0% found this document useful (0 votes)
40 views10 pages

SMCC 2122 Marking

The document contains suggested solutions for the F.6 Final Examination 2021-2022 Mathematics Extended Part, Module 1, covering topics in calculus and statistics. It includes detailed calculations for various problems, including expectations, variances, probabilities, and confidence intervals. Each solution is accompanied by the corresponding marks allocation.

Uploaded by

卓吱吱
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views10 pages

SMCC 2122 Marking

The document contains suggested solutions for the F.6 Final Examination 2021-2022 Mathematics Extended Part, Module 1, covering topics in calculus and statistics. It includes detailed calculations for various problems, including expectations, variances, probabilities, and confidence intervals. Each solution is accompanied by the corresponding marks allocation.

Uploaded by

卓吱吱
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

F.

6 Final Examination 2021 – 2022


Mathematics Extended Part
Module 1 (Calculus and Statistics)
Suggested Solution

Solution Marks
1(a) 2 p  (1  ap)  3 p  1
(5  a) p  0
a  5 or p  0 (rejected)
E( X )  1 2 p  4  (1  5 p)  6  3 p
4
Var( X )  12  2 p  42  (1  5 p)  62  3 p  42
 30 p
1(b) Var(2 X  a)  6E(2 X  a)
22 Var( X )  6[2E( X )  a]
4  30 p  6(2  4  5)
p  0.15
2(a) The required probability
= 1  (1  0.4)7  C17 (1  0.4)6(0.4)
= 0.841 369 6
= 0.841 4, cor. to 4 d.p.
2(b) P(David spends more than $30 in restaurant A for breakfast on a certain day)
= 0.4  0.7
= 0.28
The required probability
= 1  (1  0.28)7  C17 (1  0.28)6(0.28)
 0.626 638 293
= 0.626 6, cor. to 4 d.p.
2(c) The required probability
0.626 638 293
 0.841 369 6

= 0.744 8, cor. to 4 d.p.


3(a) P( A  B)  P( B) P( A | B)
 kP( A)  (1  0.55)
 0.45kP( A)
P( A  B)  P( A)  P( B)  P( A  B)
0.846  P( A)  kP( A)  0.45kP( A)
 (1  0.55k ) P( A)
0.846
P( A) 
1  0.55k

1
Solution Marks
3(b)  k  0 and P( A)  0
 P( A  B)  0
 A and B are not mutually exclusive.
3(c) P( A)  1  P( A ' | B)
0.846
 1  0.55
1  0.55k
1  0.55k  1.88
k  1.6
4(a)  1
2

 
e k  1 x  

x
1 k 2
x  ...
k 2!
1 1
 1  x  2 x 2  ...
k 2k
4(b) 
x
e (1  kx )6
k

 1 
  1  x  2 x 2  ...  1  C16 ( kx )  C26 ( kx ) 2  ...
1
 k 2k 
 1 1 
  1  x  2 x 2  ...  1  6kx  15k 2 x 2  ... 
 k 2k 
 1   1 
Coefficient of x2 is (1)(15k 2 )  (1)  2     ( 6k )
 2k   k 
1
 15k 2  6
2k 2
1 529
15k 2  2
6
2k 8
120k 4  481k 2 4  0
1
∴ k  2 or k  
120
∴ k  2 (∵ k is a positive integer)
 1 
Coefficient of x is (1)( 6k )    (1)
 k 
25

2
5(a) Sample mean
= 32 cm
A 95% confidence interval for µ
 4 4 
=  32  1.96  , 32  1.96  
 20 20 
= (30.246 9 , 33.753 1), cor. to 4 d.p.

2
Solution Marks
5(b) Let n be the sample size.
Width of a 99% confidence interval
 4 
= 2(2.575) 
 n
20.6
=
n
20.6
∴ 2
n
n  10.3
n  106.09
∴ The least sample size is 107.
6(a) 1
dv 1  43 
3

Let v  x 4 . Then  x , i.e. x 4 dx  4dv .


