation

- CIV

? =21,1· @ · · A ; · 12
#B

Ec CIV (kV)
mc Conductor factor
fc Air tightness factor
r' Conductor radius (cm)
d Phase-phase distance (cm)

- Air tightness factor (fc)

3,926 · ℎ
=
273 + 9*

fc Air tightness factor


h Air pressure (cm·Hg)
tm Ambient temperature (°C)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

- Air pressure (h)

K19
ln ℎ = ln 76 −
18336

h Air pressure (cm·Hg)


Alt Altitude (m)

- Conductor radius

r' (cm); see annex A

- Phase-phase distance

d (cm); see annex A

7.3 Inputs

Conductor cross-section S = 910,0 mm2


Conductor radius r = 1,96 cm
Conductor factor mc = 0,8
Ambient temperature tm = 40 °C
Altitude Alt = 5 m
Phase 1-2 distance d12 = 225 cm
Phase 2-3 distance d23 = 225 cm
Phase 1-3 distance d13 = 450 cm

Minimum corona discharge Umin = 85 kV

7.4 Results

1,96 cm (see annex A)


283,47 cm (see annex A)
76 cm·Hg
0,95
156,762 kV

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

8.0 CONCLUSIONS AND RESULTS

Conductor calculation:
The flexible conductor K-110-02 is being controled in accordance with rated current (In) and short-circuit (I''k)
and the conclusion is that both premises are verified and met.

The min conductor cross-section is: S= 910,0 mm2

Coronadischarge
It can be expected that no corona will occur when the corona quenching voltage (Ec)
higher than the minimum corona due to voltage (Umin)

157 kV (Ec) > 85 kV (Umin)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

ANNEX A r' en d calculation

Bundel

Number of conductors per bundle

Conductor radius r 2,0 cm

1 A; = A

r' 1,96 cm

2 A; = A · M

r' n.v.t. cm

3 A; = N
A·M·M

r' n.v.t. cm

4 O
A; = A·M·M· 2·M

r' n.v.t. cm

________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 12
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

Phase-phase distances

N
d= > ·> P ·> P

Distance between phases 1 & 2 d12 225 cm


Distance between phases 2 & 3 d23 225 cm
Distance between phases 1 & 3 d13 450 cm

d 283 cm

________________________________________________________________________________________

NOP-CAL-ELEC-PRI-004.xlsx 13
NOP Solarpark
K-110-03 BUS-BAR CALCULATION
CALCULATION - DETAIL DESIGN

Station 110/33 kV Substation


110 kV

REVISION DATE DESCRIPTION


1 2-6-2023 First Edition

Project name : NOP Solarpark


Project number : PR00108881
Document number : NOP-CAL-ELEC-PRI-005
Date : 2 juni 2023
Status : First Edition

Prepared by: Verified by:


Mariano M Berzosa Robert Baggerman
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

TABLE OF CONTENTS

1.0 INTRODUCTION 3

2.0 INPUTS 4
2.1 Standards / Regulations 4
2.2 Documents 4
2.3 Electrical parameters 4
2.4 Constants 4
2.5 Ambient conditions 4

3.0 RESISTANCE CALCULATION 5


3.1 Material 5
3.2 DC conductor resistance @ T2 5

4.0 CALCULATION CONFORM In 6


4.1 Heat loss by radiation of the bus-bar 6
4.2 Convection heat loss 6
4.3 Solar heat gain by the bus-bar @ T2 6
4.4 Maximum current through the cable 6
4.5 Conductor cross-section conform rated current 6

5.0 CALCULATION CONFORM I''k 7


5.1 Inputs 7
5.2 K value 7
5.3 Current density 7
5.4 Minimum bus-bar cross-section conform short-circuit 7

6.0 MINIMUM CONDUCTOR CROSS-SECTION 8


6.1 Comparison between Samp en Sth 8
6.2 Minimum conductor cross-section 8

7.0 CORONA EFFECT CALCULATION 9


7.1 Introduction 9
7.2 Calculation 9
7.3 Inputs 10
7.4 Results 10

8.0 CONCLUSIONS AND RESULTS 11

Annex A - r' en d calculation 12

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 2
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

1.0 INTRODUCTION

SPIE Nederland b.v. has achieved the order from the customer Belectric for the realization of
the detail engineering and construction for project NOP Solarpark.

