F.
6 Final Examination 2021 – 2022
                                      Mathematics Extended Part
                                   Module 1 (Calculus and Statistics)
                                           Suggested Solution
                                              Solution                                Marks
1(a)   2 p  (1  ap)  3 p  1
                  (5  a) p  0
                          a  5 or p  0 (rejected)
       E( X )  1 2 p  4  (1  5 p)  6  3 p
             4
       Var( X )  12  2 p  42  (1  5 p)  62  3 p  42
                 30 p
1(b)   Var(2 X  a)  6E(2 X  a)
       22 Var( X )  6[2E( X )  a]
          4  30 p  6(2  4  5)
                p  0.15
2(a)   The required probability
       = 1  (1  0.4)7  C17 (1  0.4)6(0.4)
       = 0.841 369 6
       = 0.841 4, cor. to 4 d.p.
2(b)   P(David spends more than $30 in restaurant A for breakfast on a certain day)
       = 0.4  0.7
       = 0.28
       The required probability
       = 1  (1  0.28)7  C17 (1  0.28)6(0.28)
        0.626 638 293
       = 0.626 6, cor. to 4 d.p.
2(c)   The required probability
         0.626 638 293
        0.841 369 6
       = 0.744 8, cor. to 4 d.p.
3(a)   P( A  B)  P( B) P( A | B)
                  kP( A)  (1  0.55)
                  0.45kP( A)
       P( A  B)  P( A)  P( B)  P( A  B)
           0.846  P( A)  kP( A)  0.45kP( A)
                  (1  0.55k ) P( A)
                   0.846
       P( A) 
                 1  0.55k
                                                        1
                                                      Solution             Marks
3(b)           k  0 and P( A)  0
               P( A  B)  0
               A and B are not mutually exclusive.
3(c)        P( A)  1  P( A ' | B)
         0.846
                   1  0.55
       1  0.55k
       1  0.55k  1.88
                  k  1.6
4(a)                  1
                                    2
                      
       e k  1 x  
        
          x
                 1       k 2
                             x  ...
                 k      2!
                 1    1
             1  x  2 x 2  ...
                 k   2k
4(b)    
            x
       e (1  kx )6
            k
          1                   
         1  x  2 x 2  ...  1  C16 ( kx )  C26 ( kx ) 2  ...
                     1
          k        2k         
          1         1         
         1  x  2 x 2  ...  1  6kx  15k 2 x 2  ... 
          k        2k         
                                               1   1 
       Coefficient of x2 is (1)(15k 2 )  (1)  2     ( 6k )
                                               2k   k 
                                                  1
                                    15k 2           6
                                                 2k 2
                                          1       529
                            15k 2         2
                                              6
                                         2k        8
                            120k 4  481k 2 4  0
                                                 1
                            ∴    k  2 or k  
                                                120
                            ∴ k  2 (∵ k is a positive integer)
                                         1 
       Coefficient of x is (1)( 6k )    (1)
                                         k 
                                        25
                                   
                                         2
5(a)   Sample mean
       = 32 cm
       A 95% confidence interval for µ
                           4                     4 
       =  32  1.96           , 32  1.96        
                           20                    20 
       = (30.246 9 , 33.753 1), cor. to 4 d.p.
                                                             2
                                                                                                 Solution         Marks
5(b)   Let n be the sample size.
       Width of a 99% confidence interval
                              4 
       = 2(2.575)              
                              n
             20.6
       =
                   n
                   20.6
       ∴                    2
                       n
                           n  10.3
                           n  106.09
       ∴           The least sample size is 107.
6(a)                         1
                                                        dv 1  43     
                                                                        3
       Let v  x 4 . Then                                  x , i.e. x 4 dx  4dv .
                                                        dx 4
                                      3                                      3           1
                                                                        
                              x f ( x )dx   x e dx
                                      4                                      4        x4
                                            4  e  v dv
                                                                     4e  v  C
                                                                                     1
                                                                     4e  x  C
                                                                                     4
6(b)   g (u)  e  u (u 3  3u 2  6u  3)
                     dg (u ) dg (u ) du
                             
