0% found this document useful (0 votes)
155 views74 pages

New FLAT NOTES

The document outlines a teaching plan for a course on Automata Theory for the academic year 2018-19, detailing the topics to be covered, the number of periods required, and teaching aids needed. It includes five units covering various aspects of finite automata, regular expressions, context-free grammars, Turing machines, and undecidability. The document emphasizes the importance of automata theory in computer science and its applications in real-world scenarios.

Uploaded by

solomonrathnam03
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
155 views74 pages

New FLAT NOTES

The document outlines a teaching plan for a course on Automata Theory for the academic year 2018-19, detailing the topics to be covered, the number of periods required, and teaching aids needed. It includes five units covering various aspects of finite automata, regular expressions, context-free grammars, Turing machines, and undecidability. The document emphasizes the importance of automata theory in computer science and its applications in real-world scenarios.

Uploaded by

solomonrathnam03
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 74

No.

of
S. Teaching
Date Topics To Be Covered Periods Remarks
No. Aid
Required
UNIT-I
24/12/18
1. & Introduction to Finite Automata 2 BB
27/12/18
2. 29/12/18 Structural Representations 1 BB
3. 31/12/18 Automata and Complexity 1 BB
4. 2/1/19 the Central Concepts of Automata Theory 1 BB
3/1/2019
5. Alphabets, Strings, Languages, Problems 2 BB
& 5/1/19
6. 7/1/2019 Deterministic Finite Automata 2 BB
& 8/1/19
7. 9/1/19 & Nondeterministic Finite Automata 2 BB
10/1/19
8. an application: Text Search 1 BB
12/1/19
16/1/19 &
9. Finite Automata with Epsilon-Transitions. 2 BB
17/1/19
Total Periods Required 14
UNIT-II
10 19/1/19 & Regular Expressions 2 BB
21/1/19
11 22/1/19 & Finite Automata and Regular Expressions 2 BB
23/1/19
12
Applications of Regular Expressions 1 BB
24/1/19
13 28/1/19 Algebraic Laws for Regular Expressions 1 BB
14
Properties of Regular Languages 1 BB
29/1/19
15 30/1/19 Pumping Lemma for Regular Languages 1 BB
16 31/1/19 Applications of the Pumping Lemma 1 BB
17
Closure Properties of Regular Languages 1 BB
2/2/19
18
Decision Properties of Regular Languages 1 BB
4/2/19
19 5/2/19 Equivalence of Automata 1 BB
20 6/2/19 Minimization of Automata 1 BB
Total periods Required 13
UNIT-III
21 Context-Free Grammars 1 BB
7/2/19
22 9/2/19 Definition of Context-Free Grammars 1 BB
23 Derivations Using a Grammar 1 BB
11/2/19
24 12/2/19 Leftmost and Rightmost Derivations 1 BB
25 13/2/19 the Language of a Grammar 1 BB
26 14/2/19 Sentential Forms 1 BB
27 16/2/19 Parse Tress 1 BB
28 21/2/19 Applications of Context-Free Grammars 1 BB
29 23/2/19 Ambiguity in Grammars and Languages 1 BB
30. 25/2/19 Push Down Automata 1 BB
31. 26/2/19 Definition of the Pushdown Automaton 1 BB
32. 27/2/19 the Languages of a PDA 1 BB
28/2/2019
33. Equivalence of PDA's and CFG's 2 BB
& 2/3/19
34. 5/3/19 Deterministic Pushdown Automata 1 BB
Total periods Required 15
UNIT-IV
35 6/3/19 Normal Forms for Context- Free Grammars 1 BB
36 7/3/19 the Pumping Lemma for Context-Free Languages 1 BB
37 11/3/19 Closure Properties of Context-Free Languages 1 BB
38 12/3/19 Decision Properties of CFL's 1 BB
13/3/19 & Complexity of Converting among CFG's and
39 2 BB
14/3/19 PDA's
16/3/19 & Running time of conversions to Chomsky Normal
40 2 BB
18/3/19 Form
41 19/3/19 Introduction to Turing Machines 1 BB
42 20/3/19 Problems That Computers Cannot Solve 1 BB
43 23/3/19 The Turing Machine 1 BB
44 25/3/19 Programming Techniques for Turing Machines 1 BB
45 26/3/19 Extensions to the basic Turing machine 1 BB
46 27/3/19 Restricted Turing Machines 1 BB
47 28/3/19 Turing Machines and Computers 1 BB
Total periods Required 15
UNIT-V
48. 30/3/19 & Undecidability 2 BB
1/4/19
2/4/2019
49. A Language that is Not Recursively Enumerable 2 BB
& 3/4/19
50. 4/4/19 An Undecidable Problem That is RE 1 BB
51. 8/4/19 Undecidable Problems about Turing Machines 1 BB
52. 9/4/19 Post's Correspondence Problem 1 BB
53. 10/4/19 Other Undecidable Problems 1 BB
54. 11/4/19 Intractable Problems 1 BB
55. 13/4/19 The Classes P and NP 1 BB
15/4/19 &
56. An NP-Complete Problem 2 BB
16/4/19
Total periods Required 12

Faculty HOD PRINCIPAL

Teaching Plan (CSE II – II Semester / CSE-C)

Academic Year:2018-19

No.of
S. Teaching
Date Topics To Be Covered Periods Remarks
No. Aid
Required
UNIT-I
24/12/18
1. & Introduction to Finite Automata 2 BB
27/12/18
2. 28/12/18 Structural Representations 1 BB
3. 29/12/18 Automata and Complexity 1 BB
4. 31/12/18 the Central Concepts of Automata Theory 1 BB
3/1/2019
5. Alphabets, Strings, Languages, Problems 2 BB
& 4/1/19
6. 5/1/2019 Deterministic Finite Automata 2 BB
& 7/1/19
7. 8/1/19 & Nondeterministic Finite Automata 2 BB
10/1/19
8. an application: Text Search 1 BB
11/1/19
12/1/19 &
9. Finite Automata with Epsilon-Transitions. 2 BB
17/1/19
Total Periods Required 14
UNIT-II
10 18/1/19 & Regular Expressions 2 BB
19/1/19
11 21/1/19 & Finite Automata and Regular Expressions 2 BB
22/1/19
12
Applications of Regular Expressions 1 BB
24/1/19
13 25/1/19 Algebraic Laws for Regular Expressions 1 BB
14
Properties of Regular Languages 1 BB
28/1/19
15 29/1/19 Pumping Lemma for Regular Languages 1 BB
16 31/1/19 Applications of the Pumping Lemma 1 BB
17
Closure Properties of Regular Languages 1 BB
1/2/19
18
Decision Properties of Regular Languages 1 BB
2/2/19
19 4/2/19 Equivalence of Automata 1 BB
20 5/2/19 Minimization of Automata 1 BB
Total periods Required 13
UNIT-III
21 Context-Free Grammars 1 BB
7/2/19
22 8/2/19 Definition of Context-Free Grammars 1 BB
23 Derivations Using a Grammar 1 BB
9/2/19
24 11/2/19 Leftmost and Rightmost Derivations 1 BB
25 12/2/19 the Language of a Grammar 1 BB
26 14/2/19 Sentential Forms 1 BB
27 15/2/19 Parse Tress 1 BB
28 16/2/19 Applications of Context-Free Grammars 1 BB
29 21/2/19 Ambiguity in Grammars and Languages 1 BB
30. 22/2/19 Push Down Automata 1 BB
31. 23/2/19 Definition of the Pushdown Automaton 1 BB
32. 25/2/19 the Languages of a PDA 1 BB
26/2/2019
33. Equivalence of PDA's and CFG's 2 BB
& 28/2/19
34. 1/3/19 Deterministic Pushdown Automata 1 BB
Total periods Required 15
UNIT-IV
35 2/3/19 Normal Forms for Context- Free Grammars 1 BB
36 5/3/19 the Pumping Lemma for Context-Free Languages 1 BB
37 7/3/19 Closure Properties of Context-Free Languages 1 BB
38 8/3/19 Decision Properties of CFL's 1 BB
11/3/19 & Complexity of Converting among CFG's and
39 2 BB
12/3/19 PDA's
14/3/19 & Running time of conversions to Chomsky Normal
40 2 BB
15/3/19 Form
41 16/3/19 Introduction to Turing Machines 1 BB
42 18/3/19 Problems That Computers Cannot Solve 1 BB
43 19/3/19 The Turing Machine 1 BB
44 22/3/19 Programming Techniques for Turing Machines 1 BB
45 23/3/19 Extensions to the basic Turing machine 1 BB
46 25/3/19 Restricted Turing Machines 1 BB
47 26/3/19 Turing Machines and Computers 1 BB
Total periods Required 15
UNIT-V
48. 28/3/19 & Undecidability 2 BB
29/3/19
30/3/2019
49. A Language that is Not Recursively Enumerable 2 BB
& 1/4/19
50. 2/4/19 An Undecidable Problem That is RE 1 BB
51. 4/4/19 Undecidable Problems about Turing Machines 1 BB
52. 8/4/19 Post's Correspondence Problem 1 BB
53. 9/4/19 Other Undecidable Problems 1 BB
54. 11/4/19 Intractable Problems 1 BB
55. 12/4/19 The Classes P and NP 1 BB
13/4/2019
56. An NP-Complete Problem 2 BB
& 15/4/19
Total periods Required 12

Faculty HOD PRINCIPAL


UNIT – 1
OVER VIEW:

This unit provides the knowledge to understand what is automata, what is the need of studying
automata as one of the core subject, its real-time applications, how it is represented with states
and inputs and their diagrammatical representation , and also provides knowledge about
alphabet, string, language, regular expression and its operations , representation of deterministic
finite automata (DFA) and nondeterministic finite automata(NFA) and their tuples with some
practical problems and their applications

CONTENTS:

1. Introduction to Finite Automata,


2. Structural Representations,
3. Automata and Complexity,
4. The Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.
5. Deterministic Finite Automata,
6. Nondeterministic Finite Automata,
7. an application: Text Search,
8. Finite Automata with Epsilon-Transitions.
What is Automata Theory?