Part of the above asigment is the calculation of the bus-bar K-110-03 for the substation
110/33 kV substation, close to TenneT substation Westermeerdijk 110 kV.

In this document, this calculation is elaborated into a detailed design.

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 3
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

2.0 INPUTS

2.1 Standards / Regulations

- NEN-EN-IEC 60865-1 Kortsluitstromen - Berekening van de werking - Deel 1: Termen en


definities en berekeningsmethoden
- IEC 61597 Overhead electrical conductors - Calculation methods for stranded
bare conductors - Technical Report Type 3
- NEN-EN-IEC 62271-1 Hoogspanningsschakelmaterieel - Deel 1: Algemene specificaties

- NEN-EN-IEC 60287-1-1 Kabels voor sterkstroom - Berekening van de toelaatbare stroom -


Deel 1-1: Berekeningsmethode voor de continu toelaatbare stroom en
voor de verliezen - Algemeen

- NEN-EN-IEC 60228 Geleiders van geïsoleerde elektrische leidingen

2.2 Documents

Document Description
- NOP-TAP-ELEC-LAY-001-001 NOP Solar Park SLD

2.3 Electrical parameters


(acc. SLD)
Rated voltage Un = 110 kV
Rated current In = 315 A
Frequency f = 50 Hz
Short-circuit I"k = 40 kA
Short-circuit duration t = 1 s

2.4 Constants
(acc. IEC 61597)
Nussel Nu = 31,13
Steffan-Boltzmann sb = 5,67E-08 W/m2K4
Reynolds Re = 2621,405
Warmtegeleiding λ = 0,02585 W/mK

2.5 Ambient conditions

Locatie : Outdoor
Absortion coefficient ɣ = 0,9
Sun radiation Si = 1000 W/m2
Emission coefficient Ke = 0,6
Wind speed v = 0,6 m/s
Ambient temperature T1 = 30 °C
Operation conductor temperature T2 = 80 °C

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 4
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

3.0 RESISTANCE CALCULATION

3.1 Material

Bus-bar material : Al and Al alloy (acc. IEC 60287-1-1)


Bus-bar external diameter D = 80 mm
Bus-bar thickness p = 10 mm
Bus-bar cross-section St = 2199,1 mm2
Phase-phase distance d = 2 m
Resistivity ρ = 3,33E-08 Ωm (acc. IEC 60287-1-1;Table 1)
DC bus-bar resistance @ 20°C R20 = 1,51E-05 Ω/m (acc. IEC 60228;
Tables 1/2/3/4)
Temperature coefficient α = 3,60E-03 (acc. IEC 60287-1-1;Table 1)

3.2 DC conductor resistance @ T2

= 1+ ( − 20) (acc. IEC 60287-1-1;cl 2)

DC conductor resistance @ T2 Rtdc = 1,84E-05 Ω/m

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 5
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

4.0 CALCULATION CONFORM In

4.1 Heat loss by radiation of the bus-bar

& &
!" =#· · · $% − (acc. IEC 61597)

Heat loss by radiation of the bus-bar Prad = 60,7765 W/m

4.2 Convection heat loss

= · − (acc. IEC 61597)

Convection heat loss Pconv = 126,403 W/m

4.3 Solar heat gain by the bus-bar @ T2

= · · (acc. IEC 61597)

Solar heat Psol = 72 W/m

4.4 Maximum current through the cable

!" + −
'(") = (acc. IEC 61597)

Max current through the bus-bar Imax = 2504,76 A

4.5 Conductor cross-section conform rated current

Cross-section conform In Samp = 2200,00 mm2

Standaard cross-section : 80/10 mm

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 6
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