                       dx         du dx
                                                                                                        1 3 
                                              [ e  u (u 3  3u 2  6u  3)  e  u (3u 2  6u  6)]  x 4 
                                                                                                       4     
                                                                                               1   3
                                              e  u ( u 3  3u 2  6u  3  3u 2  6u  6)  x 4 
                                                                                               4       
                                                               1 3 
                                                     3                           1
                                             (3  x 4 )e  x  x 4 
                                                                                 4
                                                              4     
                                                3  1
                                                     3                                           1
                                              x 4   e x
                                                                                                 4
                                                4        4
                                                   3  13
                            ∴              h( x )  x 4 
                                                   4          4
                           16  3    1 4
                                    3                                   1
6(c)    16   dg (u )
       0            dx  0  x 4   e  x dx
              dx               4     4
                                                                1                            1
                                  3 16  34  x 4 1 16 4
                                  4 0
                  [ g (u )]02         x e dx  0 e  x dx
                                                  4
                       1                        3           1
              16                      16    
             0    e  x dx  30 x 4 e  x dx  4[ g (u )]02
                       4                                    4
                              3(4)[e  x ]160  4{e 2 [23  3(22 )  6(2)  3]  e0 (3)}
                                                        4
                              12e 16  12  4(35e 2  3)
                                                    4
                             24  152e 2
                            ∴ The required area is 24  152e2 .
                                                                                                        3
                                                        Solution                        Marks
7(a)   dy ( x 3  3x  6)e x  (3x 2  3)e x
          =
       dx          ( x 3  3x  6)2
                       ( x 3  3x 2  3x  9)e x
                  =
                             ( x 3  3x  6)2
7(b)                  dy
       When              = 0,
                      dx
       x3  3x2  3x + 9 = 0
            (x  3)(x2  3) = 0
                  x=3              or    x =  3 (rejected)
              x             2x<3              x=3           3<x6
              dy
                                                0             +
              dx
       ∴ The value of y is at the least when x = 3.
                                                   e3
       ∴          The least value of y is             (or 0.836897371).
                                                   24
                                        e2
       When x = 2, y =                     or 0.923632012
                                        8
                                         e6
       When x = 6, y =                      or 1.977592125
                                        204
                                                      e6
       ∴          The greatest value of y is             (or 1.977592125)
                                                     204
8(a)   dy                  1 
                             
       dx     x 2         25 
         5k ( 2 )      52
               k  1
8(b)   (i)        By substituting P(2, n) into L: x – 25y + 73 = 0, we have
                                          2  25n  73  0
                                                     n3
       (ii)        y   5 x dx
                           5 x
                                C
                           ln 5
                  When x = 2, y = 3.
                        52
                   3         C
                        ln 5
                              1
                   C  3
                           25ln 5
                                                                   5 x        1
       ∴          The equation of the curve S is y                     3        .
                                                                   ln 5      25ln 5
                                                                   4
                                                    Solution                                               Marks
9(a)   The required probability
         1.80 e 1.8 1.81 e 1.8 1.82 e1.8
       =            +           +
            0!           1!         2!
               1.8
       = 4.42e
       = 0.730 6, cor. to 4 d.p.
9(b)   The required probability
         (1.2  12)9 e  (1.2  12)
       =
                  9!
       = 0.040 9, cor. to 4 d.p.
9(c)   The required probability
         1.80 e 1.8   1.24 e 1.2   1.81 e 1.8   1.23 e 1.2   1.82 e 1.8   1.22 e 1.2 
       =                            +                          +                           +
         0!   4!   1!   3!   2!   2! 
        1.83 e 1.8   1.21 e 1.2   1.84 e 1.8   1.20 e 1.2 
        3!   1!  +  4!   0! 
                                                              
       = 3.375e3
       = 0.168 0, cor. to 4 d.p.
9(d)   The required probability
          1.82 e 1.8   1.2 2 e 1.2 
          2!   2! 
       =              
                            3
                                        
                  3.375e
                      216 
       = 0.345 6  or             
                      625 
9(e)   P(total number of breakdowns of the two machines in a month is less than 3)
                    1.20 e 1.2   1.80 e 1.8 1.81 e 1.8   1.21 e 1.2 
       = 4.42e1.8               +           
                                                    1!   1! 
                                                                               +
                    0!   0!
        1.80 e 1.8   1.22 e 1.2 
        0!   2! 
                                  
       = 8.5e3
       The required probability
          1.80 e 1.8 1.81 e 1.8   1.21 e 1.2 
          0!  1!   1! 
       =                     3
                                                 
                        8.5e
                                        168 
       = 0.395 3, cor. to 4 d.p.  or              
                                        425 
                                                               5
                                              Solution                               Marks
10(a)            105  101 
        P0  Z             = 0.5  0.308 5
                          
