Seismic Analysis using Dynamic Procedure
1.) Weight per Level:
a.) Weight of Slab:
Ws1 = L ⋅ W ⋅ tslab ⋅ γc
kN
Ws1 ≔ 30 m ⋅ 10 m ⋅ 0.125 m ⋅ 24 ―― = 900 kN
m3
Ws1 = Ws2 = Ws3 = 900 kN
b.) Weight of Beams: (Beam dimension = 300mm x 400mm)
Wb1 = no.beams ⋅ L ⋅ W ⋅ tbeam ⋅ γc
⎛ kN ⎞ ⎛ kN ⎞
Wb1 ≔ ⎜4 ⋅ 30 m ⋅ 0.3 m ⋅ 0.4 m ⋅ 24 ―― + ⎜7 ⋅ 10 m ⋅ 0.3 m ⋅ 0.4 m ⋅ 24 ―― ⎟ = 547.2 kN
3 ⎟
⎝ m ⎠ ⎝ m3 ⎠
Wb1 = Wb2 = Wb3 = 547.2 kN
c.) Weight of Wall: (Wall thickness = 150 mm)
Ww1 = no.wall ⋅ L ⋅ twall ⋅ htributary ⋅ γc
⎛ kN ⎞ ⎛ kN ⎞
Ww1 ≔ ⎜2 ⋅ 30 m ⋅ 0.15 m ⋅ 3.4 m ⋅ 24 ―― ⎟ + ⎜2 ⋅ 10 m ⋅ 0.15 m ⋅ 3.4 m ⋅ 24 ―― ⎟ = 979.2 kN
⎝ m3 ⎠ ⎝ m3 ⎠
⎛ kN ⎞ ⎛ kN ⎞
Ww3 ≔ ⎜2 ⋅ 30 m ⋅ 0.15 m ⋅ 1.7 m ⋅ 24 ―― + ⎜2 ⋅ 10 m ⋅ 0.15 m ⋅ 1.7 m ⋅ 24 ―― ⎟ = 489.6 kN
3 ⎟
⎝ m ⎠ ⎝ m3 ⎠
Ww1 = Ww2 = 979.2 kN
Ww3 = 489.6 kN
d.) Weight of Columns: (28 pcs - Column dimension = 400mm x 400mm)
Wc1 = no.columns ⋅ L ⋅ W ⋅ htributary ⋅ γc
⎛ kN ⎞
Wc1 ≔ ⎜28 ⋅ 0.4 m ⋅ 0.4 m ⋅ 3.4 m ⋅ 24 ―― ⎟ = 365.568 kN
⎝ m3 ⎠
⎛ kN ⎞
Wc3 ≔ ⎜28 ⋅ 0.4 m ⋅ 0.4 m ⋅ 1.7 m ⋅ 24 ―― ⎟ = 182.784 kN
⎝ m3 ⎠
Wc1 = Wc2 = 365.568 kN
Wc3 = 182.784 kN
Level Hstory Wslab Wbeam Wwall Wcolumn Wi Hi
((m)) ((kN )) ((kN )) ((kN )) ((kN )) ((kN )) ((m))
3 3.4 900 547.2 489.6 182.784 2119.584 10.2
2 3.4 900 547.2 979.2 365.568 2791.968 6.8
1 3.4 900 547.2 979.2 365.568 2791.968 3.4
Wi1 ≔ 900 kN + 547.2 kN + 979.2 kN + 365.568 kN = 2791.968 kN
Wi2 ≔ 900 kN + 547.2 kN + 979.2 kN + 365.568 kN = 2791.968 kN
Wi3 ≔ 900 kN + 547.2 kN + 489.6 kN + 182.784 kN = 2119.584 kN
Wi ≔ Wi1 + Wi2 + Wi3
Wi = 2 ((2791.968 kN)) + 2119.584 kN
Wi = 7703.52 kN
2.) Site Parameters:
I ≔ 1.0
Z ≔ 0.4
Soil_Type = Sd
Na ≔ 1.0
Nv ≔ 1.0
Ca ≔ 0.44 Na = 0.44
Cv ≔ 0.64 Nv = 0.64
R ≔ 8.5
3.) Calculate Base Shear:
3
―
4
T = Ct ⎛⎝Hi⎞⎠ ; Ct ≔ 0.0731
3
―
4
T ≔ 0.0731 ((10.2))
T = 0.417
T = 0.417 sec T>7 ; Ft ≔ 0
Cv ⋅ I 0.64 ⋅ 1
V0 = ――⋅ W V0 ≔ ―――― ⋅ 7703.52 kN = 1390.959 kN Exceeds_V1
R⋅T 8.5 ⋅ 0.417
2.5 Ca ⋅ I 2.5 ⋅ 0.44 ⋅ 1
V1 ≤ ―――⋅ W V1 ≔ ――――⋅ 7703.52 kN = 996.926 kN
R 8.5
V2 ≥ 0.11 Ca ⋅ I ⋅ W V2 ≔ 0.11 ⋅ 0.44 ⋅ 1 ⋅ 7703.52 kN = 372.85 kN OK
0.8 Z ⋅ Nv ⋅ I 0.8 ⋅ 0.4 ⋅ 1 ⋅ 1
V3 ≥ ――――⋅ W V3 ≔ ――――― ⋅ 7703.52 kN = 290.015 kN OK
R 8.5
Static Base Shear:
V ≔ 996.926 kN