5.0 CALCULATION CONFORM I''k

5.1 Inputs

Specific thermal capacity c = 910 J/kg°C (acc. IEC 60865-1;cl A.9)


Specific mass ρ = 2700 kg/m3 (acc. IEC 60865-1;cl A.9)
Specific conductivity @ 20°C ĸ20 = 34800000 1/Ωm (acc. IEC 60865-1;cl A.9)
Temperature coefficient α = 3,60E-03 1/°C (acc. IEC 60287-1-1;Table 1)
Ambient temperature θb = 40 °C
Short-circuit cable temperature θe = 200 °C

5.2 K value

*+, · ·- 1. 2 4 (acc. IEC 60865-1;cl A.9)


K= .
/0 1.(23 4
5 )

K value K = 101,06 (acc. IEC 60865-1;cl A.9)

5.3 Current density

Short-circuit duration t = 1 s

$
60 = (acc. IEC 60865-1;cl A.9)
7

Current density Den = 101,06 A/mm2

5.4 Minimum bus-bar cross-section conform short-circuit

Short-circuit I"k = 40 kA

'*99
8 =
60

Min cross-section conform I"k Sth = 395,79 mm2

Standaard cross-section : 80/10 mm

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 7
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

6.0 MINIMUM CONDUCTOR CROSS-SECTION

6.1 Comparison between Samp en Sth

Min cross-section conform In Samp = 2199,12 mm2

2
Min cross-section conform I"k Sth = 396 mm

6.2 Minimum conductor cross-section

Min cross-section S = 2199,1 mm2

Standaard bus-bar : 80/10 mm

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 8
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

7.0 CORONA EFFECT CALCULATION

7.1 Introduction

- Corona
Corona is the conduction of air under the influence of a high electric field strength, without a
complete discharge path is created.
Small channels with ionized gas are created around the conductor, in which the positive and negative
charge carriers shift relative to each other, thus de-energizing the field.
Corona can be avoided by constructing conductors in such a way that the outer surfaces are sufficient
be smooth on all scales.

- Ec (CIV)
The Ec value (Corona discharge) is the lowest voltage when the corona effect occurs.

- To avoid power loss, electromagnetic interference, noise pollution and possible damage to components
an installation must be free of corona during normal use. It can be expected that this is reached
when the corona quenching voltage (Ec) is higher than the minimum corona quenching voltage (Umin)

Ec > Umin

7.2 Calculation

- CIV

: =21,1· ; · < · = · /0
!

Ec CIV (kV)
mc Conductor factor
fc Air tightness factor
r' Conductor radius (cm)
d Phase-phase distance (cm)

- Air tightness factor (fc)

3,926 · ℎ
< =
273 + 7(

fc Air tightness factor


h Air pressure (cm·Hg)
tm Ambient temperature (°C)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 9
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

- Air pressure (h)

F/7
ln ℎ = ln 76 −
18336

h Air pressure (cm·Hg)


Alt Altitude (m)

- Conductor radius

r (cm); see annex A

- Phase-phase distance

d (cm); see annex A

7.3 Inputs

Conductor cross-section : 80/10 mm


Conductor radius r = 4 cm
Conductor factor mc = 0,8
Ambient temperature tm = 30 °C
Altitude Alt = 5 m
Phase 1-2 distance d12 = 225 cm
Phase 2-3 distance d23 = 225 cm
Phase 1-3 distance d13 = 450 cm

Minimum corona discharge Umin = 85 kV

7.4 Results

d 283,5 cm (see annex A)


h 76 cm·Hg
fc 0,98
Ec 283,1 kV

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 10
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

8.0 CONCLUSIONS AND RESULTS

Conductor calculation:
The bus-bar conductor K-110-03 is being controled in accordance with rated current (In) and short-circuit (I''k)
and the conclusion is that both premises are verified and met.