Automata theory (also known as Theory Of Computation) is a theoretical branch of Computer


Science and Mathematics, which mainly deals with the logic of computation with respect to
simple machines, referred to as automata.

Automata* enables the scientists to understand how machines compute the functions and solve
problems. The main motivation behind developing Automata Theory was to develop methods to
describe and analyse the dynamic behavior of discrete systems.
Automata is originated from the word “Automaton” which is closely related to “Automation”.

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting".
An automaton (Automata in plural) is an abstract self-propelled computing device which follows
a predetermined sequence of operations automatically.

Automata theory is the study of abstract machines and automata, as well as the computational
problems that can be solved using them. It is a theory in theoretical computer
science and discrete mathematics (a subject of study in both mathematics and computer science).
The word automata (the plural of automaton) come from the Greek word αὐτόματα, which
means "self-acting".

Automata theory, body of physical and logical principles underlying the operation of any
electromechanical device (an automaton) that converts information from one form into another
according to a definite procedure. Real or hypothetical automata of varying complexity have
become indispensable tools for the investigation and implementation of systems that have
structures amenable to mathematical analysis.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State
Machine (FSM).

Examples of Automata:

 Vending Machine
 Traffic Lights
 Video Games
 Text Parsing
 Regular Expression Matching
 Speech Recognition.
 Washing Maching ..etc

why to study automata theory:


 Each model in automata theory plays important roles in several applied areas.
 Finite automata are used in text processing(Lexical Analyzer), compilers, and hardware
design.
 Context-free grammar (CFGs) is used in programming languages and artificial
intelligence.
 Originally, CFGs were used in the study of the human languages.

The central concepts of Automata:

Symbol:
 Symbol is the smallest building block, which can be any alphabet, letter or any picture.

Alphabet:

 Definition − An alphabet is any finite set of symbols.


 Alphabets (Σ): Alphabets are set of symbols, which are always finite.
 Example − ∑ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and‘d’ are symbols.

String

 String is a finite sequence of symbols from some alphabet.


 A string is a finite sequence of symbols taken from ∑.
 String is generally denoted as w and length of a string is denoted as |w|.

Empty String:

 Empty string is the string with zero occurrence of symbols, represented as ε.



Number of Strings (of length 2) that can be generated over the alphabet {a, b} -
- -
a a
a b
b a
b b

Length of String |w| = 2


Number of Strings = 4
Conclusion:
For alphabet {a, b} with length n, number of strings can be generated = 2n.

Note – If the number of Σ’s is represented by |Σ|, then number of strings of length n,
possible over Σ is |Σ|n.

Example − ‘cabcad’ is a valid string on the alphabet set ∑ = {a, b, c, d}

Length of a String

 Definition − It is the number of symbols present in a string. (Denoted by |S|).


 Examples −
o If S = ‘cabcad’, |S|= 6
o If |S|= 0, it is called an empty string (Denoted by λ or ε)

Kleene Star

 Definition − The Kleene star, ∑*, is a unary operator on a set of symbols or strings, ∑,
that gives the infinite set of all possible strings of all possible lengths over ∑including λ.
 Representation − ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪……. where ∑p is the set of all possible strings
of length p.
 Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb,………..}

Kleene Closure / Plus

 Definition − The set ∑+ is the infinite set of all possible strings of all possible lengths

 Representation − ∑+ = ∑1 ∪ ∑2 ∪ ∑3 ∪…….
over ∑ excluding λ.

∑+ = ∑* − { λ }
 Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,………..}

Language:

 Language: A language is a set of strings, chosen form some Σ* or we can say- ‘A


language is a subset of Σ* ‘. A language which can be formed over ‘ Σ ‘ can be Finite
or Infinite.

 Definition − A language is a subset of ∑* for some alphabet ∑. It can be finite or


infinite.
 Example − If the language takes all possible strings of length 2 over ∑ = {a, b}, then L =
{ ab, bb, ba, bb}

Powers of ‘ Σ ‘ :

Say Σ = {a,b} then


Σ0 = Set of all strings over Σ of length 0. {ε}
Σ1 = Set of all strings over Σ of length 1. {a, b}
Σ2 = Set of all strings over Σ of length 2. {aa, ab, ba, bb}
i.e. |Σ2|= 4 and Similarly, |Σ3| = 8
Σ* is a Universal Set.
Σ* = Σ0 U Σ1 U Σ2 ..........
= {ε} U {a, b} U {aa, ab, ba, bb}
= ............. //infinite language.

Formal definition of a Finite Automaton:

A finite automaton has a finite set of states with which it accepts or rejects strings.

A finite automaton (FA) is a simple idealized machine used to recognize patterns within input
taken from some character set (or alphabet) C. The job of an FA is to accept or reject an input
depending on whether the pattern defined by the FA occurs in the input.

A finite automaton consists of:

 a finite set S of N states


 a special start state
 a set of final (or accepting) states
 a set of transitions T from one state to another, labeled with chars in C

We execute our FA on an input sequence as follows:

 Begin in the start state


 If the next input char matches the label on a transition from the current state to a new
state, go to that new state
 Continue making transitions on each input char
o If no move is possible, then stop
o If in accepting state, then accept

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where −


 Q is a finite set of states.
 ∑ is a finite set of symbols, called the alphabet of the automaton.

q0 is the initial state from where any input is processed (q0 ∈ Q).
 δ is the transition function.

F is a set of final state/states of Q (F ⊆ Q).



An FA has three components:


1. Input tape contains single string;
2. Head reads input string one symbol at a time; and
3. Memory is in one of a finite number of states.

Operating an FA:

1) Set the machine to start state.


2) If End-of-String then halt.
3) Read a symbol.
4) Update state according to current state and symbol read.
5) Goto Step 2.

An FA Accepts Strings:

 “Program” prescribes how symbols read affect current state.


 Final state is state FA is in when finished reading the input string.
 There are accept states (double circle) and reject states.
 An FA accepts input string if final state is accept state; otherwise it rejects.
An Example FA:

Finite Automaton can be classified into two types −

 Deterministic Finite Automaton (DFA)


 Non-deterministic Finite Automaton (NDFA / NFA)

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the machine will move.
Hence, it is called Deterministic Automaton. As it has a finite number of states, the machine is
called Deterministic Finite Machine or Deterministic Finite Automaton.

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where −


 Q is a finite set of states.
 ∑ is a finite set of symbols called the alphabet.
 δ is the transition function where δ: Q × ∑ → Q
 q0 is the initial state from where any input is processed (q0 ∈ Q).
 F is a set of final state/states of Q (F ⊆ Q).

Graphical Representation of a DFA

A DFA is represented by digraphs called state diagram.

 The vertices represent the states.


 The arcs labeled with an input alphabet show the transitions.
 The initial state is denoted by an empty single incoming arc.
 The final state is indicated by double circles.

Example

Let a deterministic finite automaton be →

 Q = {a, b, c},
 ∑ = {0, 1},
 q0 = {a},
 F = {c}, and

Transition function δ as shown by the following table −

Present State Next State for Input 0 Next State for Input 1

a a b

b c a

c b c

Its graphical representation would be as follows −

In NDFA, for a particular input symbol, the machine can move to any combination of the states
in the machine. In other words, the exact state to which the machine moves cannot be
determined. Hence, it is called Non-deterministic Automaton. As it has finite number of
states, the machine is called Non-deterministic Finite Machine or Non-deterministic Finite
Automaton.
Formal Definition of an NDFA

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where −


 Q is a finite set of states.
 ∑ is a finite set of symbols called the alphabets.
 δ is the transition function where δ: Q × ∑ → 2Q
(Here the power set of Q (2Q) has been taken because in case of NDFA, from a state,
transition can occur to any combination of Q states)
 q0 is the initial state from where any input is processed (q0 ∈ Q).
 F is a set of final state/states of Q (F ⊆ Q).

Graphical Representation of an NDFA: (same as DFA)

An NDFA is represented by digraphs called state diagram.

 The vertices represent the states.


 The arcs labeled with an input alphabet show the transitions.
 The initial state is denoted by an empty single incoming arc.
 The final state is indicated by double circles.

Example
Let a non-deterministic finite automaton be →

 Q = {a, b, c}
 ∑ = {0, 1}
 q0 = {a}
 F = {c}

The transition function δ as shown below −

Present State Next State for Input 0 Next State for Input 1

a a, b b

b c a, c

c b, c c
Its graphical representation would be as follows −

DFA vs NDFA

The following table lists the differences between DFA and NDFA.

DFA NDFA

The transition from a state is to a single The transition from a state can be to
particular next state for each input symbol. multiple next states for each input
Hence it is called deterministic. symbol. Hence it is called non-
deterministic.

Empty string transitions are not seen in DFA. NDFA permits empty string transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always


possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it transits to A string is accepted by a NDFA, if at


a final state. least one of all possible transitions ends
in a final state.

Acceptors, Classifiers, and Transducers:

Acceptor (Recognizer)

An automaton that computes a Boolean function is called an acceptor. All the states of an
acceptor is either accepting or rejecting the inputs given to it.
Classifier:
A classifier has more than two final states and it gives a single output when it terminates.

Transducer:
An automaton that produces outputs based on current input and/or previous state is called
a transducer.
Transducers can be of two types –
 Mealy Machine − The output depends both on the current state and the current input.
 Moore Machine − The output depends only on the current state.