dx 4
3 3 1
 
 x f ( x )dx   x e dx
4 4  x4

 4  e  v dv
 4e  v  C
1

 4e  x  C
4

6(b) g (u)  e  u (u 3  3u 2  6u  3)
dg (u ) dg (u ) du

dx du dx
 1 3 
 [ e  u (u 3  3u 2  6u  3)  e  u (3u 2  6u  6)]  x 4 
4 
1   3

 e  u ( u 3  3u 2  6u  3  3u 2  6u  6)  x 4 
4 
 1 3 
3 1

 (3  x 4 )e  x  x 4 
4

4 
3  1
3 1

  x 4   e x
4

4 4
3  13

∴ h( x )  x 4 
4 4
16  3  1 4
3 1
6(c) 16 dg (u )
0 dx  0  x 4   e  x dx
dx  4 4
1 1
3 16  34  x 4 1 16 4
4 0
[ g (u )]02  x e dx  0 e  x dx
4
1 3 1
16 16 
0 e  x dx  30 x 4 e  x dx  4[ g (u )]02
4 4

 3(4)[e  x ]160  4{e 2 [23  3(22 )  6(2)  3]  e0 (3)}


4

 12e 16  12  4(35e 2  3)


4

 24  152e 2
∴ The required area is 24  152e2 .

3
Solution Marks
7(a) dy ( x 3  3x  6)e x  (3x 2  3)e x
=
dx ( x 3  3x  6)2
( x 3  3x 2  3x  9)e x
=
( x 3  3x  6)2
7(b) dy
When = 0,
dx
x3  3x2  3x + 9 = 0
(x  3)(x2  3) = 0
x=3 or x =  3 (rejected)
x 2x<3 x=3 3<x6
dy
 0 +
dx

∴ The value of y is at the least when x = 3.


e3
∴ The least value of y is (or 0.836897371).
24
e2
When x = 2, y = or 0.923632012
8
e6
When x = 6, y = or 1.977592125
204
e6
∴ The greatest value of y is (or 1.977592125)
204
8(a) dy  1 
  
dx x 2  25 
5k ( 2 )  52
k  1
8(b) (i) By substituting P(2, n) into L: x – 25y + 73 = 0, we have

2  25n  73  0
n3

(ii) y   5 x dx
5 x
 C
 ln 5
When x = 2, y = 3.
52
3 C
 ln 5
1
C  3
25ln 5
5 x 1
∴ The equation of the curve S is y    3 .
ln 5 25ln 5

4
Solution Marks
9(a) The required probability
1.80 e 1.8 1.81 e 1.8 1.82 e1.8
= + +
0! 1! 2!
1.8
= 4.42e
= 0.730 6, cor. to 4 d.p.
9(b) The required probability
(1.2  12)9 e  (1.2  12)
=
9!
= 0.040 9, cor. to 4 d.p.
9(c) The required probability

 1.80 e 1.8   1.24 e 1.2   1.81 e 1.8   1.23 e 1.2   1.82 e 1.8   1.22 e 1.2 
=   +  +  +
 0!   4!   1!   3!   2!   2! 

 1.83 e 1.8   1.21 e 1.2   1.84 e 1.8   1.20 e 1.2 


 3!   1!  +  4!   0! 
     

= 3.375e3
= 0.168 0, cor. to 4 d.p.
9(d) The required probability
 1.82 e 1.8   1.2 2 e 1.2 
 2!   2! 
=  
3

3.375e
 216 
= 0.345 6  or 
 625 
9(e) P(total number of breakdowns of the two machines in a month is less than 3)

 1.20 e 1.2   1.80 e 1.8 1.81 e 1.8   1.21 e 1.2 


= 4.42e1.8   + 
1!   1! 
+
 0!   0!

 1.80 e 1.8   1.22 e 1.2 


 0!   2! 
  

= 8.5e3
The required probability
 1.80 e 1.8 1.81 e 1.8   1.21 e 1.2 
 0!  1!   1! 
=  3
 
8.5e
 168 
= 0.395 3, cor. to 4 d.p.  or 
 425 

5
Solution Marks
10(a)  105  101 
P0  Z   = 0.5  0.308 5
  
= 0.191 5
105  101
∴ = 0.5

 =8
The required probability
 95  101 105  101 
= P Z 
 8 8 
= P(0.75  Z  0.5)
= 0.273 4 + 0.191 5
= 0.464 9
10(b) The required probability

= C14 (0.464 9)(1  0.464 9)3(0.464 9)

= 0.132 5, cor. to 4 d.p.