2
The min conductor cross-section is: S= 2200 mm

The standard bus-bar is : 80/10 mm

Coronadischarge
It can be expected that no corona will occur when the corona quenching voltage (Ec)
higher than the minimum corona due to voltage (Umin)

283 kV (Ec) > 85 kV (Umin)

_______________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 11
SPIE Nederland B.V.
Huifakkerstraat 15
NL 4815 PN Breda
Postbus 2265
NL 4800 CG Breda
_______________________________________________________________________________________________________________________

ANNEX A r en d calculation

Conductor radius r = 4,0 cm

Phase-phase distances

J
d= H ·H I ·H I

Distance between phases 1 & 2 d12 = 225 cm


Distance between phases 2 & 3 d23 = 225 cm
Distance between phases 1 & 3 d13 = 450 cm

d = 283 cm

________________________________________________________________________________________

NOP-CAL-ELEC-PRI-005.xlsx 12
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 4: ETAP-report Short-circuit

27
Project: NOP Solar Park ETAP Page: 1
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Electrical Transient Analyzer Program

Short-Circuit Analysis

IEC 60909 Standard

3-Phase, LG, LL, & LLG Fault Currents

Swing V-Control Load Total

Number of Buses: 1 0 34 35

Line/Cable/
XFMR2 XFMR3 Reactor Busway Impedance Tie PD Total

Number of Branches: 4 8 0 13 0 1 26

Synchronous Power Synchronous Induction Lumped


Generator Grid Motor Machines Load Inverter Total

Number of Machines: 0 1 0 0 0 237 238

System Frequency: 50.00

Unit System: Metric

Project Filename: SolarfarmNOP

Output Filename:
Project: NOP Solar Park ETAP Page: 2
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Adjustments

Apply Individual
Tolerance Adjustments /Global Percent
Transformer Impedance: Yes Individual

Reactor Impedance: No

Overload Heater Resistance: No

Transmission Line Length: No

Cable / Busway Length: No

Apply Individual
Temperature Correction Adjustments /Global Degree C
Transmission Line Resistance: No Global 20

Cable / Busway Resistance: Yes Global 20


Project: NOP Solar Park ETAP Page: 3
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Bus Input Data

Bus Initial Voltage


ID Type Nom. kV Base kV Sub-sys %Mag. Ang.

33 kV switchboard Load 33.000 33.000 1 100.00 0.00


LV AJQ11-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ11-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ12-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ12-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ13-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ13-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ21 Load 0.800 0.800 1 100.00 30.00
LV AJQ22-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ22-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ31 Load 0.800 0.800 1 100.00 30.00
LV AJQ32-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ32-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ33-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ33-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ34-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ34-2 Load 0.800 0.800 1 100.00 -30.00
LV AJQ35-1 Load 0.800 0.800 1 100.00 -30.00
LV AJQ35-2 Load 0.800 0.800 1 100.00 0.00
LV AJQ36 Load 0.800 0.800 1 100.00 30.00
NOP Substation Load 110.000 110.000 1 100.00 0.00
PV Block MQ35 Load 33.000 33.000 1 100.00 0.00
PV Block MQA11 Load 33.000 33.000 1 100.00 0.00
PV Block MQA12 Load 33.000 33.000 1 100.00 0.00
PV Block MQA13 Load 33.000 33.000 1 100.00 0.00
PV Block MQA21 Load 33.000 33.000 1 100.00 0.00
PV Block MQA22 Load 33.000 33.000 1 100.00 0.00
PV Block MQA31 Load 33.000 33.000 1 100.00 0.00
PV Block MQA32 Load 33.000 33.000 1 100.00 0.00
PV Block MQA33 Load 33.000 33.000 1 100.00 0.00
PV Block MQA34 Load 33.000 33.000 1 100.00 0.00
PV Block MQA36 Load 33.000 33.000 1 100.00 0.00
T1 110 kV Load 110.000 110.000 1 100.00 0.00
T2 33 kV Load 33.000 33.000 1 100.00 0.00
Westermeerdijk 110 kV SWNG 110.000 110.000 1 100.00 0.00

35 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV.