                              = 0.191 5
             105  101
        ∴                = 0.5
                 
                     =8
        The required probability
            95  101     105  101 
        = P          Z           
               8             8     
        = P(0.75  Z  0.5)
        = 0.273 4 + 0.191 5
        = 0.464 9
10(b) The required probability
        = C14 (0.464 9)(1  0.464 9)3(0.464 9)
        = 0.132 5, cor. to 4 d.p.
10(c) The required probability
      = C35 (0.464 9)3(1  0.464 9)2 + C45 (0.464 9)4(1  0.464 9) + (0.464 9)5
       0.434 403 398
        = 0.434 4, cor. to 4 d.p.
10(d) (i)    The required probability
                  99  101     101  101 
             = P           Z           
                     8             8     
             = P(0.25  Z  0)
             = 0.098 7
        (ii) P(at least 3 participants get cash coupons and only 1 of them gets an
             extra gift)
             = C15C24 (0.098 7)(0.464 9  0.098 7)2(1  0.464 9)2 +
             C15C34 (0.098 7)(0.464 9  0.098 7)3(1  0.464 9) +
             C15 (0.098 7)(0.464 9  0.098 7)
                                               4
              0.174 443 281
             The required probability
                0.174 443 281
              0.434 403 398
             = 0.401 6, cor. to 4 d.p.
                                                     6
                                                      Solution                         Marks
11(a) (i)
       A1
          1  2 1
                 1ln1  2 ln 2  2(1.2 ln1.2  1.4 ln1.4  1.6ln1.6  1.8ln1.8)
          2 5 
         0.638 603196
         0.6386 (cor. to 4 d.p.)
        (ii)
          1 f ( x )dx  1 f ( x )dx  2 f ( x )dx
            4                 2                4
                       15
        16ln 2            A1  A2
                        4
                                     15
                       A2  16ln 2      A1
                                      4
                                     15
                            16ln 2   0.638 603196
                                      4
                            6.701 751 692
                            6.7018 (cor. to 4 d.p.)
11(b)                        1
         f ( x )  ln x  x  
                             x
                   ln x  1
                       1
         f ( x ) 
                       x
11(c) (i)
                                      du 1
        Let u  ln x . Then,             .
                                      dx x
                                                   dx
                              We have du             .
                                                    x
                              When x = 1, u = 0; when x = 4, u = 2ln2.
                                              2
                                    4 (ln x )
                              B  1            dx
                                          x
                                 0 u 2 du
                                    2ln 2
                                           2ln 2
                                    u 
                                       3
                                   
                                     3 0
                                    (2 ln 2) 3
                                              0
                                        3
                                    8(ln 2) 3
                                  
                                        3
                                                             7
                                                 Solution                Marks
        (ii)
                                      1
        By (b), we have f ( x )       0 for x > 0.
                                      x
                          By (a)(i), we have A1  0.638 603196 .
                          By (a)(ii), we have A2  A1  6.063148 496 .
                                               8(ln 2) 3
                                       B          3
                          ∴                
                                    A2  A1 6.063148 496
                                             0.146 469 402
                                             0.15
                          ∴        Dickson’s claim is agreed.
12(a)                              5
                       P=
                               1  a 5bt
                               5
               1 + a5  bt =
                               P
                   5
                      1 = a5  bt
                   P
                  5   
               ln   1 = ln a5  bt
                  P 
                   5    
                ln   1 = (5  bt) ln a
                   P 
                   5   
                ln   1 = (b ln a)t + 5 ln a
                   P 
12(b) (i)
                       5   
        When t = 0, ln   1 = ln 32.
                       P 
        ∴ 5 ln a = ln 32
                  a =2
                5            5
        When ln   1 = 0, t = .
                P            4
                        5
        ∴ 0 = (b ln 2)   + 5 ln 2
                        4
               b=4
                                                         8
                                                           Solution                                     Marks
        (ii)
                   5
        P=
               1  2 5 4 t
        dP   5(254t ln 2)( 4)
           =
        dt      (1  254t )2
                     (20ln 2)(254t )
               =
                       (1  254t )2
        d 2P
        dt 2
                           (1  254t )2 (254t ln 2)( 4)  (254t )(2)(1  254t )(254t ln 2)( 4)
        = (20 ln 2)
                                                          (1  254t )4
                                        1  254t  (254 t )(2)
        = 80 (ln 2)2 (25  4t)
                                             (1  254t )3
            80(ln 2)2 (254t )(254t  1)
        =
                   (1  254t )3
        (iii)
        The estimated population
                        5       
        = tlim            5 4t 
                                   million
                  1  2       
             5
        =        million
            1 0
        = 5 million
12(c)                d 2P
        When              = 0,
                     dt 2
        80(ln 2) 2 (2 54t )( 2 54t  1)
                                          =0
               (1  2 54t ) 3
                                 25  4t  1 = 0
                                     5  4t = 0
                                                  5
                                             t=
                                                  4
                                        5                  5                5
               t              0t<                    t=               t>
                                        4                  4                4
            d 2P
                                   +                   0                
            dt 2
                   dP                                    5
        ∴             attains its greatest value when t = .
                   dt                                    4
                                                                   9
                                                  Solution               Marks
dW    dW dP
    =    
 dt   dP   dt
        3  P        3  (20 ln 2)( 25  4t )
     =   ln                                                         1M
        2          2  (1  25  4t ) 2
                5
When t =          ,
                4
            5
P=               5
            5  4 
     1 2        4
 = 2.5
                                                         5
                                                    5  4 
      dW             3  2.5     3  (20 ln 2)[ 2  4  ]
∴               5 =
                      ln           
       dt            2         2                   2
                                               5  4  
             t                                     5
                4
                                         1  2   4
                                                       
                                                       
           3.872 372 26
          <4
∴ The rate of change of the weight of waste disposal does not exceed
                                       dP
     4 units per year when                attains its greatest value.
                                       dt
∴    The claim is not correct.
                                                           10