10(c) The required probability
= C35 (0.464 9)3(1  0.464 9)2 + C45 (0.464 9)4(1  0.464 9) + (0.464 9)5
 0.434 403 398
= 0.434 4, cor. to 4 d.p.
10(d) (i) The required probability
 99  101 101  101 
= P Z 
 8 8 
= P(0.25  Z  0)
= 0.098 7

(ii) P(at least 3 participants get cash coupons and only 1 of them gets an
extra gift)
= C15C24 (0.098 7)(0.464 9  0.098 7)2(1  0.464 9)2 +
C15C34 (0.098 7)(0.464 9  0.098 7)3(1  0.464 9) +
C15 (0.098 7)(0.464 9  0.098 7)
4

 0.174 443 281


The required probability
0.174 443 281
 0.434 403 398

= 0.401 6, cor. to 4 d.p.

6
Solution Marks
11(a) (i)
A1
1  2 1
   1ln1  2 ln 2  2(1.2 ln1.2  1.4 ln1.4  1.6ln1.6  1.8ln1.8)
2 5 
 0.638 603196
 0.6386 (cor. to 4 d.p.)

(ii)

1 f ( x )dx  1 f ( x )dx  2 f ( x )dx


4 2 4

15
16ln 2   A1  A2
4
15
A2  16ln 2   A1
4
15
 16ln 2   0.638 603196
4
 6.701 751 692
 6.7018 (cor. to 4 d.p.)
11(b) 1
f ( x )  ln x  x  
x
 ln x  1
1
f ( x ) 
x
11(c) (i)
du 1
Let u  ln x . Then,  .
dx x
dx
We have du  .
x
When x = 1, u = 0; when x = 4, u = 2ln2.
2
4 (ln x )
B  1 dx
x
 0 u 2 du
2ln 2

2ln 2
u 
3

 
 3 0
(2 ln 2) 3
 0
3
8(ln 2) 3

3

7
Solution Marks
(ii)
1
By (b), we have f ( x )   0 for x > 0.
x
By (a)(i), we have A1  0.638 603196 .
By (a)(ii), we have A2  A1  6.063148 496 .
8(ln 2) 3
B 3
∴ 
A2  A1 6.063148 496
 0.146 469 402
 0.15
∴ Dickson’s claim is agreed.
12(a) 5
P=
1  a 5bt
5
1 + a5  bt =
P
5
 1 = a5  bt
P
5 
ln   1 = ln a5  bt
P 
5 
ln   1 = (5  bt) ln a
P 
5 
ln   1 = (b ln a)t + 5 ln a
P 
12(b) (i)
5 
When t = 0, ln   1 = ln 32.
P 
∴ 5 ln a = ln 32
a =2
5  5
When ln   1 = 0, t = .
P  4
5
∴ 0 = (b ln 2)   + 5 ln 2
4
b=4

8
Solution Marks
(ii)
5
P=
1  2 5 4 t
dP 5(254t ln 2)( 4)
=
dt (1  254t )2
(20ln 2)(254t )
=
(1  254t )2
d 2P
dt 2
(1  254t )2 (254t ln 2)( 4)  (254t )(2)(1  254t )(254t ln 2)( 4)
= (20 ln 2)
(1  254t )4
1  254t  (254 t )(2)
= 80 (ln 2)2 (25  4t)
(1  254t )3
80(ln 2)2 (254t )(254t  1)
=
(1  254t )3

(iii)
The estimated population
 5 
= tlim  5 4t 
million
  1  2 
5
= million
1 0
= 5 million
12(c) d 2P
When = 0,
dt 2
80(ln 2) 2 (2 54t )( 2 54t  1)
=0
(1  2 54t ) 3
25  4t  1 = 0
5  4t = 0
5
t=
4
5 5 5
t 0t< t= t>
4 4 4
d 2P
+ 0 
dt 2

dP 5
∴ attains its greatest value when t = .
dt 4

9
Solution Marks
dW dW dP
= 
dt dP dt

 3  P 3  (20 ln 2)( 25  4t )
=   ln  1M
 2  2  (1  25  4t ) 2

5
When t = ,
4
5
P= 5
5  4 
1 2 4

= 2.5
5
5  4 
dW  3  2.5 3  (20 ln 2)[ 2  4  ]
∴ 5 =
  ln 
dt  2  2   2
5  4  
t 5
4
1  2   4

 
 
 3.872 372 26
<4
∴ The rate of change of the weight of waste disposal does not exceed
dP
4 units per year when attains its greatest value.
dt
∴ The claim is not correct.

10

You might also like