Base kV values of buses are calculated and used internally by ETAP.
Project: NOP Solar Park ETAP Page: 4
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 m per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway Length

ID Library Size Adj. (m) % Tol. #/Phase T (°C) R1 X1 Y1 R0 X0 Y0

K-33-01 33MCUS1 400 15.0 0.0 2 20 0.0501941 0.1160000 0.0000858 0.1581116 0.2853600

K-33-02 33MCUS1 630 5400.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-03 33MCUS1 630 11910.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800

K-33-04 33MCUS1 630 110.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800
K-33-05 33MCUS1 630 400.0 0.0 1 20 0.0329399 0.1080000 0.0001027 0.1037607 0.2656800

K-33-06 33MCUS1 300 700.0 0.0 1 20 0.0627427 0.1210000 0.0000782 0.1976395 0.2976600
K-33-07 33MCUS1 150 110.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000

K-33-08 33MCUS1 150 400.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000

K-33-09 33MCUS1 300 400.0 0.0 1 20 0.0627427 0.1210000 0.0000782 0.1976395 0.2976600
K-33-10 33MCUS1 150 100.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000

K-33-11 33MCUS1 150 1000.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000
K-33-12 33MCUS1 150 4200.0 0.0 1 20 0.1247011 0.1350000 0.0000609 0.3928084 0.3321000

K-110-01 123NALN1 400 400.0 0.0 1 20 0.0793483 0.1304745 0.0000523 0.1027195 1.6696181 0.0000523

Line / Cable / Busway resistances are listed at the specified temperatures.


Project: NOP Solar Park ETAP Page: 5
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

2-Winding Transformer Input Data

Transformer Rating Z Variation % Tap Setting Adjusted Phase Shift

ID MVA Prim. kV Sec. kV %Z X/R + 5% - 5% % Tol. Prim. Sec. %Z Type Angle

AJQ21 4.500 33.000 0.800 4.00 8.50 0 0 0 0 0 4.00 Dyn -30.00

AJQ31 4.500 33.000 0.800 4.00 8.50 0 0 0 0 0 4.00 Dyn -30.00

AJQ36 4.500 33.000 0.800 4.00 8.50 0 0 0 0 0 4.00 Dyn -30.00

T1 60.000 110.000 33.000 12.00 45.00 0 0 0 0 0 12.00 YNyn 0.00

2-Winding Transformer Grounding Input Data

Grounding
Transformer Rating Conn. Primary Secondary

ID MVA Prim. kV Sec. kV Type Type kV Amp ohm Type kV Amp ohm

AJQ21 4.500 33.000 0.800 D/Y Solid

AJQ31 4.500 33.000 0.800 D/Y Solid

AJQ36 4.500 33.000 0.800 D/Y Solid

T1 60.000 110.000 33.000 Y/Y Solid Solid

3-Winding Transformer Input Data

Transformer Rating Tap Impedance Z Variation Phase Shift


ID Winding MVA kV % %Z X/R MVAb % Tol. + 5% - 5% Type Angle

AJQ11 Primary: 6.000 33.000 0 Zps = 6.00 8.50 6.000 0 0 0

Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

AJQ12 Primary: 6.000 33.000 0 Zps = 6.00 8.50 6.000 0 0 0

Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

AJQ13 Primary: 6.000 33.000 0 Zps = 6.00 8.50 6.000 0 0 0

Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

AJQ22 Primary: 7.000 33.000 0 Zps = 6.00 8.50 7.000 0 0 0

Secondary: 3.500 0.800 0 Zpt = 6.00 8.50 7.000 0 Std Pos. Seq. -30.0

Tertiary: 3.500 0.800 0 Zst = 6.00 8.50 7.000 0 Std Pos. Seq. -30.0
Project: NOP Solar Park ETAP Page: 6
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

3-Winding Transformer Input Data

Transformer Rating Tap Impedance Z Variation Phase Shift


ID Winding MVA kV % %Z X/R MVAb % Tol. + 5% - 5% Type Angle

AJQ32 Primary: 6.000 33.000 0 Zps = 6.00 8.50 6.000 0 0 0

Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

AJQ33 Primary: 5.000 33.000 0 Zps = 4.00 8.50 5.000 0 0 0

Secondary: 2.500 0.800 0 Zpt = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0

