0% found this document useful (0 votes)
44 views10 pages

Integration Suggestion Section A

The document provides a comprehensive list of important integration formulas and techniques, including various indefinite integrals and special formulae for integration by substitution and the UV method. It includes examples of evaluating integrals using these techniques, demonstrating the application of the formulas. Additionally, it outlines the steps for integration by substitution and provides specific examples for practice.

Uploaded by

sakerahmedshimul
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
44 views10 pages

Integration Suggestion Section A

The document provides a comprehensive list of important integration formulas and techniques, including various indefinite integrals and special formulae for integration by substitution and the UV method. It includes examples of evaluating integrals using these techniques, demonstrating the application of the formulas. Additionally, it outlines the steps for integration by substitution and provides specific examples for practice.

Uploaded by

sakerahmedshimul
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

Some important formulae

∫ 1dx = x + c ∫ cosec 2 x dx = − cot x + c

∫ sec x tan x dx = sec x + c


n xn+1
∫ x dx = n+1
+c ∫ cosec x cot x dx = − cosec x + c

(𝑎x+b)n+1 𝑓 ′ (𝑥)
∫(𝑎𝑥 + 𝑏) dx = n
+c ∫ 𝑑𝑥 = 𝑙𝑛|𝑓(𝑥)| + 𝑐
(n+1)a 𝑓(𝑥)

𝑓 ′ (𝑥)
mx
emx ∫ 𝑑𝑥 = 2√𝑓(𝑥) + 𝑐
∫e dx = +c √𝑓(𝑥)
m
[𝑓(𝑥)]𝑛+1
1 ∫ [𝑓(𝑥)]𝑛 . 𝑓 ′ (𝑥)𝑑𝑥 = +𝑐
𝑛+1
∫ dx = lnx + c
𝑥 𝑥√𝑎2 −𝑥2 𝑎2 𝑥
cos a x ∫ √𝑎2 − 𝑥 2 𝑑𝑥 = + 𝑠𝑖𝑛−1 (𝑎) + 𝑐
2 2
∫ sin a xdx = − +c
a 1
cos b x ∫ 1+𝑥 2 𝑑𝑥 = 𝑡𝑎𝑛−1 𝑥 + 𝑐
∫ cos b xdx = +c 𝑑𝑢
b ∫ 𝑢𝑣𝑑𝑥 = 𝑢 ∫ 𝑣𝑑𝑥 − ∫ {𝑑𝑥 ∫ 𝑣𝑑𝑥} 𝑑𝑥
∫ sec 2 x dx = tan x + c

Special formulae:
𝑓′ (𝑥)
∫ 𝑑𝑥 = 𝑙𝑛|𝑓(𝑥)| + 𝑐
𝑓(𝑥)

𝑓′ (𝑥)
∫ 𝑑𝑥 = 2√𝑓(𝑥) + 𝑐
√𝑓(𝑥)

[𝑓(𝑥)]𝑛+1
∫ [𝑓(𝑥)]𝑛 . 𝑓 ′ (𝑥)𝑑𝑥 = +𝑐
𝑛+1

(1) Evaluate the following indefinite integral


𝑥
(i) ∫ 𝑑𝑥
1−𝑥 2
𝑥
(ii) ∫ √1−𝑥2
𝑑𝑥
7
(iii) ∫𝑠𝑖𝑛 𝑥. 𝑐𝑜𝑠𝑥 𝑑𝑥
(iv) ∫cos 7 𝑥 . 𝑠𝑖𝑛𝑥 𝑑𝑥
(v) ∫(𝑐𝑜𝑡 7 𝑥 + 𝑐𝑜𝑡 5 𝑥 ) 𝑑𝑥
(vi) ∫(𝑡𝑎𝑛7 𝑥 + 𝑡𝑎𝑛5 𝑥 ) 𝑑𝑥
Solution:
𝑥 1 −2𝑥 1
(i) ∫ 𝑑𝑥 = (− 2) ∫ 𝑑𝑥 = − 2 𝑙𝑛 |1 − 𝑥 2 | + 𝑐
1−𝑥 2 1−𝑥 2
𝑥 1 −2𝑥 1
(ii) ∫ √1−𝑥2
𝑑𝑥 = (− 2) ∫ √1−𝑥 2
𝑑𝑥 = (− 2) 2√1 − 𝑥 2 + 𝑐 = −√1 − 𝑥 2 + 𝑐
(𝑠𝑖𝑛 𝑥)7+1 1
(iii) ∫𝑠𝑖𝑛7 𝑥. cos 𝑑𝑥 = + 𝑐 = 8 𝑠𝑖𝑛8 𝑥 + 𝑐
7+1
1
(iv) ∫cos 𝑥 . 𝑠𝑖𝑛𝑥 𝑑𝑥=(−)∫cos7 𝑥 . (−𝑠𝑖𝑛𝑥)𝑑𝑥=− 8 cos 8 𝑥 + 𝑐
7