Acceptability by DFA and NDFA

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the initial state ends in an
accepting state (any of the final states) after reading the string wholly.
A string S is accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff δ*(q0, S) ∈ F

The language L accepted by DFA/NDFA is {S | S ∈ ∑* and δ*(q0, S) ∈ F}

A string S′ is not accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff δ*(q0, S′) ∉ F

{S | S ∈ ∑* and δ*(q0, S) ∉ F}
The language L′ not accepted by DFA/NDFA (Complement of accepted language L) is

Example
Let us consider the DFA shown in Figure 1.3. From the DFA, the acceptable strings can be
derived.

Strings accepted by the above DFA: {0, 00, 11, 010, 101, ...........}

Strings not accepted by the above DFA: {1, 011, 111, ........}
Problem Statement
Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). We have to design an
equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such that L(Y) = L(X). The following procedure
converts the NDFA to its equivalent DFA –

Algorithm:
Input − An NDFA
Output − An equivalent DFA
Step 1 − Create state table from the given NDFA.
Step 2 − Create a blank state table under possible input alphabets for the equivalent DFA.
Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA).
Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each possible input alphabet.
Step 5 − Each time we generate a new DFA state under the input alphabet columns, we have to
apply step 4 again, otherwise go to step 6.
Step 6 − The states which contain any of the final states of the NDFA are the final states of the
equivalent DFA.

Example : Let us consider the NDFA shown in the figure below.

q δ(q,0) δ(q,1)

a {a,b,c,d,e} {d,e}

b {c} {e}

c ∅ {b}

d {e} ∅

e ∅ ∅
Using the above algorithm, we find its equivalent DFA. The state table of the DFA is shown in below.

q δ(q,0) δ(q,1)

[a] [a,b,c,d,e] [d,e]

[a,b,c,d,e] [a,b,c,d,e] [b,d,e]

[d,e] [e] ∅

[b,d,e] [c,e] [e]

[e] ∅ ∅

[c, e] ∅ [b]

[b] [c] [e]

[c] ∅ [b]

The state diagram of the DFA is as follows −

DFA Minimization using Myphill-Nerode Theorem:


Algorithm

Input − DFA
Output − Minimized DFA
Step 1 − Draw a table for all pairs of states (Q i, Qj) not necessarily connected directly [All are

Step 2 − Consider every state pair (Q i, Qj) in the DFA where Qi∈ F and Qj ∉ F or vice versa
unmarked initially]

and mark them. [Here F is the set of final states]


Step 3 − Repeat this step until we cannot mark anymore states −
If there is an unmarked pair (Qi, Qj), mark it if the pair {δ (Qi, A), δ (Qi, A)} is marked for some
input alphabet.
Step 4 − Combine all the unmarked pair (Qi, Qj) and make them a single state in the reduced
DFA.

Example
Let us use Algorithm 2 to minimize the DFA shown below.

Step 1 − We draw a table for all pair of states.

a b c d e f

d
e

Step 2 − We mark the state pairs.

a b c d e f

c ✔ ✔

d ✔ ✔

e ✔ ✔

f ✔ ✔ ✔

Step 3 − We will try to mark the state pairs, with green colored check mark, transitively. If we
input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and ‘f’ respectively. (c, f) is already marked,
hence we will mark pair (a, f). Now, we input 1 to state ‘b’ and ‘f’; it will go to state ‘d’ and ‘f’
respectively. (d, f) is already marked, hence we will mark pair (b, f).

a b c d e f

b
c ✔ ✔

d ✔ ✔

e ✔ ✔

f ✔ ✔ ✔ ✔ ✔

After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that are unmarked.
We can recombine {c, d} {c, e} {d, e} into {c, d, e}
Hence we got two combined states as − {a, b} and {c, d, e}
So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}

DFA Minimization using Equivalence Theorem:

If X and Y are two states in a DFA, we can combine these two states into {X, Y} if they are not
distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ
(X, S) and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is minimal if and
only if all the states are distinguishable.

Algorithm 3:
Step 1 − All the states Q are divided in two partitions − final states and non-final states and
are denoted by P0. All the states in a partition are 0th equivalent. Take a counter k and initialize
it with 0.
Step 2 − Increment k by 1. For each partition in P k, divide the states in Pk into two partitions if
they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if
there is an input S such that δ(X, S) and δ(Y, S) are (k-1)-distinguishable.
Step 3 − If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.

Step 4 − Combine kth equivalent sets and make them the new states of the reduced DFA.

Example: Let us consider the following DFA –

q δ(q,0) δ(q,1)

a b c

b a d

c e f

d e f

e e f

f f f

Let us apply the above algorithm to the above DFA −


 P0 = {(c,d,e), (a,b,f)}
 P1 = {(c,d,e), (a,b),(f)}
 P2 = {(c,d,e), (a,b),(f)}

Hence, P1 = P2.

There are three states in the reduced DFA. The reduced DFA is as follows −

Q δ(q,0) δ(q,1)

(a, b) (a, b) (c,d,e)

(c,d,e) (c,d,e) (f)

(f) (f) (f)

Finite Automata with Null Moves (NFA-ε):


A Finite Automaton with null moves (FA-ε) does transit not only after giving input from the
alphabet set but also without any input symbol. This transition without input is called a null
move.

An NFA-ε is represented formally by a 5-tuple (Q, ∑, δ, q0, F), consisting of

 Q − a finite set of states

 ∑ − a finite set of input symbols

 δ − a transition function δ : Q × (∑ ∪ {ε}) → 2Q

 q0 − an initial state q0 ∈ Q
 F − a set of final state/states of Q (F⊆Q).

The above (FA-ε) accepts a string set − {0, 1, 01}

Removal of Null Moves from Finite Automata:

If in an NDFA, there is ϵ-move between vertex X to vertex Y, we can remove it using the
following steps −

 Find all the outgoing edges from Y.


 Copy all these edges starting from X without changing the edge labels.
 If X is an initial state, make Y also an initial state.
 If Y is a final state, make X also a final state.

Problem: Convert the following NFA-ε to NFA without Null move.

Solution
Step 1 −
Here the ε transition is between q1 and q2, so let q1 is Xand qf is Y.
Here the outgoing edges from qf is to qf for inputs 0 and 1.
Step 2 −
Now we will Copy all these edges from q 1 without changing the edges from qf and get the
following FA −

Step 3 −

Here q1 is an initial state, so we make qf also an initial state.

So the FA becomes −

Step 4 −

Here qf is a final state, so we make q1 also a final state.

So the FA becomes −
Finite automata may have outputs corresponding to each transition. There are two types of finite
state machines that generate output −

 Mealy Machine
 Moore machine

Mealy Machine:
A Mealy Machine is an FSM whose output depends on the present state as well as the present
input.

It can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

 Q is a finite set of states.


 ∑ is a finite set of symbols called the input alphabet.
 O is a finite set of symbols called the output alphabet.
 δ is the input transition function where δ: Q × ∑ → Q

q0 is the initial state from where any input is processed (q0 ∈ Q).
 X is the output transition function where X: Q × ∑ → O

The state table of a Mealy Machine is shown below −

Next state

Present state input = 0 input = 1

State Output State Output

→a b x1 c x1

b b x2 d x3

c d x3 c x1

d d x3 d x2
The state diagram of the above Mealy Machine is −

Moore Machine:
Moore machine is an FSM whose outputs depend on only the present state.

A Moore machine can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

 Q is a finite set of states.


 ∑ is a finite set of symbols called the input alphabet.
 O is a finite set of symbols called the output alphabet.
 δ is the input transition function where δ: Q × ∑ → Q

q0 is the initial state from where any input is processed (q0 ∈ Q).
 X is the output transition function where X: Q → O

The state table of a Moore Machine is shown below −

Next State
Present state Output
Input = 0 Input = 1

→a b c x2

b b d x1

c c d x2
d d d x3

The state diagram of the above Moore Machine is −

Mealy Machine vs. Moore Machine:


The following table highlights the points that differentiate a Mealy Machine from a Moore Machine.

Mealy Machine Moore Machine

Output depends both upon the present state and Output depends only upon the present
the present input state.

Generally, it has fewer states than Moore Generally, it has more states than Mealy
Machine. Machine.

The value of the output function is a function of The value of the output function is a
the transitions and the changes, when the input function of the current state and the
logic on the present state is done. changes at the clock edges, whenever
state changes occur.

Mealy machines react faster to inputs. They In Moore machines, more logic is
generally react in the same clock cycle. required to decode the outputs resulting
in more circuit delays. They generally
react one clock cycle later.

Moore Machine to Mealy Machine:


Algorithm 4:
Input − Moore Machine
Output − Mealy Machine

Step 1 − Take a blank Mealy Machine transition table format.

Step 2 − Copy all the Moore Machine transition states into this table format.

Step 3 − Check the present states and their corresponding outputs in the Moore Machine state
table; if for a state Qi output is m, copy it into the output columns of the Mealy Machine state
table wherever Qi appears in the next state.

Example: Let us consider the following Moore machine −


Next State
Present State Output
a=0 a=1

→a d b 1

b a d 0

c c c 0

d b a 1

Now we apply Algorithm 4 to convert it to Mealy Machine.

Step 1 & 2 −

Next State

Present State a=0 a=1

State Output State Output

→a d b

b a d
c c c

d b a

Step 3 −

Next State

Present State a=0 a=1

State Output State Output

=> a d 1 b 0

b a 1 d 1

c c 0 c 0

d b 0 a 1

Mealy Machine to Moore Machine:


Algorithm 5:

Input − Mealy Machine


Output − Moore Machine
Step 1 − Calculate the number of different outputs for each state (Q i) that are available in the
state table of the Mealy machine.
Step 2 − If all the outputs of Qi are same, copy state Q i. If it has n distinct outputs, break Q i into
n states as Qin where n = 0, 1, 2.......
Step 3 − If the output of the initial state is 1, insert a new initial state at the beginning which
gives 0 output.
Example
Let us consider the following Mealy Machine −

Next State

Present a=0 a=1


State

Next Outpu Next Outpu


State t State t

→a d 0 b 1

b a 1 d 0

c c 1 c 0

d b 0 a 1

Here, states ‘a’ and‘d’ give only 1 and 0 outputs respectively, so we retain states ‘a’ and ‘d’. But
states ‘b’ and ‘c’ produce different outputs (1 and 0). So, we divide b into b0, b1 and c into c0, c1.