Tertiary: 2.500 0.800 0 Zst = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0

AJQ34 Primary: 6.000 33.000 0 Zps = 6.00 8.50 6.000 0 0 0

Secondary: 3.000 0.800 0 Zpt = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

Tertiary: 3.000 0.800 0 Zst = 6.00 8.50 6.000 0 Std Pos. Seq. -30.0

AJQ35 Primary: 5.000 33.000 0 Zps = 4.00 8.50 5.000 0 0 0

Secondary: 2.500 0.800 0 Zpt = 4.00 8.50 5.000 0 Std Pos. Seq. -30.0

Tertiary: 2.500 0.800 0 Zst = 4.00 8.50 5.000 0 Std Pos. Seq. 0.0

3-Winding Transformer Grounding Input Data

Transformer Rating Conn. Grounding


ID Winding MVA kV Type Type kV Amp ohm

AJQ11 Primary: 6.000 33.000 Delta

Secondary: 3.000 0.800 Wye Solid

Tertiary: 3.000 0.800 Wye Solid

AJQ12 Primary: 6.000 33.000 Delta

Secondary: 3.000 0.800 Wye Solid

Tertiary: 3.000 0.800 Wye Solid

AJQ13 Primary: 6.000 33.000 Delta

Secondary: 3.000 0.800 Wye Solid

Tertiary: 3.000 0.800 Wye Solid

AJQ22 Primary: 7.000 33.000 Delta

Secondary: 3.500 0.800 Wye Solid

Tertiary: 3.500 0.800 Wye Solid

AJQ32 Primary: 6.000 33.000 Delta

Secondary: 3.000 0.800 Wye Solid

Tertiary: 3.000 0.800 Wye Solid


Project: NOP Solar Park ETAP Page: 7
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

3-Winding Transformer Grounding Input Data

Transformer Rating Conn. Grounding


ID Winding MVA kV Type Type kV Amp ohm

AJQ33 Primary: 5.000 33.000 Delta

Secondary: 2.500 0.800 Wye Solid

Tertiary: 2.500 0.800 Wye Solid

AJQ34 Primary: 6.000 33.000 Delta

Secondary: 3.000 0.800 Wye Solid

Tertiary: 3.000 0.800 Wye Solid

AJQ35 Primary: 5.000 33.000 Delta

Secondary: 2.500 0.800 Wye Solid

Tertiary: 2.500 0.800 Wye Solid


Project: NOP Solar Park ETAP Page: 8
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Branch Connections