(v) ∫(𝑐𝑜𝑡 7 𝑥 + 𝑐𝑜𝑡 5 𝑥 ) 𝑑𝑥


=∫𝑐𝑜𝑡 5 𝑥 (𝑐𝑜𝑡 2 𝑥 + 1) 𝑑𝑥
=∫𝑐𝑜𝑡 5 𝑥 𝑐𝑜𝑠𝑒𝑐 2 𝑥 𝑑𝑥
= (−)∫𝑐𝑜𝑡 5 𝑥 (−𝑐𝑜𝑠𝑒𝑐 2 𝑥) 𝑑𝑥
(𝑐𝑜𝑡𝑥)5+1
=− +𝑐
5+1
(𝑐𝑜𝑡𝑥)6
=− +𝑐
6

(vi) ∫( 𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛5 𝑥)𝑑𝑥


7

=∫𝑡𝑎𝑛5 𝑥(𝑡𝑎𝑛2 𝑥 + 1)𝑑𝑥

=∫𝑡𝑎𝑛5 𝑥. 𝑠𝑒𝑐 2 𝑥𝑑𝑥

[𝑡𝑎𝑛 𝑥]5+1
= +𝑐
5+1

tan6 𝑥
= +𝑐
6

Method of Substitution:

Integration by substitution, also known as "u-substitution", is a technique that simplifies


integrals by making a substitution. The exact substitution depends on the integral's form, but
here are some steps you can follow:

1. Identify the integral in the form ∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥


2. Substitute the independent variable as 𝑔(𝑥) = 𝑡
3. Differentiate the assumed function with respect to 𝑡
4. Substitute for the dependent variable, such as 𝑔′(𝑥)𝑑𝑥 = 𝑑𝑡
5. The resultant integral after substitution becomes ∫ 𝑓(𝑡)𝑑𝑡
6. Solve the integral using basic integration rules
7. Convert the result back to terms of 𝑥 by substituting 𝑡 with the original independent
variable

The substitution should be made for a function whose derivative also occurs in the
integrand. The ability to recognize an appropriate substitution comes from practicing many
different examples.

*** If integrand 𝑓(𝑥) = 𝑔(𝑥). 𝑔′ (𝑥) or [𝑔(𝑥)]𝑛 𝑔′ (𝑥) or 𝑒 𝑔(𝑥) . 𝑔′ (𝑥), 𝑇[𝑔(𝑥)]. 𝑔′ (𝑥) or
[𝑇( 𝑔(𝑥))]𝑛 . 𝑔′(𝑥) then substitute 𝑔(𝑥) = 𝑧 and 𝑔′(𝑥)𝑑𝑥 = 𝑑𝑧.

Here T means trigonometry function.

(2) Evaluate the following indefinite integral


𝑒 𝑥 (𝑥+1)
(i) ∫ 𝑐𝑜𝑠2 (𝑥 𝑒 𝑥 ) 𝑑𝑥
𝑒 𝑥 (𝑥+1)
(ii) ∫ 𝑑𝑥
𝑠𝑖𝑛2 (𝑥 𝑒 𝑥 )
9 10
(iii) ∫𝑥 𝑒 𝑑𝑥

Solution:
𝑒 𝑥 (𝑥+1) 𝑥
(i) ∫ 𝑑𝑥 Let, 𝑥. 𝑒 = 𝑧
𝑐𝑜𝑠2 (𝑥 𝑒 𝑥 )

𝑑𝑧
Then (𝑥. 𝑒 𝑥 + 𝑒 𝑥 . 1)𝑑𝑥 = 𝑑𝑧
=∫ 𝑐𝑜𝑠2 𝑧
⇒ 𝑒 𝑥 (𝑥 + 1)𝑑𝑥 = 𝑑𝑧
= ∫ 𝑠𝑒𝑐 2 𝑧 𝑑𝑧 𝑑 𝑑𝑣 𝑑𝑢
Formula: (𝑢𝑣) = 𝑢 +𝑣
𝑑𝑥 𝑑𝑥 𝑑𝑥
= 𝑡𝑎𝑛 𝑧 + 𝑐