Next State
Present State Output
a=0 a=1

→a d b1 1

b0 a d 0

b1 a d 1

c0 c1 C0 0
c1 c1 C0 1

d b0 a 0

UNIT – II

This unit provides the knowledge to understand to understand Regular Expression its properties
and laws. It also provides pumping lemma for regular expressions with its applications.

 Regular Expressions,
 Finite Automata and Regular Expressions,
 Applications of Regular Expressions,
 Algebraic Laws for Regular Expressions,
 Properties of Regular Languages- Pumping Lemma for Regular Languages,
 Applications of the Pumping Lemma,
 Closure Properties of Regular Languages,
 Decision Properties of Regular Languages,
 Equivalence and Minimization of Automata.

Regular Expressions:
A Regular Expression can be recursively defined as follows −
 ε is a Regular Expression indicates the language containing an empty string. (L (ε) = {ε})
 φ is a Regular Expression denoting an empty language. (L (φ) = { })
 x is a Regular Expression where L = {x}
 If X is a Regular Expression denoting the language L(X)and Y is a Regular Expression

o X + Y is a Regular Expression corresponding to the language L(X) ∪


denoting the language L(Y), then

L(Y) where L(X+Y) = L(X) ∪ L(Y).


o X . Y is a Regular Expression corresponding to the language L(X) .
L(Y) where L(X.Y) = L(X) . L(Y)

o R* is a Regular Expression corresponding to the language L(R*)where L(R*) =


(L(R))*

 If we apply any of the rules several times from 1 to 5, they are Regular Expressions.

Some RE Examples

Regular Regular Set


Expressions

(0 + 10*) L = { 0, 1, 10, 100, 1000, 10000, … }

(0*10*) L = {1, 01, 10, 010, 0010, …}

(0 + ε)(1 + ε) L = {ε, 0, 1, 01}

(a+b)* Set of strings of a’s and b’s of any length including


the null string. So L = { ε, a, b, aa , ab , bb , ba,
aaa…….}

(a+b)*abb Set of strings of a’s and b’s ending with the string
abb. So L = {abb, aabb, babb, aaabb, ababb,
…………..}

(11)* Set consisting of even number of 1’s including


empty string, So L= {ε, 11, 1111, 111111, ……….}

(aa)*(bb)*b Set of strings consisting of even number of a’s


followed by odd number of b’s , so L = {b, aab,
aabbb, aabbbbb, aaaab, aaaabbb, …………..}

(aa + ab + ba + bb)* String of a’s and b’s of even length can be obtained
by concatenating any combination of the strings aa,
ab, ba and bb including null, so L = {aa, ab, ba, bb,
aaab, aaba, …………..}

Any set that represents the value of the Regular Expression is called a Regular Set.

Properties of Regular Sets:

Property 1. The union of two regular set is regular.


Proof − Let us take two regular expressions
RE1 = a(aa)* and RE2 = (aa)*
So, L1 = {a, aaa, aaaaa,.....} (Strings of odd length excluding Null)
and L2 ={ ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
L1 ∪ L2 = { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,.......}
(Strings of all possible lengths including Null)
RE (L1 ∪ L2) = a* (which is a regular expression itself)
Hence, proved.

Property 2. The intersection of two regular set is regular.

Proof − Let us take two regular expressions


RE1 = a(a*) and RE2 = (aa)*
So, L1 = { a,aa, aaa, aaaa, ....} (Strings of all possible lengths excluding Null)
L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
L1 ∩ L2 = { aa, aaaa, aaaaaa,.......} (Strings of even length excluding Null)
RE (L1 ∩ L2) = aa(aa)* which is a regular expression itself.
Hence, proved.

Property 3. The complement of a regular set is regular.

Proof − Let us take a regular expression −


RE = (aa)*
So, L = {ε, aa, aaaa, aaaaaa, .......} (Strings of even length including Null)
Complement of L is all the strings that is not in L.
So, L’ = {a, aaa, aaaaa, .....} (Strings of odd length excluding Null)
RE (L’) = a(aa)* which is a regular expression itself.
Hence, proved.

Property 4. The difference of two regular set is regular.


Proof − Let us take two regular expressions −
RE1 = a (a*) and RE2 = (aa)*
So, L1 = {a, aa, aaa, aaaa, ....} (Strings of all possible lengths excluding Null)
L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null)
L1 – L2 = {a, aaa, aaaaa, aaaaaaa, ....}
(Strings of all odd lengths excluding Null)
RE (L1 – L2) = a (aa)* which is a regular expression.
Hence, proved.

Property 5. The reversal of a regular set is regular.


Proof − We have to prove LR is also regular if L is a regular set.
Let, L = {01, 10, 11, 10}
RE (L) = 01 + 10 + 11 + 10
LR = {10, 01, 11, 01}
RE (LR) = 01 + 10 + 11 + 10 which is regular
Hence, proved.

Property 6. The closure of a regular set is regular.


Proof − If L = {a, aaa, aaaaa, .......} (Strings of odd length excluding Null)
i.e., RE (L) = a (aa)*
L* = {a, aa, aaa, aaaa , aaaaa,……………} (Strings of all lengths excluding Null)
RE (L*) = a (a)* Hence, proved.

Property 7. The concatenation of two regular sets is regular.


Proof − Let RE1 = (0+1)*0 and RE2 = 01(0+1)*
Here, L1 = {0, 00, 10, 000, 010, ......} (Set of strings ending in 0)
and L2 = {01, 010,011,.....} (Set of strings beginning with 01)
Then, L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,.............}
Set of strings containing 001 as a substring which can be represented by an RE − (0 + 1)*001(0
+ 1)* Hence, proved.

Identities Related to Regular Expressions( Laws):


Given R, P, L, Q as regular expressions, the following identities hold −
 ∅* = ε
 ε* = ε
 RR* = R*R
 R*R* = R*
 (R*)* = R*
 RR* = R*R
 (PQ)*P =P(QP)*

R + ∅ = ∅ + R = R (The identity for union)


 (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)*

∅ L = L ∅ = ∅ (The annihilator for concatenation)


 R ε = ε R = R (The identity for concatenation)

 R + R = R (Idempotent law)
 L (M + N) = LM + LN (Left distributive law)
 (M + N) L = ML + NL (Right distributive law)
 ε + RR* = ε + R*R = R*

In order to find out a regular expression of a Finite Automaton, we use Arden’s Theorem along
with the properties of regular expressions.

Statement −
Let P and Q be two regular expressions.
If P does not contain null string, then R = Q + RP has a unique solution that is R = QP*
Proof − R = Q + (Q + RP)P [After putting the value R = Q + RP] = Q + QP + RPP
When we put the value of R recursively again and again, we get the following equation −
R = Q + QP + QP2 + QP3…..
R = Q (ε + P + P2 + P3 + …. )
R = QP* [As P* represents (ε + P + P2 + P3 + ….) ]
Hence, proved.

Assumptions for Applying Arden’s Theorem

 The transition diagram must not have NULL transitions


 It must have only one initial state

Method:

Step 1 − Create equations as the following form for all the states of the DFA having n states
with initial state q1.
q1 = q1R11 + q2R21 + … + qnRn1 + ε
q2 = q1R12 + q2R22 + … + qnRn2
…………………………
…………………………
…………………………
…………………………
qn = q1R1n + q2R2n + … + qnRnn
Rij represents the set of labels of edges from qi to qj, if no such edge exists, then Rij = ∅
Step 2 − Solve these equations to get the equation for the final state in terms of Rij

1. Problem

Construct a regular expression corresponding to the automata given below −

Solution − Here the initial state and final state is q1.


The equations for the three states q1, q2, and q3 are as follows −
q1 = q1a + q3a + ε (ε move is because q1 is the initial state0
q2 = q1b + q2b + q3b
q3 = q2a
Now, we will solve these three equations −
q2 = q1b + q2b + q3b
= q1b + q2b + (q2a)b (Substituting value of q3)
= q1b + q2(b + ab)
= q1b (b + ab)* (Applying Arden’s Theorem)
q1 = q1a + q3a + ε
= q1a + q2aa + ε (Substituting value of q3)
= q1a + q1b(b + ab*)aa + ε (Substituting value of q2)
= q1(a + b(b + ab)*aa) + ε
= ε (a+ b(b + ab)*aa)*
= (a + b(b + ab)*aa)*
Hence, the regular expression is (a + b(b + ab)*aa)*.

Problem: Construct a regular expression corresponding to the automata given below −

Solution −
Here the initial state is q1 and the final state is q2
Now we write down the equations −
q1 = q10 + ε
q2 = q11 + q20
q3 = q21 + q30 + q31
Now, we will solve these three equations −
q1 = ε0* [As, εR = R]
So, q1 = 0*
q2 = 0*1 + q20
So, q2 = 0*1(0)* [By Arden’s theorem]
Hence, the regular expression is 0*10*.

We can use Thompson's Construction to find out a Finite Automaton from a Regular
Expression. We will reduce the regular expression into smallest regular expressions and
converting these to NFA and finally to DFA.
Some basic RA expressions are the following −
Case 1 − For a regular expression ‘a’, we can construct the following FA −
Case 2 − For a regular expression ‘ab’, we can construct the following FA −

Case 3 − For a regular expression (a+b), we can construct the following FA −

Case 4 − For a regular expression (a+b)*, we can construct the following FA −

Method
Step 1 Construct an NFA with Null moves from the given regular expression.
Step 2 Remove Null transition from the NFA and convert it into its equivalent DFA.