CKT/Branch Connected Bus ID % Impedance, Pos. Seq., 100 MVAb


ID Type From Bus To Bus R X Z Y

AJQ21 2W XFMR PV Block MQA21 LV AJQ21 10.12 86.01 86.60

AJQ31 2W XFMR PV Block MQA31 LV AJQ31 10.12 86.01 86.60


AJQ36 2W XFMR PV Block MQA36 LV AJQ36 10.12 86.01 86.60

T1 2W XFMR T1 110 kV T2 33 kV 0.43 19.49 19.50

AJQ11 3W Xfmr PV Block MQA11 LV AJQ11-1 17.18 145.99 147.00

3W Xfmr PV Block MQA11 LV AJQ11-2 17.18 145.99 147.00

3W Xfmr LV AJQ11-1 LV AJQ11-2 17.18 145.99 147.00

AJQ12 3W Xfmr PV Block MQA12 LV AJQ12-1 17.18 145.99 147.00

3W Xfmr PV Block MQA12 LV AJQ12-2 17.18 145.99 147.00

3W Xfmr LV AJQ12-1 LV AJQ12-2 17.18 145.99 147.00

AJQ13 3W Xfmr PV Block MQA13 LV AJQ13-1 17.18 145.99 147.00

3W Xfmr PV Block MQA13 LV AJQ13-2 17.18 145.99 147.00

3W Xfmr LV AJQ13-1 LV AJQ13-2 17.18 145.99 147.00

AJQ22 3W Xfmr PV Block MQA22 LV AJQ22-1 14.72 125.13 126.00

3W Xfmr PV Block MQA22 LV AJQ22-2 14.72 125.13 126.00

3W Xfmr LV AJQ22-1 LV AJQ22-2 14.72 125.13 126.00

AJQ32 3W Xfmr PV Block MQA32 LV AJQ32-1 17.18 145.99 147.00

3W Xfmr PV Block MQA32 LV AJQ32-2 17.18 145.99 147.00

3W Xfmr LV AJQ32-1 LV AJQ32-2 17.18 145.99 147.00

AJQ33 3W Xfmr PV Block MQA33 LV AJQ33-1 13.82 117.48 118.29


3W Xfmr PV Block MQA33 LV AJQ33-2 13.82 117.48 118.29

3W Xfmr LV AJQ33-1 LV AJQ33-2 13.82 117.48 118.29


AJQ34 3W Xfmr PV Block MQA34 LV AJQ34-1 17.18 145.99 147.00

3W Xfmr PV Block MQA34 LV AJQ34-2 17.18 145.99 147.00

3W Xfmr LV AJQ34-1 LV AJQ34-2 17.18 145.99 147.00


AJQ35 3W Xfmr PV Block MQ35 LV AJQ35-1 13.82 117.48 118.29

3W Xfmr PV Block MQ35 LV AJQ35-2 13.82 117.48 118.29

3W Xfmr LV AJQ35-1 LV AJQ35-2 13.82 117.48 118.29


K-110-02 Bus Duct NOP Substation T1 110 kV
K-33-01 Cable T2 33 kV 33 kV switchboard 0.00 0.01 0.01 0.0028031

K-33-02 Cable 33 kV switchboard PV Block MQA36 1.63 5.36 5.60 0.6039376

K-33-03 Cable 33 kV switchboard PV Block MQA13 3.60 11.81 12.35 1.3320180


K-33-04 Cable PV Block MQA36 PV Block MQ35 0.03 0.11 0.11 0.0123024

K-33-05 Cable PV Block MQ35 PV Block MQA34 0.12 0.40 0.41 0.0447361

K-33-06 Cable PV Block MQA34 PV Block MQA33 0.40 0.78 0.88 0.0596119
K-33-07 Cable PV Block MQA33 PV Block MQA32 0.13 0.14 0.19 0.0072952
Project: NOP Solar Park ETAP Page: 9
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

CKT/Branch Connected Bus ID % Impedance, Pos. Seq., 100 MVAb


ID Type From Bus To Bus R X Z Y

K-33-08 Cable PV Block MQA32 PV Block MQA31 0.46 0.50 0.68 0.0265280

K-33-09 Cable PV Block MQA13 PV Block MQA12 0.23 0.44 0.50 0.0340639
K-33-10 Cable PV Block MQA12 PV Block MQA11 0.11 0.12 0.17 0.0066320

K-33-11 Cable PV Block MQA11 PV Block MQA22 1.15 1.24 1.69 0.0663201

K-33-12 Cable PV Block MQA22 PV Block MQA21 4.81 5.21 7.09 0.2785444

K-110-01 Cable Westermeerdijk 110 kV NOP Substation 0.03 0.04 0.05 0.2529773
Project: NOP Solar Park ETAP Page: 10
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Power Grid Input Data

% Impedance
Rating 100 MVA Base
Grounding
Power Grid ID Connected Bus ID MVASC kV R X" R/X" Type

TenneT Westermeerdijk 110 kV 7621.023 110.000 0.05508 1.31100 0.04 Wye - Solid

Total Connected Power Grids ( = 1 ): 7621.023 MVA


Project: NOP Solar Park ETAP Page: 11
Location: Netherlands 22.0.2C Date: 31-05-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Short-Circuit Summary Report

3-Phase, LG, LL, LLG Fault Currents

Bus 3-Phase Fault Line-to-Ground Fault Line-to-Line Fault *Line-to-Line-to-Ground