= 𝑡𝑎𝑛 (𝑥 𝑒 𝑥 ) + 𝑐

𝑒 𝑥 (𝑥+1) 𝑥
(ii) ∫ 𝑑𝑥 Let, 𝑥. 𝑒 = 𝑧
𝑠𝑖𝑛2 (𝑥 𝑒 𝑥 )
𝑑𝑧
=∫ 𝑠𝑖𝑛2 𝑧
Then (𝑥. 𝑒 𝑥 + 𝑒 𝑥 . 1)𝑑𝑥 = 𝑑𝑧

= ∫ 𝑐𝑜𝑠𝑒𝑐 2 𝑧 𝑑𝑧 ⇒ 𝑒 𝑥 (𝑥 + 1)𝑑𝑥 = 𝑑𝑧

= −𝑐𝑜𝑡 𝑧 + 𝑐

= −𝑐𝑜𝑡 (𝑥 𝑒 𝑥 ) + 𝑐

(iii) ∫ 𝑥9 𝑒 𝑥
10
𝑑𝑥 Let, 𝑥10 = 𝑧

= ∫ 𝑒𝑧
𝑑𝑧 ⇒ 10𝑥9 𝑑𝑥 = 𝑑𝑧
10
𝑑𝑧
1
= 10 ∫ 𝑒 𝑧 𝑑𝑧 ⇒ 𝑥9 𝑑𝑥 =
10
1
= 10 . 𝑒 𝑧 + 𝑐
1 10
= 10 𝑒 𝑥 +𝑐

UV method:
𝑑𝑢
∫ 𝑢𝑣 𝑑𝑥 = 𝑢 ∫ 𝑣 𝑑𝑥 − ∫{𝑑𝑥 ∫ 𝑣 𝑑𝑥}𝑑𝑥

u L I A T E

𝑙𝑜𝑔𝑥,𝑙𝑛𝑥

𝑠𝑖𝑛−1 𝑥, 𝑐𝑜𝑠 −1 𝑥

𝑥 , 𝑥2, 𝑥3

𝐶𝑜𝑠𝑥, 𝑠𝑖𝑛𝑥

𝑒 𝑥 , 𝑎 𝑥 , 2𝑥

(3) Evaluate the following indefinite integral


(i) ∫ 𝑥𝑒 𝑥 𝑑𝑥
(ii) ∫ 𝑥𝑙𝑛𝑥 𝑑𝑥
(iii) ∫ 𝑙𝑛𝑥 𝑑𝑥

Solution:
(i) ∫ 𝑥𝑒 𝑥 𝑑𝑥
𝑑
= 𝑥 ∫ 𝑒𝑥 𝑑𝑥 − ∫ {𝑑𝑥 (𝑥) ∫ 𝑒𝑥 𝑑𝑥} 𝑑𝑥
= 𝑥𝑒𝑥 − ∫ 1. 𝑒𝑥 𝑑𝑥
= 𝑥 𝑒𝑥 − 𝑒𝑥 + 𝑐
(ii) ∫ 𝑥𝑙𝑛𝑥 𝑑𝑥
𝑑
= 𝑙𝑛𝑥 ∫ 𝑥𝑑𝑥 − ∫ { (𝑙𝑛𝑥) ∫ 𝑥𝑑𝑥} 𝑑𝑥
𝑑𝑥
𝑥2 1 𝑥2
= 𝑙𝑛𝑥 −∫ . 𝑑𝑥
2 𝑥 2
𝑥2 1
= 𝑙𝑛𝑥 − ∫ 𝑥𝑑𝑥
2 2
𝑥 2 𝑥2
= 2
𝑙𝑛𝑥 − 4
+𝑐
(iii) ∫ 𝑙𝑛𝑥 𝑑𝑥
𝑑
= 𝑙𝑛𝑥 ∫ 1𝑑𝑥 − ∫ { (𝑙𝑛𝑥) ∫ 1𝑑𝑥} 𝑑𝑥
𝑑𝑥
1
= 𝑥𝑙𝑛𝑥 − ∫ . 𝑥𝑑𝑥
𝑥
= 𝑥𝑙𝑛𝑥 − ∫ 1𝑑𝑥
= 𝑥𝑙𝑛𝑥 − 𝑥 + 𝑐

The Fundamental Theorem of Calculus: If 𝑓is continuous on [𝑎, 𝑏] and 𝐹 is any anti-
𝑏
derivative of 𝑓on [𝑎, 𝑏], then ∫𝑎 𝑓(𝑥)𝑑𝑥 = [𝐹(𝑥)]𝑏𝑎 = 𝐹(𝑏) − 𝐹(𝑎)