4.) Lateral Forces:
Level Wi Hi W iH i Fx
((kN )) ((m)) ((kN ⋅ m)) ((kN ))
3 2119.584 10.2 21619.757 430.224
2 2791.968 6.8 18985.382 377.801
1 2791.968 3.4 9492.691 188.901
V = Fx + Ft ; Ft ≔ 0
WiHi ≔ 9492.691 + 18985.382 + 21619.757 = 50097.83
⎛⎝V - Ft⎞⎠ WiHi
Fx = ――――― WiHi ≔ 50097.83 kN ⋅ m
3
∑ W iH i
i =1
((996.926 kN - 0)) ((9492.691 kN ⋅ m))
Fx1 ≔ ―――――――――――― = 188.901 kN
50097.83 kN ⋅ m
((996.926 kN - 0)) ((18985.382 kN ⋅ m))
Fx2 ≔ ――――――――――――= 377.801 kN
50097.83 kN ⋅ m
((996.926 kN - 0)) ((21619.757 kN ⋅ m))
Fx3 ≔ ――――――――――――= 430.224 kN
50097.83 kN ⋅ m
5.) Eigen Values
12 EI
Kx = Ky = K = ――
Ec = 2400 1.5 ⋅ 0.043 ⋅ ‾‾‾
f'c L3
⎛ ⎛ 0.4 ⋅ 0.4 3 ⎞ ⎞
Ec ≔ 2400 1.5 ⋅ 0.043 ⋅ ‾‾‾
21 ⎜ 12 ((23168.343)) ⎜―――⎟ ((1000)) ⎟
⎝ 12 ⎠
K ≔ 28 ⎜―――――――――――⎟ = 422528.706
⎜⎝ 3.4 3 ⎟⎠
Ec = 23168.343 MPa
kN
K = 422528.706 ――
m
Level Wi Mi Ki
⎛ kN ⎞
((kN )) ((tonne )) ⎜―― ⎟
⎝ m ⎠
3 2119.584 216.137 422528.706
2 2791.968 284.702 422528.706
1 2791.968 284.702 422528.706
S1 = 2.5 Ca
S1 ≔ 2.5 ⋅ 0.44 = 1.1
T1 0.3618
―= ――― = 0.6216
Ts 0.582
Cv
Ts = ―――
2.5 Ca T2 0.1225
―= ――― = 0.2105
Ts 0.582
0.64
Ts ≔ ―― = 0.582
1.1 T3 0.0853
―= ――― = 0.1466
Ts 0.582
Ts ≔ 0.582 sec
T1 T2 T3 T1 T2 T3
―= ― > 0.2 > ― 1 > ―= ― > ―
Ts Ts Ts Ts Ts Ts
Sa1 ≔ 10.791
⎛ m⎞
Sa1 = Sa2 = 1.1 ⋅ g = 1.1 ⎜9.81 ―⎟
⎝ s2 ⎠ Sa2 ≔ 10.791
1.1 - 0.44 = 0.66
0.66 y
―― = ―――
0.2 0.1466
0.66 ((0.1466))
y ≔ ――――― = 0.484
0.2
Sa3 ≔ ((0.484 + 0.44)) ((9.81))
Sa3 = 9.064
2
⎛ Tk ⎞
Sdk = Sak ⎜―― ⎟
⎝2 π⎠
⎛ 0.3618 ⎞
Sd1 ≔ 10.791 ⎜――― ⎟ = 0.6214 ; Sa1 = 10.791
⎝ 2π ⎠
⎛ 0.1225 ⎞
Sd2 ≔ 10.791 ⎜――― ⎟ = 0.2104 ; Sa2 = 10.791
⎝ 2π ⎠
⎛ 0.0853 ⎞
Sd3 ≔ 9.064 ⎜――― ⎟ = 0.1231 ; Sa3 = 9.064
⎝ 2π ⎠
6.) Compute Mode Participating factor (mpf), Effective mass (emk) and Effective Participating
mass (epmk) for each mode k
@K = 1 @K = 2 @K = 3
n=3 n=3 n=3
∑ m1 ⋅ ϕ1 = 1401.094 ∑ m2 ⋅ ϕ2 = 160.7345 ∑ m3 ⋅ ϕ3 = 77.7725
i =1 i =1 i =1
n=3 2 n=3 2 n=3 2
∑ m1 ⎛⎝ϕ1⎞⎠ = 2713.629 ∑ m2 ⎛⎝ϕ2⎞⎠ = 544.0418 ∑ m3 ⎛⎝ϕ3⎞⎠ = 413.2252
i =1 i =1 i =1
n=3 n=3 n=3
∑ mi = 785.5404 ∑ mi = 785.5404 ∑ mi = 785.5404
i =1 i =1 i =1
*Mode Participating Factor, mpf
n=3
∑ mi ⋅ ϕi
i =1
mpfk = ――――
n=3 2
∑ mi ⎛⎝ϕi⎞⎠
i =1
@K = 1 @K = 2 @K = 3
1401.094 160.7345 77.7725