ID kV I"k ip Ik I"k ip Ib Ik I"k ip Ib Ik I"k ip Ib Ik

33 kV switchboard 33.000 9.745 25.831 9.745 9.407 24.936 9.407 9.407 8.511 22.559 8.511 8.511 10.150 26.904 10.150 10.150
NOP Substation 110.000 39.020 101.413 39.020 34.969 90.884 34.969 34.969 33.740 87.690 33.740 33.740 37.505 97.473 37.505 37.505
T1 110 kV 110.000 39.020 101.413 39.020 34.969 90.884 34.969 34.969 33.740 87.690 33.740 33.740 37.505 97.473 37.505 37.505
T2 33 kV 33.000 9.748 25.846 9.748 9.412 24.955 9.412 9.412 8.513 22.572 8.513 8.513 10.154 26.922 10.154 10.154
Westermeerdijk 110 kV 110.000 40.214 106.875 40.214 40.174 106.769 40.174 40.174 34.770 92.406 34.770 34.770 40.307 107.120 40.307 40.307

All fault currents are in rms kA. Current ip is calculated using Method C.

* LLG fault current is the larger of the two faulted line currents.
Project: NOP Solar Park ETAP Page: 12
Location: Netherlands 22.0.2C Date: 02-06-2023
Contract: SN: SPIENDLDBV
Engineer: Mariano M Berzosa Revision: 1.0
Study Case: NOP-CAL-ELEC-PRI-010
Filename: SolarfarmNOP Config.: Normal

Sequence Impedance Summary Report

Bus Positive Seq. Imp. (ohm) Negative Seq. Imp. (ohm) Zero Seq. Imp. (ohm) Fault Zf (ohm)
ID kV Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance Resistance Reactance Impedance

33 kV switchboard 33.000 0.05700 2.28527 2.28598 0.05700 2.28527 2.28598 0.05860 2.34068 2.34142 0.00000 0.00000 0.00000

NOP Substation 110.000 0.10506 1.79713 1.80020 0.10506 1.79713 1.80020 0.11382 2.39876 2.40145 0.00000 0.00000 0.00000

T1 110 kV 110.000 0.10506 1.79713 1.80020 0.10506 1.79713 1.80020 0.11382 2.39876 2.40145 0.00000 0.00000 0.00000

T2 33 kV 33.000 0.05663 2.28440 2.28510 0.05663 2.28440 2.28510 0.05741 2.33854 2.33925 0.00000 0.00000 0.00000

Westermeerdijk 110 kV 110.000 0.07332 1.74494 1.74648 0.07332 1.74494 1.74648 0.07273 1.73091 1.73244 0.00000 0.00000 0.00000
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 5: Cable sheath double grounded

28
HIFREQ (Job ID: NOP Solarpark)
Longitudinal Current Flowing in Origin of Conductor. Magnitude and Angle

In Ia
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 6: Cable sheath single grounded

29
HIFREQ (Job ID: NOP Solarpark)
Longitudinal Current Flowing in Origin of Conductor. Magnitude and Angle

In Ia
HIFREQ (Job ID: NOP Solarpark)
GPR of Conductor Metal. Magnitude and Angle

Vn Vg
110 kV CABLE SIZING CALCULATION – NOP-CAL-ELEC-PRI-001 revision 1.0

Annex 7: Single Line Diagram

30
PCC TENNET

SOLAR
PARK

Concept
Status:

2 Update 16-03-2023 SPIE


SINGLE LINE DIAGRAM OPTION 2
1 Update 02-03-2023 SPIE
110/33kV STATION 3 Update 17-04-2023 SPIE
Omschrijving: Rev. Wijziging Datum Naam

SOLARFARM NOP Schaal: Formaat: A0


Projekt: Naam: BaR Datum: 23-02-2023

NOP-TSP-ELEC-SLD-001 001
Tekeningnummer: blad

CAD filename: NOP-TSP-ELEC-SLD-001 Systnr:

You might also like