(4) Evaluate the following integral


𝜋
(i) ∫04 (𝑡𝑎𝑛7 𝑥 + 𝑡𝑎𝑛5 𝑥) 𝑑𝑥
1
(ii) ∫0 𝑥 3 √1 + 3𝑥 4 𝑑𝑥
𝜋
(iii) ∫02 𝑐𝑜𝑠 7 𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋
(iv) ∫0 𝑠𝑖𝑛7 𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥
2

1 x
(v) ∫0 𝑑𝑥
4−x2
1 x
(vi) ∫0 √1−𝑥 2 𝑑𝑥
1
(vii) ∫0 𝑥𝑒 𝑥 𝑑𝑥

Solution:
𝜋
(i) ∫04 (𝑡𝑎𝑛7 𝑥 + 𝑡𝑎𝑛5 𝑥) 𝑑𝑥
𝜋
= ∫04 (𝑡𝑎𝑛5 𝑥(𝑡𝑎𝑛2 𝑥 + 1) 𝑑𝑥
𝜋
= ∫04 𝑡𝑎𝑛5 𝑥. 𝑠𝑒𝑐 2 𝑥 𝑑𝑥
𝜋
[𝑡𝑎𝑛 𝑥]5+1 4
=[ ]
5+1 0

𝜋
1
= 6 [𝑡𝑎𝑛6 𝑥]04

1 𝜋
= [𝑡𝑎𝑛6 ( ) − 𝑡𝑎𝑛6 (0)]
6 4
1
= 6 [1 − 0]

1
=6

1
(ii) ∫0 𝑥 3 √1 + 3𝑥 4 𝑑𝑥

= ∫1 √𝑧
4 𝑑𝑧 Let, 1 + 3𝑥 4 = 𝑧
12
⇒ (0 + 3.4𝑥3 )𝑑𝑥 = 𝑑𝑧
14 1
= ∫1
𝑧 2 𝑑𝑧
12
𝑑𝑧
4 ⇒ 𝑥3 𝑑𝑥 =
1
+1 12
1 𝑧2
= 12 [ 1 ]
+1 Limit:
2 1
4 x 0 1
1 𝑧 3/2
= 12 [ 3 ]
2 1 z 1 4
1 2
= 12 × 3 [43/2 − 13/2 ]
1
= [8 − 1]
18

7
= 18

𝜋
(iii) ∫02 𝑐𝑜𝑠 7 𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋
= (−) ∫02 𝑐𝑜𝑠 7 𝑥 . (−𝑠𝑖𝑛𝑥)𝑑𝑥
𝜋
(𝑐𝑜𝑠 𝑥)7+1 2
=− [ ]
7+1 0
𝜋
1 8 2
= − [8 𝑐𝑜𝑠 𝑥]
0
1 𝜋
= − 8 {cos8 2 − cos8 0}
1
=8

𝜋
(iv) ∫0 𝑠𝑖𝑛7 𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥
2

𝜋
(𝑠𝑖𝑛 𝑥)7+1 2
=[ ]
7+1 0
𝜋
1 8 2
= [8 𝑠𝑖𝑛 𝑥]
0
1 𝜋
= {sin8 2 − sin8 0}
8
1
=8
1 x
(v) ∫0 𝑑𝑥
4−x2
1 1 −2x
= (− 2) ∫0 𝑑𝑥
4−x2
1
=− 2 [𝑙𝑛 |4 − 𝑥 2 |]10
1
= − {ln(4 − 12 ) − ln(4 − 0)}
2
1
= − 2 {𝑙𝑛3 − 𝑙𝑛4}
1 3
= − 2 ln(4)

1 x
(vi) ∫0 √1−𝑥 2
𝑑𝑥
1 1 −2x
= (− 2) ∫0 𝑑𝑥
√1−x2
1 1
=− 2 [2√1 − 𝑥 2 ]0
= −{√1 − 1 − √1 − 0}
=0
1
(vii) ∫0 𝑥𝑒 𝑥 𝑑𝑥
Here ∫ 𝑥𝑒 𝑥 𝑑𝑥
𝑑
= 𝑥 ∫ 𝑒𝑥 𝑑𝑥 − ∫ { (𝑥) ∫ 𝑒𝑥 𝑑𝑥} 𝑑𝑥
𝑑𝑥
= 𝑥𝑒𝑥 − ∫ 1. 𝑒𝑥 𝑑𝑥
= 𝑥 𝑒𝑥 − 𝑒𝑥 + 𝑐
1
∴ ∫0 𝑥𝑒𝑥 𝑑𝑥 = [𝑥 𝑒𝑥 − 𝑒𝑥 ]10 = (1. 𝑒 1 − 𝑒 1 ) − (0 − 𝑒 0 ) = 1