mpf1 ≔ ――― mpf2 ≔ ――― mpf3 ≔ ―――
2713.629 544.0418 413.2252
mpf1 = 0.516 mpf2 = 0.295 mpf3 = 0.188
*Effective Mass, emk
⎛ n=3 ⎞2
⎜ ∑ mi ⋅ ϕi⎟
⎝ i =1 ⎠
emk = ―――――
n=3 2
∑ mi ⎛⎝ϕi⎞⎠
i =1
@K = 1 @K = 2 @K = 3
((1401.094)) 2 ((160.7345)) 2 ((77.7725)) 2
em1 ≔ ―――― em2 ≔ ―――― em3 ≔ ――――
2713.629 544.0418 413.2252
em1 = 723.409 em2 = 47.488 em3 = 14.637
*Effective Participating Mass, empk
emk
empk = ―――
n=3
∑ mi
i =1
@K = 1 @K = 2 @K = 3
723.409 47.488 14.637
emp1 ≔ ――― emp2 ≔ ――― emp3 ≔ ―――
785.5404 785.5404 785.5404
emp1 = 0.921 emp2 = 0.06 emp3 = 0.019
7.) Compute displacement at each level i, mode k
Uik = mpfk ⋅ Sdk ⋅ ϕk
Ui = 0.7 R ⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
⎛⎝Ui1⎞⎠ 2 + ⎛⎝Ui2⎞⎠ 2 + ⎛⎝Ui3⎞⎠ 2 ; R = 8.5
8.) Compute Story Drift at each level i, mode k
mpf1 = 0.516 Sd1 = 0.6214
mpf2 = 0.295 Sd2 = 0.2104
mpf3 = 0.188 Sd3 = 0.1231
Udi = 0.7 R ⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
⎛⎝Ui1⎞⎠ 2 + ⎛⎝Ui2⎞⎠ 2 + ⎛⎝Ui3⎞⎠ 2
*Revise Column Size from 0.6 x 0.6 to 0.7 x 0.7
9.) Compute Forces at each level, mode k
Fik = mpfk ⋅ Sak ⋅ mi ⋅ ϕik
Sa1 = 10.791 mpf1 = 0.516
Sa2 = 10.791 mpf2 = 0.295
Sa3 = 9.064 mpf3 = 0.188
Fi = ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
⎛⎝Fxi1⎞⎠ 2 + ⎛⎝Fxi2⎞⎠ 2 + ⎛⎝Fxi3⎞⎠ 2
I
F'i = ―⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
⎛⎝Fxi1⎞⎠ 2 + ⎛⎝Fxi2⎞⎠ 2 + ⎛⎝Fxi3⎞⎠ 2
R
10.) Compute Dynamic Base Shear
Vdynk = emk ⋅ Sak
em1 = 723.409 Sa1 = 10.791
em2 = 47.488 Sa2 = 10.791
em3 = 14.637 Sa3 = 9.064
Vdesign1 = em1 ⋅ Sd1 Vdesign3 = em3 ⋅ Sd3
Vdesign1 ≔ 723.409 ⋅ 10.791 = 7806.307 Vdesign3 ≔ 14.637 ⋅ 9.064 = 132.67
Vdesign1 = 7806.307 kN Vdesign3 = 132.67 kN
Vdesign2 = em2 ⋅ Sd2
Vdesign2 ≔ 47.488 ⋅ 10.791 = 512.443
Vdesign2 = 512.443 kN
1
Vdesign = ―⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
⎛⎝Vdesign1⎞⎠ 2 + ⎛⎝Vdesign2⎞⎠ 2 + ⎛⎝Vdesign3⎞⎠ 2
R
1
Vdesign ≔ ―― ⋅ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
((7806.307)) 2 + ((512.443)) 2 + ((132.67)) 2 = 920.498
8.5
Vdesign = 920.498 kN
Vdesign < 0.9 Vstatic Use V = 0.9 Vstatic
Vdesign > 0.9 Vstatic Use V = Vdesign
Vstatic = 996.926 kN
0.9 Vstatic = 897.233 kN < Vdesign
V = 920.498 kN
*No Scaling Factor required