Problem: Convert the following RA into its equivalent DFA − 1 (0 + 1)* 0


Solution
We will concatenate three expressions "1", "(0 + 1)*" and "0"

Now we will remove the ε transitions. After we remove the ε transitions from the NDFA, we get
the following −
It is an NDFA corresponding to the RE − 1 (0 + 1)* 0. If you want to convert it into a DFA,
simply apply the method of converting NDFA to DFA discussed in Chapter 1.

Theorem
Let L be a regular language. Then there exists a constant ‘c’ such that for every string w in L −
|w| ≥ c
We can break w into three strings, w = xyz, such that −

 |y| > 0
 |xy| ≤ c
 For all k ≥ 0, the string xykz is also in L.

Applications of Pumping Lemma:


Pumping Lemma is to be applied to show that certain languages are not regular. It should never
be used to show a language is regular.

 If L is regular, it satisfies Pumping Lemma.


 If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular:


 At first, we have to assume that L is regular.
 So, the pumping lemma should hold for L.
 Use the pumping lemma to obtain a contradiction −
o Select w such that |w| ≥ c
o Select y such that |y| ≥ 1
o Select x such that |xy| ≤ c
o Assign the remaining string to z.
o Select k such that the resulting string is not in L. Hence L is not regular.
Problem: Prove that L = {aibi | i ≥ 0} is not regular.

Solution −
 At first, we assume that L is regular and n is the number of states.
 Let w = anbn. Thus |w| = 2n ≥ n.
 By pumping lemma, let w = xyz, where |xy| ≤ n.
 Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus |y| ≠ 0.
 Let k = 2. Then xy2z = apa2qarbn.
 Number of as = (p + 2q + r) = (p + q + r) + q = n + q
 Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn.
 Thus, xy2z is not in L. Hence L is not regular.

UNIT – III

This unit provides the knowledge to understand Context-free Grammers, its types and Pushdown
Automata with Applications.

 Context-Free Grammars: Definition of Context-Free Grammars,


 Derivations Using a Grammar,
 Leftmost and Rightmost Derivations,
 the Language of a Grammar,
 Sentential Forms,
 Parse Tress,
 Applications of Context-Free Grammars,
 Ambiguity in Grammars and Languages.
 Push Down Automata,: Definition of the Pushdown Automaton,
 the Languages of a PDA, Equivalence of PDA's and CFG's,
 Deterministic Pushdown Automata

Definition − A context-free grammar (CFG) consisting of a finite set of grammar rules is a


quadruple (N, T, P, S) where
 N is a set of non-terminal symbols.

P is a set of rules, P: N → (N ∪ T)*, i.e., the left-hand side of the production rule P does
 T is a set of terminals where N ∩ T = NULL.

have any right context or left context.
 S is the start symbol.

Example

 The grammar ({A}, {a, b, c}, P, A), P : A → aA, A → abc.


 The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S → ε
 The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F, F → 00F | ε

Generation of Derivation Tree

A derivation tree or parse tree is an ordered rooted tree that graphically represents the semantic
information a string derived from a context-free grammar.
Representation Technique
 Root vertex − Must be labeled by the start symbol.
 Vertex − Labeled by a non-terminal symbol.
 Leaves − Labeled by a terminal symbol or ε.
If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation tree will be as
follows −

There are two different approaches to draw a derivation tree −

Top-down Approach −
 Starts with the starting symbol S
 Goes down to tree leaves using productions
Bottom-up Approach −
 Starts from tree leaves
 Proceeds upward to the root which is the starting symbol S

Derivation or Yield of a Tree


The derivation or the yield of a parse tree is the final string obtained by concatenating the labels
of the leaves of the tree from left to right, ignoring the Nulls. However, if all the leaves are Null,
derivation is Null.

Example
Let a CFG {N,T,P,S} be
N = {S}, T = {a, b}, Starting symbol = S, P = S → SS | aSb | ε
One derivation from the above CFG is “abaabb”
S → SS → aSbS → abS → abaSb → abaaSbb → abaabb
Sentential Form and Partial Derivation Tree:
A partial derivation tree is a sub-tree of a derivation tree/parse tree such that either all of its
children are in the sub-tree or none of them are in the sub-tree.

Example
If in any CFG the productions are −
S → AB, A → aaA | ε, B → Bb| ε
the partial derivation tree can be the following −

If a partial derivation tree contains the root S, it is called a sentential form. The above sub-tree
is also in sentential form.

Leftmost and Rightmost Derivation of a String:

 Leftmost derivation − A leftmost derivation is obtained by applying production to the


leftmost variable in each step.

 Rightmost derivation − A rightmost derivation is obtained by applying production to


the rightmost variable in each step.
Example
Let any set of production rules in a CFG be
X → X+X | X*X |X| a
over an alphabet {a}.
The leftmost derivation for the string "a+a*a" may be −
X → X+X → a+X → a + X*X → a+a*X → a+a*a
The stepwise derivation of the above string is shown as below −

The rightmost derivation for the above string "a+a*a" may be −

X → X*X → X*a → X+X*a → X+a*a → a+a*a

The stepwise derivation of the above string is shown as below −


Left and Right Recursive Grammars:

In a context-free grammar G, if there is a production in the form X → Xa where X is a non-


terminal and ‘a’ is a string of terminals, it is called a left recursive production. The grammar
having a left recursive production is called a left recursive grammar.

And if in a context-free grammar G, if there is a production is in the form X → aX where X is a


non-terminal and ‘a’ is a string of terminals, it is called a right recursive production. The
grammar having a right recursive production is called a right recursive grammar.

Ambiguity in Context-Free Grammars:


If a context free grammar G has more than one derivation tree for some string w ∈ L(G), it is
called an ambiguous grammar. There exist multiple right-most or left-most derivations for
some string generated from that grammar.

Problem: Check whether the grammar G with production rules − X → X+X | X*X |X| a is
ambiguous or not.
Solution
Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations.
Derivation 1 − X → X+X → a +X → a+ X*X → a+a*X → a+a*a

Parse tree 1 −
Derivation 2 − X → X*X → X+X*X → a+ X*X → a+a*X → a+a*a

Parse tree 2 −

Since there are two parse trees for a single string "a+a*a", the grammar G is ambiguous.

CFL Closure Property:


Context-free languages are closed under −

 Union
 Concatenation
 Kleene Star operation

Let L1 and L2 be two context free languages. Then L1 ∪ L2 is also context free.
Union:

Example

Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab

Union of L1 and L2, L = L1 ∪ L2 = { anbn } ∪ { cmdm }


Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε

The corresponding grammar G will have the additional production S → S1 | S2


Concatenation:
If L1 and L2 are context free languages, then L1L2 is also context free.

Example
Union of the languages L1 and L2, L = L1L2 = { anbncmdm }
The corresponding grammar G will have the additional production S → S1 S2

Kleene Star:
If L is a context free language, then L* is also context free.

Example:
Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε
Kleene Star L1 = { anbn }*
The corresponding grammar G1 will have additional productions S1 → SS1 | ε

Context-free languages are not closed under −


 Intersection − If L1 and L2 are context free languages, then L1 ∩ L2 is not necessarily
context free.
 Intersection with Regular Language − If L1 is a regular language and L2 is a context
free language, then L1 ∩ L2 is a context free language.
 Complement − If L1 is a context free language, then L1’ may not be context free.

CFG Simplification:
In a CFG, it may happen that all the production rules and symbols are not needed for the
derivation of strings. Besides, there may be some null productions and unit productions.
Elimination of these productions and symbols is called simplification of CFGs. Simplification
essentially comprises of the following steps −

 Reduction of CFG
 Removal of Unit Productions
 Removal of Null Productions

Reduction of CFG:
CFGs are reduced in two phases −

Phase 1 − Derivation of an equivalent grammar, G’, from the CFG, G, such that each variable
derives some terminal string.

Derivation Procedure −
Step 1 − Include all symbols, W1, that derive some terminal and initialize i=1.
Step 2 − Include all symbols, Wi+1, that derive Wi.
Step 3 − Increment i and repeat Step 2, until Wi+1 = Wi.
Step 4 − Include all production rules that have Wi in it.

Phase 2 − Derivation of an equivalent grammar, G”, from the CFG, G’, such that each symbol
appears in a sentential form.

Derivation Procedure −
Step 1 − Include the start symbol in Y1 and initialize i = 1.
Step 2 − Include all symbols, Yi+1, that can be derived from Yi and include all production rules
that have been applied.
Step 3 − Increment i and repeat Step 2, until Yi+1 = Yi.

Problem: Find a reduced grammar equivalent to the grammar G, having production rules,
P: S → AC | B, A → a, C → c | BC, E → aA | e
Solution

Phase 1 −
T = { a, c, e }
W1 = { A, C, E } from rules A → a, C → c and E → aA

W3 = { A, C, E, S } U ∅
W2 = { A, C, E } U { S } from rule S → AC

Since W2 = W3, we can derive G’ as −


G’ = { { A, C, E, S }, { a, c, e }, P, {S}}
where P: S → AC, A → a, C → c , E → aA | e

Phase 2 −

Y1 = { S }
Y2 = { S, A, C } from rule S → AC
Y3 = { S, A, C, a, c } from rules A → a and C → c
Y4 = { S, A, C, a, c }
Since Y3 = Y4, we can derive G” as −
G” = { { A, C, S }, { a, c }, P, {S}}
where P: S → AC, A → a, C → c

Removal of Unit Productions:


Any production rule in the form A → B where A, B ∈ Non-terminal is called unit production..
Removal Procedure –

x occurs in the grammar. [x ∈ Terminal, x can be Null]


Step 1 − To remove A → B, add production A → x to the grammar rule whenever B →

Step 2 − Delete A → B from the grammar.