𝛼 𝛼
Q. If ∫1 {3 + 𝑥𝑙𝑛(𝑥 2 + 5)}𝑑𝑥 + ∫1 {2 − 𝑥𝑙𝑛(𝑥 2 + 5)}𝑑𝑥 = 30 then find the value of 𝛼.

Solution: Given that


𝛼 𝛼
∫1 {3 + 𝑥𝑙𝑛(𝑥 2 + 5)}𝑑𝑥 + ∫1 {2 − 𝑥𝑙𝑛(𝑥 2 + 5)}𝑑𝑥 = 30
𝛼
⇒ ∫1 {3 + 𝑥𝑙𝑛(𝑥2 + 5) + 2 − 𝑥𝑙𝑛(𝑥2 + 5)}𝑑𝑥 = 30

𝛼
⇒ ∫1 5𝑑𝑥 = 30

⇒ 5[𝑥]𝛼1 = 30

⇒ 𝛼−1=6
⇒ 𝛼=7

Properties of definite integral:


𝑏 𝑏
(i) ∫𝑎 𝑓(𝑥)𝑑𝑥 = ∫𝑎 𝑓(𝑧)𝑑𝑧
𝑏 𝑐 𝑏
(ii) ∫𝑎 𝑓(𝑥)𝑑𝑥 = ∫𝑎 𝑓(𝑥)𝑑𝑥 + ∫𝑐 𝑓(𝑥)𝑑𝑥 𝑤ℎ𝑒𝑛 𝑎 < 𝑒 < 𝑏.
𝑎 𝑎
(iii) ∫0 𝑓(𝑥)𝑑𝑥 = ∫0 𝑓(𝑎 − 𝑥)𝑑𝑥 .
𝑛𝑎 𝑎
(iv) ∫0 𝑓(𝑥)𝑑𝑥 = 𝑛 ∫0 𝑓(𝑥)𝑑𝑥 , 𝑤ℎ𝑒𝑛 𝑓(𝑎 + 𝑥) = 𝑓(𝑥).
𝑎
𝑎 2 ∫0 𝑓(𝑥)𝑑𝑥 𝑖𝑓 𝑓(𝑥)𝑖𝑠 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
(v) ∫−𝑎 𝑓(𝑥)𝑑𝑥 ={
0 𝑖𝑓 𝑓(𝑥)𝑖𝑠 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝜋
(𝑡𝑎𝑛𝑥) 2024
Q. Determine the value of ∫02 (𝑡𝑎𝑛𝑥)2024 +(𝑐𝑜𝑡𝑥)2024 𝑑𝑥

Solution:
𝜋
(𝑡𝑎𝑛𝑥)2024
Let, 𝐼 = ∫0 2
(𝑐𝑜𝑡𝑥)2024 +(𝑡𝑎𝑛𝑥)2024
𝑑𝑥 … … . (𝑖)

𝜋
𝜋 {tan( −𝑥)} 2024
2
= ∫0 2
𝜋 𝜋 dx
{cot( 2 −𝑥)} 2024 +{tan( 2 −𝑥)} 2024

𝜋
(cot 𝑥)2024
= ∫0 2 𝑑𝑥 … … … (𝑖𝑖)
(𝑡𝑎𝑛𝑥)2024+(𝑐𝑜𝑡𝑥)2024

Now (𝑖) + (𝑖𝑖) we get


𝜋 𝜋
(𝑡𝑎𝑛𝑥)2024
2 2 (cot 𝑥)2024
𝐼+𝐼 =∫ 2024 + (𝑡𝑎𝑛𝑥)2024
𝑑𝑥 + ∫ 2024 + (𝑐𝑜𝑡𝑥)2024
𝑑𝑥
0 (cot 𝑥) 0 (𝑡𝑎𝑛𝑥)
𝜋
(𝑡𝑎𝑛𝑥)2024 (cot 𝑥)2024
⇒ 2𝐼 = ∫02 [(cot 2024 + ]𝑑𝑥
𝑥) +(𝑡𝑎𝑛𝑥)2024 (𝑡𝑎𝑛𝑥)2024 +(𝑐𝑜𝑡𝑥)2024

𝜋
(𝑡𝑎𝑛𝑥)2024 +(cot 𝑥)2024
= ∫0 [ 2 ]𝑑𝑥
(cot 𝑥)2024 +(𝑡𝑎𝑛𝑥)2024

𝜋
⇒ 2𝐼 = ∫0 1 𝑑𝑥 2

𝜋
2
⇒ 2𝐼 =[𝑥]0
𝜋
⇒ 2𝐼 =
2
𝜋
⇒𝐼=
4
𝜋
(𝑡𝑎𝑛𝑥) 2024 𝜋
∴ ∫02 ( 𝑑𝑥 =
𝑡𝑎𝑛𝑥)2024 +(𝑐𝑜𝑡𝑥)2024 4

𝜋 𝑥 sin 𝑥
Q. Find the value of ∫0
1+𝑐𝑜𝑠2 𝑥
𝑑𝑥.

Solution:
𝜋 𝑥 sin 𝑥
Let, 𝐼 = ∫0 1+𝑐𝑜𝑠2 𝑥
𝑑𝑥 . . . . . . . (𝑖) let, cos 𝑥 = 𝑧

𝜋 (𝜋−𝑥) sin(𝜋−𝑥)
= ∫0 1+𝑐𝑜𝑠2 (𝜋−𝑥)
𝑑𝑥 ∴ sin 𝑥𝑑𝑥 = −𝑑𝑧

𝜋 (𝜋−𝑥) sin(𝑥)
= ∫0 𝑑𝑥 . . . . . . . . . . (𝑖𝑖) if 𝑥 = 0 then 𝑧 = 1 and if 𝑥 = 𝜋 then 𝑧 = −1
1+𝑐𝑜𝑠2 (𝑥)

𝜋 𝜋 sin(𝑥)
Now (𝑖) + (𝑖𝑖) ⟹ 2𝐼 = ∫0 𝑑𝑥
1+𝑐𝑜𝑠2 (𝑥)

−1 𝜋𝑑𝑧
= − ∫1 𝑧2 +1

1 𝑑𝑧
= 𝜋 ∫−1 𝑧2 +1

1
= 𝜋[tan−1 𝑧]
−1
= 𝜋[tan−1 ( 1) − tan−1(−1)]
𝜋 𝜋
= 𝜋( 4 + 4 )

𝜋2
⇒ 2𝐼 = 2

𝜋2
⇒𝐼= 2

𝜋 𝑥 sin 𝑥 𝜋2
∴ ∫0 𝑑𝑥 . =
1+𝑐𝑜𝑠2 𝑥 4

Exercise:
𝜋
(𝑠𝑖𝑛𝑥) 2024
(i) ∫0 2
(𝑐𝑜𝑠𝑥)2024+(𝑠𝑖𝑛𝑥)2024
𝑑𝑥
𝜋
(𝑡𝑎𝑛𝑥) 2024
(ii) ∫02 1+(𝑡𝑎𝑛𝑥)2024 𝑑𝑥
Walle’s theorem: If n is a positive integer then
𝑛−1 𝑛−3 𝑛−5 5 3 𝜋
𝜋 𝜋 . .
𝑛 𝑛−2 𝑛−4
…………. . .
3 2 2
when n is even
𝑛 𝑛
I = ∫0 sin 𝑥 𝑑𝑥 = ∫0 cos 𝑥 𝑑𝑥
2 2 ={𝑛−1 𝑛−3 𝑛−5 6 4 2
. .
𝑛 𝑛−2 𝑛−4
………….7.5.3.1 when n is odd

Q. Evaluate by walle’s formula


𝜋
(i) ∫0 cos 7 𝑥 𝑑𝑥
2

𝜋
(ii) ∫02 cos10 𝑥 𝑑𝑥
𝜋
(iii) ∫0 sin8 𝑥 𝑑𝑥

Solution:
𝜋
6.4.2 16
(i) ∫02 cos 7 𝑥 𝑑𝑥 = 7.5.3.1 = 35
𝜋
9.7.5.3.1 𝜋 63𝜋
(ii) ∫02 cos10 𝑥 𝑑𝑥 = 10.8.6.4.2 . 2 = 512
𝜋
𝜋 7 5 3 𝜋 35𝜋
(iv) ∫0 sin8 𝑥 𝑑𝑥 = 2 ∫02 sin8 𝑥 𝑑𝑥 = 8 . 6 . 4 . 2 = 128

You might also like