Step 3 − Repeat from step 1 until all unit productions are removed.

Problem: Remove unit production from the following −


S → XY, X → a, Y → Z | b, Z → M, M → N, N → a
Solution −
There are 3 unit productions in the grammar −
Y → Z, Z → M, and M → N

At first, we will remove M → N.


As N → a, we add M → a, and M → N is removed.
The production set becomes
S → XY, X → a, Y → Z | b, Z → M, M → a, N → a

Now we will remove Z → M.

As M → a, we add Z→ a, and Z → M is removed.


The production set becomes
S → XY, X → a, Y → Z | b, Z → a, M → a, N → a

Now we will remove Y → Z.


As Z → a, we add Y→ a, and Y → Z is removed.
The production set becomes
S → XY, X → a, Y → a | b, Z → a, M → a, N → a
Now Z, M, and N are unreachable, hence we can remove those.
The final CFG is unit production free −
S → XY, X → a, Y → a | b

Removal of Null Productions:


In a CFG, a non-terminal symbol ‘A’ is a nullable variable if there is a production A → ε or
there is a derivation that starts at A and finally ends up with

ε: A → .......… → ε
Removal Procedure
Step 1 − Find out nullable non-terminal variables which derive ε.

Step 2 − For each production A → a, construct all productions A → x where x is obtained


from ‘a’ by removing one or multiple non-terminals from Step 1.

Step 3 − Combine the original productions with the result of step 2 and remove ε -
productions.

Problem: Remove null production from the following − S → ASA | aB | b, A → B, B → b | ∈

Solution −
There are two nullable variables − A and B
At first, we will remove B → ε.
After removing B → ε, the production set becomes −
S→ASA | aB | b | a, A ε B| b | &epsilon, B → b
Now we will remove A → ε.
After removing A → ε, the production set becomes −
S→ASA | aB | b | a | SA | AS | S, A → B| b, B → b
This is the final production set without null transition.

Pumping Lemma for CFG:

Lemma:

If L is a context-free language, there is a pumping length p such that any string w ∈ L of


length ≥ p can be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz ∈ L.

Applications of Pumping Lemma:


Pumping lemma is used to check whether a grammar is context free or not. Let us take an
example and show how it is checked.

Problem: Find out whether the language L = {xnynzn | n ≥ 1} is context free or not.
Solution:
Let L is context free. Then, L must satisfy pumping lemma.
At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.
Break z into uvwxy, where
|vwx| ≤ n and vx ≠ ε.
Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at least (n+1)
positions apart. There are two cases −
Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have to be in L,
has n 2s, but fewer than n 0s or 1s.
Case 2 − vwx has no 0s.
Here contradiction occurs.
Hence, L is not a context-free language.

Pushdown Automata Introduction:


Basic Structure of PDA:
A pushdown automaton is a way to implement a context-free grammar in a similar way we
design DFA for a regular grammar. A DFA can remember a finite amount of information, but a
PDA can remember an infinite amount of information.
Basically a pushdown automaton is − "Finite state machine" + "a stack"

A pushdown automaton has three components −

 an input tape,
 a control unit, and
 a stack with infinite size.

The stack head scans the top symbol of the stack.

A stack does two operations –


 Push − a new symbol is added at the top.
 Pop − the top symbol is read and removed.
A PDA may or may not read an input symbol, but it has to read the top of the stack in every
transition.
A PDA can be formally described as a 7-tuple (Q, ∑, S, δ, q0, I, F) −
 Q is the finite number of states
 ∑ is input alphabet

 δ is the transition function: Q × (∑ ∪ {ε}) × S × Q × S*


 S is stack symbols

 q0 is the initial state (q0 ∈ Q)


 I is the initial stack top symbol (I ∈ S)
 F is a set of accepting states (F ∈ Q)

The following diagram shows a transition in a PDA from a state q 1 to state q2, labeled as a,b →
c–

This means at state q1, if we encounter an input string ‘a’ and top symbol of the stack is ‘b’,
then we pop ‘b’, push ‘c’ on top of the stack and move to state q2.

Terminologies Related to PDA:


Instantaneous Description:
The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) where
 q is the state
 w is unconsumed input
 s is the stack contents

Turnstile Notation
The "turnstile" notation is used for connecting pairs of ID's that represent one or many moves of
a PDA. The process of transition is denoted by the turnstile symbol "⊢".
Consider a PDA (Q, ∑, S, δ, q0, I, F). A transition can be mathematically represented by the
following turnstile notation −
(p, aw, Tβ) ⊢ (q, w, αb)
This implies that while taking a transition from state p to state q, the input symbol ‘a’ is
consumed, and the top of the stack ‘T’is replaced by a new string ‘α’.
Note − If we want zero or more moves of a PDA, we have to use the symbol (⊢*) for it.

Pushdown Automata Acceptance:


There are two different ways to define PDA acceptability.

Final State Acceptability:


In final state acceptability, a PDA accepts a string when, after reading the entire string, the PDA
is in a final state. From the starting state, we can make moves that end up in a final state with
any stack values. The stack values are irrelevant as long as we end up in a final state.

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, x), q ∈ F}


For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the set of final states F is −

for any input stack string x.

Empty Stack Acceptability:


Here a PDA accepts a string when, after reading the entire string, the PDA has emptied its stack.

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, ε), q ∈ Q}


For a PDA (Q, ∑, S, δ, q0, I, F), the language accepted by the empty stack is −

Example: Construct a PDA that accepts L = {0n 1n | n ≥ 0}


Solution:
This language accepts L = {ε, 01, 0011, 000111, ............................. }
Here, in this example, the number of ‘a’ and ‘b’ have to be same.
 Initially we put a special symbol ‘$’ into the empty stack.
 Then at state q2, if we encounter input 0 and top is Null, we push 0 into stack. This may
iterate. And if we encounter input 1 and top is 0, we pop this 0.
 Then at state q3, if we encounter input 1 and top is 0, we pop this 0. This may also
iterate. And if we encounter input 1 and top is 0, we pop the top element.
 If the special symbol ‘$’ is encountered at top of the stack, it is popped out and it finally
goes to the accepting state q4.

Example: Construct a PDA that accepts L = { wwR | w = (a+b)* }


Solution

Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In
state q3, each 0 or 1 is popped when it matches the input. If any other input is given, the PDA
will go to a dead state. When we reach that special symbol ‘$’, we go to the accepting state q4.

PDA & Context-Free Grammar:


If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts
the language that is produced by the context-free grammar G. A parser can be built for the
grammar G.

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed


where L(G) = L(P)
In the next two topics, we will discuss how to convert from PDA to CFG and vice versa.

Algorithm to find PDA corresponding to a given CFG:

Input − A CFG, G = (V, T, P, S)


Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F)
Step 1 − Convert the productions of the CFG into GNF.
Step 2 − The PDA will have only one state {q}.
Step 3 − The start symbol of CFG will be the start symbol in the PDA.
Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the
terminals of the CFG will be the input symbols of the PDA.
Step 5 − For each production in the form A → aX where a is terminal and A, X are
combination of terminal and non-terminals, make a transition δ (q, a, A).

Problem: Construct a PDA from the following CFG.


G = ({S, X}, {a, b}, P, S)
where the productions are –
S → XS | ε , A → aXb | Ab | ab

Solution: Let the equivalent PDA,


P = ({q}, {a, b}, {a, b, X, S}, δ, q, S)
where δ −
δ(q, ε , S) = {(q, XS), (q, ε )}
δ(q, ε , X) = {(q, aXb), (q, Xb), (q, ab)}
δ(q, a, a) = {(q, ε )}
δ(q, 1, 1) = {(q, ε )}

Algorithm to find CFG corresponding to a given PDA:

Input − A CFG, G = (V, T, P, S)

G will be {Xwx | w,x ∈ Q} and the start state will be Aq0,F.


Output − Equivalent PDA, P = (Q, ∑, S, δ, q 0, I, F) such that the non- terminals of the grammar

Step 1 − For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, m) and (z, b,

Step 2 − For every w, x, y, z ∈ Q, add the production rule Xwx→ XwyXyx in grammar G.
m) contains (x, ε), add the production rule Xwx → a Xyzb in grammar G.

Step 3 − For w ∈ Q, add the production rule Xww → ε in grammar G.

Pushdown Automata & Parsing:


Parsing is used to derive a string using the production rules of a grammar. It is used to check the
acceptability of a string. Compiler is used to check whether or not a string is syntactically
correct. A parser takes the inputs and builds a parse tree.
A parser can be of two types −

 Top-Down Parser − Top-down parsing starts from the top with the start-symbol and
derives a string using a parse tree.

 Bottom-Up Parser − Bottom-up parsing starts from the bottom with the string and
comes to the start symbol using a parse tree.

Design of Top-Down Parser


For top-down parsing, a PDA has the following four types of transitions −

 Pop the non-terminal on the left hand side of the production at the top of the stack and
push its right-hand side string.

 If the top symbol of the stack matches with the input symbol being read, pop it.

 Push the start symbol ‘S’ into the stack.

 If the input string is fully read and the stack is empty, go to the final state ‘F’.

Example: Design a top-down parser for the expression "x+y*z" for the grammar G with the
following production rules −
P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Solution:

(x+y*z, I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI)


If the PDA is (Q, ∑, S, δ, q0, I, F), then the top-down parsing is −

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI)


⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I)

Design of a Bottom-Up Parser

For bottom-up parsing, a PDA has the following four types of transitions −
 Push the current input symbol into the stack.
 Replace the right-hand side of a production at the top of the stack with its left-hand side.
 If the top of the stack element matches with the current input symbol, pop it.
 If the input string is fully read and only if the start symbol ‘S’ remains in the stack, pop it
and go to the final state ‘F’.
Example: Design a top-down parser for the expression "x+y*z" for the grammar G with the
following production rules −
P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Solution:

(x+y*z, I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI)


If the PDA is (Q, ∑, S, δ, q0, I, F), then the bottom-up parsing is −

⊢(y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI)
⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI)

UNIT – IV

This unit provides the knowledge about Normal Forms and Turning Machines with Applications.

 Normal Forms for Context- Free Grammars,


 the Pumping Lemma for Context-Free Languages,
 Closure Properties of Context-Free Languages.
 Decision Properties of CFL's - Complexity of Converting among CFG's and PDA's,
 Running time of conversions to Chomsky Normal Form.
 Introduction to Turing Machines-Problems That Computers Cannot Solve, The Turing
Machine, Programming Techniques for Turing Machines, Extensions to the basic Turing
machine, Restricted Turing Machines, Turing Machines, and Computers.

Chomsky Normal Form:


A CFG is in Chomsky Normal Form if the Productions are in the following forms −

 A→a
 A → BC
 S→ε

where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form :

Step 1 − If the start symbol S occurs on some right side, create a new start symbol S’ and a new
production S’→ S.
Step 2 − Remove Null productions. (Using the Null production removal algorithm discussed
earlier)
Step 3 − Remove unit productions. (Using the Unit production removal algorithm discussed
earlier)
Step 4 − Replace each production A → B1…Bn where n > 2with A → B1C where C → B2 …
Bn. Repeat this step for all productions having two or more symbols in the right side.
Step 5 − If the right side of any production is in the form A → aB where a is a terminal and A,
B are non-terminal, then the production is replaced by A → XB and X → a. Repeat this step for
every production which is in the form A → aB.

Problem: Convert the following CFG into CNF S → ASA | aB, A → B | S, B → b | ε


Solution:
(1) Since S appears in R.H.S, we add a new state S0 and S0→Sis added to the production set and

S0→S, S→ ASA | aB, A → B | S, B → b | ∈


it becomes −

B → ∈ and A → ∈
(2) Now we will remove the null productions −

S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b
After removing B → ε, the production set becomes −

After removing A → ∈, the production set becomes −


S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b
(3) Now we will remove the unit productions.
After removing S → S, the production set becomes −
S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b
After removing S0→ S, the production set becomes −
S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA
A → B | S, B → b
After removing A→ B, the production set becomes −
S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA
A→S|b
B→b
After removing A→ S, the production set becomes −
S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA
A → b |ASA | aB | a | AS | SA, B → b
(4) Now we will find out more than two variables in the R.H.S
Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S.
Hence we will apply step 4 and step 5 to get the following final production set which is in CNF

S0→ AX | aB | a | AS | SA
S→ AX | aB | a | AS | SA
A → b |AX | aB | a | AS | SA
B→b
X → SA
(5) We have to change the productions S0→ aB, S→ aB, A→ aB
And the final production set becomes −
S0→ AX | YB | a | AS | SA
S→ AX | YB | a | AS | SA
A → b A → b |AX | YB | a | AS | SA
B→b
X → SA
Y→a

Greibach Normal Form:


A CFG is in Greibach Normal Form if the Productions are in the following forms −
A→b
A → bD1…Dn
S→ε
where A, D1,....,Dn are non-terminals and b is a terminal.

Algorithm to Convert a CFG into Greibach Normal Form:

Step 1 − If the start symbol S occurs on some right side, create a new start symbol S’ and a new
production S’ → S.
Step 2 − Remove Null productions. (Using the Null production removal algorithm discussed
earlier)
Step 3 − Remove unit productions. (Using the Unit production removal algorithm discussed
earlier)
Step 4 − Remove all direct and indirect left-recursion.
Step 5 − Do proper substitutions of productions to convert it into the proper form of GNF.

Problem: Convert the following CFG into CNF


S → XY | Xn | p
X → mX | m
Y → Xn | o
Solution:
Here, S does not appear on the right side of any production and there are no unit or null
productions in the production rule set. So, we can skip Step 1 to Step 3.
Step 4
Now after replacing
X in S → XY | Xo | p with mX | m
we obtain
S → mXY | mY | mXo | mo | p.
And after replacing
X in Y → Xn | o
with the right side of
X → mX | m
we obtain
Y → mXn | mn | o.
Two new productions O → o and P → p are added to the production set and then we came to
the final GNF as the following −
S → mXY | mY | mXC | mC | p
X → mX | m
Y → mXD | mD | o
O→o
P→p
Turing Machine Introduction:
A Turing Machine is an accepting device which accepts the languages (recursively enumerable
set) generated by type 0 grammars. It was invented in 1936 by Alan Turing.

Definition
A Turing Machine (TM) is a mathematical model which consists of an infinite length tape
divided into cells on which input is given. It consists of a head which reads the input tape. A
state register stores the state of the Turing machine. After reading an input symbol, it is replaced
with another symbol, its internal state is changed, and it moves from one cell to the right or left.
If the TM reaches the final state, the input string is accepted, otherwise rejected.

A TM can be formally described as a 7-tuple (Q, X, ∑, δ, q0, B, F) where −

 Q is a finite set of states


 X is the tape alphabet
 ∑ is the input alphabet
 δ is a transition function; δ : Q × X → Q × X × {Left_shift, Right_shift}.
 q0 is the initial state
 B is the blank symbol
 F is the set of final states

Comparison with the previous automaton:


The following table shows a comparison of how a Turing machine differs from Finite Automaton and Pushdown
Automaton.

Machine Stack Data Deterministic?


Structure

Finite Automaton N.A Yes

Pushdown Last In First No


Automaton Out(LIFO)

Turing Machine Infinite tape Yes


Example of Turing machine
Turing machine M = (Q, X, ∑, δ, q0, B, F) with

 Q = {q0, q1, q2, qf}


 X = {a, b}
 ∑ = {1}
 q0 = {q0}
 B = blank symbol
 F = {qf }

δ is given by –

Tape Present Present Present


alphabet State ‘q0’ State ‘q1’ State ‘q2’
symbol

a 1Rq1 1Lq0 1Lqf

b 1Lq2 1Rq1 1Rqf

Here the transition 1Rq1 implies that the write symbol is 1, the tape moves right, and the next
state is q1. Similarly, the transition 1Lq2 implies that the write symbol is 1, the tape moves left,
and the next state is q2.

Time and Space Complexity of a Turing Machine:


For a Turing machine, the time complexity refers to the measure of the number of times the tape
moves when the machine is initialized for some input symbols and the space complexity is the
number of cells of the tape written.

Time complexity all reasonable functions :

T(n) = O(n log n)


TM's space complexity −
S(n) = O(n)

Accepted Language & Decided Language:


A TM accepts a language if it enters into a final state for any input string w. A language is
recursively enumerable (generated by Type-0 grammar) if it is accepted by a Turing machine.
A TM decides a language if it accepts it and enters into a rejecting state for any input not in the
language. A language is recursive if it is decided by a Turing machine.
There may be some cases where a TM does not stop. Such TM accepts the language, but it does
not decide it.

Designing a Turing Machine:

The basic guidelines of designing a Turing machine have been explained below with the help of
a couple of examples.

Example 1
Design a TM to recognize all strings consisting of an odd number of α’s.

Solution

The Turing machine M can be constructed by the following moves −


 Let q1 be the initial state.
 If M is in q1; on scanning α, it enters the state q2 and writes B (blank).
 If M is in q2; on scanning α, it enters the state q1 and writes B (blank).
 From the above moves, we can see that M enters the state q1 if it scans an even number
of α’s, and it enters the state q2 if it scans an odd number of α’s. Hence q2 is the only
accepting state.
Hence,
M = {{q1, q2}, {1}, {1, B}, δ, q1, B, {q2}}
where δ is given by –

Tape alphabet Present State Present State


symbol ‘q1’ ‘q2’

α BRq2 BRq1

Example 2
Design a Turing Machine that reads a string representing a binary number and erases all leading
0’s in the string. However, if the string comprises of only 0’s, it keeps one 0.

Solution

Let us assume that the input string is terminated by a blank symbol, B, at each end of the string.
The Turing Machine, M, can be constructed by the following moves −
 Let q0 be the initial state.
 If M is in q0, on reading 0, it moves right, enters the state q1 and erases 0. On reading 1,
it enters the state q2 and moves right.
 If M is in q1, on reading 0, it moves right and erases 0, i.e., it replaces 0’s by B’s. On
reaching the leftmost 1, it enters q2 and moves right. If it reaches B, i.e., the string
comprises of only 0’s, it moves left and enters the state q3.
 If M is in q2, on reading either 0 or 1, it moves right. On reaching B, it moves left and
enters the state q4. This validates that the string comprises only of 0’s and 1’s.
 If M is in q3, it replaces B by 0, moves left and reaches the final state qf.

 If M is in q4, on reading either 0 or 1, it moves left. On reaching the beginning of the


string, i.e., when it reads B, it reaches the final state qf.

Hence,

M = {{q0, q1, q2, q3, q4, qf}, {0,1, B}, {1, B}, δ, q0, B, {qf}}
where δ is given by –

Tape Present Present Present Present Present


alphabet State State State State State
symbol ‘q0’ ‘q1’ ‘q2’ ‘q3’ ‘q4’

0 BRq1 BRq1 ORq2 - OLq4

1 1Rq2 1Rq2 1Rq2 - 1Lq4

B BRq1 BLq3 BLq4 OLqf BRqf

Multi-tape Turing Machine:


Multi-tape Turing Machines have multiple tapes where each tape is accessed with a separate
head. Each head can move independently of the other heads. Initially the input is on tape 1 and
others are blank. At first, the first tape is occupied by the input and the other tapes are kept
blank. Next, the machine reads consecutive symbols under its heads and the TM prints a symbol
on each tape and moves its heads.

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, δ, q0, F) where −
 Q is a finite set of states
 X is the tape alphabet
 B is the blank symbol
 δ is a relation on states and symbols where
δ: Q × Xk → Q × (X × {Left_shift, Right_shift, No_shift })k
where there is k number of tapes
 q0 is the initial state
 F is the set of final states
Note − Every Multi-tape Turing machine has an equivalent single-tape Turing machine.

Multi-track Turing Machine:


Multi-track Turing machines, a specific type of Multi-tape Turing machine, contain multiple
tracks but just one tape head reads and writes on all tracks. Here, a single tape head reads n
symbols from n tracks at one step. It accepts recursively enumerable languages like a normal
single-track single-tape Turing Machine accepts.

A Multi-track Turing machine can be formally described as a 6-tuple (Q, X, ∑, δ, q0, F) where −

 Q is a finite set of states


 X is the tape alphabet
 ∑ is the input alphabet
 δ is a relation on states and symbols where
δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift or Right_shift)
 q0 is the initial state
 F is the set of final states

Note − For every single-track Turing Machine S, there is an equivalent multi-track Turing
Machine M such that L(S) = L(M).

Non-Deterministic Turing Machine:


In a Non-Deterministic Turing Machine, for every state and symbol, there are a group of actions
the TM can have. So, here the transitions are not deterministic. The computation of a non-
deterministic Turing Machine is a tree of configurations that can be reached from the start
configuration.

An input is accepted if there is at least one node of the tree which is an accept configuration,
otherwise it is not accepted. If all branches of the computational tree halt on all inputs, the non-
deterministic Turing Machine is called a Decider and if for some input, all branches are
rejected, the input is also rejected.

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q, X, ∑, δ, q 0, B, F)


where −

 Q is a finite set of states


 X is the tape alphabet
 ∑ is the input alphabet
 δ is a transition function;
δ : Q × X → P(Q × X × {Left_shift, Right_shift}).
 q0 is the initial state
 B is the blank symbol
 F is the set of final states

Semi-Infinite Tape Turing Machine:


A Turing Machine with a semi-infinite tape has a left end but no right end. The left end is
limited with an end marker.

It is a two-track tape −
 Upper track − It represents the cells to the right of the initial head position.
 Lower track − It represents the cells to the left of the initial head position in reverse
order.

The infinite length input string is initially written on the tape in contiguous tape cells.
The machine starts from the initial state q0 and the head scans from the left end marker ‘End’. In
each step, it reads the symbol on the tape under its head. It writes a new symbol on that tape cell
and then it moves the head either into left or right one tape cell. A transition function determines
the actions to be taken.

It has two special states called accept state and reject state. If at any point of time it enters into
the accepted state, the input is accepted and if it enters into the reject state, the input is rejected
by the TM. In some cases, it continues to run infinitely without being accepted or rejected for
some certain input symbols.

Note − Turing machines with semi-infinite tape are equivalent to standard Turing machines.

Linear Bounded Automata:


A linear bounded automaton is a multi-track non-deterministic Turing machine with a tape of
some bounded finite length.

Length = function (Length of the initial input string, constant c)


Here,

Memory information ≤ c × Input information


The computation is restricted to the constant bounded area. The input alphabet contains two
special symbols which serve as left end markers and right end markers which mean the
transitions neither move to the left of the left end marker nor to the right of the right end marker
of the tape.

A linear bounded automaton can be defined as an 8-tuple (Q, X, ∑, q0, ML, MR, δ, F) where −

 Q is a finite set of states


 X is the tape alphabet
 ∑ is the input alphabet
 q0 is the initial state
 ML is the left end marker
 MR is the right end marker where MR ≠ ML
 δ is a transition function which maps each pair (state, tape symbol) to (state, tape
symbol, Constant ‘c’) where c can be 0 or +1 or -1
 F is the set of final states

A deterministic linear bounded automaton is always context-sensitive and the linear bounded
automaton with empty language is undecidable..

UNIT – V
This unit provides the knowledge about the decidability and undecidability of the problems.

 Undecidability: A Language that is Not Recursively Enumerable,


 An Undecidable Problem That is RE,
 Undecidable Problems about Turing Machines,
 Post's Correspondence Problem,
 Other Undecidable Problems, Intractable Problems: The Classes P and NP, An NP-
Complete Problem.

Language Decidability:
A language is called Decidable or Recursive if there is a Turing machine which accepts and
halts on every input string w. Every decidable language is Turing-Acceptable.
A decision problem P is decidable if the language L of all yes instances to P is decidable.
For a decidable language, for each input string, the TM halts either at the accept or the reject
state as depicted in the following diagram –

Example 1: Find out whether the following problem is decidable or not − Is a number ‘m’ prime?
Solution
Prime numbers = {2, 3, 5, 7, 11, 13, …………..}
Divide the number ‘m’ by all the numbers between ‘2’ and ‘√m’ starting from ‘2’.
If any of these numbers produce a remainder zero, then it goes to the “Rejected state”, otherwise
it goes to the “Accepted state”. So, here the answer could be made by ‘Yes’ or ‘No’.
Hence, it is a decidable problem.

Example 2: Given a regular language L and string w, how can we check if w ∈ L?


Solution
Take the DFA that accepts L and check if w is accepted

Some more decidable problems are −

Is L1 ∩ L2 = ∅ for regular sets?


 Does DFA accept the empty language?

Note −
 If a language L is decidable, then its complement L' is also decidable
 If a language is decidable, then there is an enumerator for it.

Undecidable Languages:
For an undecidable language, there is no Turing Machine which accepts the language and makes
a decision for every input string w (TM can make decision for some input string though). A
decision problem P is called “undecidable” if the language L of all yes instances to P is not
decidable. Undecidable languages are not recursive languages, but sometimes, they may be
recursively enumerable languages.

Example
 The halting problem of Turing machine
 The mortality problem
 The mortal matrix problem
 The Post correspondence problem, etc.

Turing Machine Halting Problem:


Input − A Turing machine and an input string w.
Problem − Does the Turing machine finish computing of the string w in a finite number of
steps? The answer must be either yes or no.

Proof − At first, we will assume that such a Turing machine exists to solve this problem and
then we will show it is contradicting itself. We will call this Turing machine as a Halting
machine that produces a ‘yes’ or ‘no’ in a finite amount of time. If the halting machine finishes
in a finite amount of time, the output comes as ‘yes’, otherwise as ‘no’. The following is the
block diagram of a Halting machine –

Now we will design an inverted halting machine (HM)’ as −


 If H returns YES, then loop forever.
 If H returns NO, then halt.
The following is the block diagram of an ‘Inverted halting machine’ –

Further, a machine (HM)2 which input itself is constructed as follows −

 If (HM)2 halts on input, loop forever.


 Else, halt.

Here, we have got a contradiction. Hence, the halting problem is undecidable.

Rice Theorem:
Rice theorem states that any non-trivial semantic property of a language which is recognized by
a Turing machine is undecidable. A property, P, is the language of all Turing machines that
satisfy that property.

Formal Definition:

machine M, then Lp = {<M> | L(M) ∈ P} is undecidable.


If P is a non-trivial property, and the language holding the property, L p , is recognized by Turing
 Property of languages, P, is simply a set of languages. If any language belongs to P (L ∈
Description and Properties:

P), it is said that L satisfies the property P.


 A property is called to be trivial if either it is not satisfied by any recursively enumerable
languages, or if it is satisfied by all recursively enumerable languages.

satisfied by others. Formally speaking, in a non-trivial property, where L ∈ P, both the


 A non-trivial property is satisfied by some recursively enumerable languages and are not

following properties hold:



Property 1 − There exists Turing Machines, M1 and M2 that recognize the same
language, i.e. either ( <M1>, <M2> ∈ L ) or ( <M1>,<M2> ∉ L )
o

o Property 2 − There exists Turing Machines M1 and M2, where M1 recognizes


the language while M2 does not, i.e. <M1> ∈ L and <M2> ∉ L

Suppose, a property P is non-trivial and φ ∈ P.


Proof

Since, P is non-trivial, at least one language satisfies P, i.e., L(M0) ∈ P , ∋ Turing Machine M0.
Let, w be an input in a particular instant and N is a Turing Machine which follows −
On input x
 Run M on w
 If M does not accept (or doesn't halt), then do not accept x (or do not halt)

 If M accepts w then run M0 on x. If M0 accepts x, then accept x.

A function that maps an instance ATM = {<M,w>| M accepts input w} to a N such that

 If M accepts w and N accepts the same language as M0, Then L(M) = L(M0) ∈ p
 If M does not accept w and N accepts φ, Then L(N) = φ∈ p

Since ATM is undecidable and it can be reduced to Lp, Lp is also undecidable.

Post Correspondence Problem:


The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an undecidable
decision problem. The PCP problem over an alphabet ∑ is stated as follows −

Given the following two lists, M and N of non-empty strings over ∑ −

M = (x1, x2, x3,………, xn)


N = (y1, y2, y3,………, yn)
We can say that there is a Post Correspondence Solution, if for some i 1,i2,………… ik, where 1
≤ ij ≤ n, the condition xi1 …….xik = yi1 …….yik satisfies.

Example 1: Find whether the lists


M = (abb, aa, aaa) and N = (bba, aaa, aa)
have a Post Correspondence Solution?
Solution

x1 x2 x3

M Abb aa aaa

N Bba aaa aa

Here,
x2x1x3 = ‘aaabbaaa’
and y2y1y3 = ‘aaabbaaa’
We can see that
x2x1x3 = y2y1y3
Hence, the solution is i = 2, j = 1, and k = 3.

Example 2: Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post
Correspondence Solution?
Solution

x1 x2 x3

M ab bab bbaaa

N a ba bab

In this case, there is no solution because −


| x2x1x3 | ≠ | y2y1y3 | (Lengths are not same)
Hence, it can be said that this Post Correspondence Problem is undecidable.

You might also like