Question Bank With Solutions
Question Bank With Solutions
13𝜋 1
28. cos−1 (𝑐𝑜𝑠 6
) is equal to 8. The value of cos (2 sin−1 (2)) is ______
13𝜋 𝜋 13𝜋 7𝜋
a) b) 6 c) − d) 9. The value of sin[𝑡𝑎𝑛−1 √3 − cot −1(−√3)] is _____
6 6 6
29. sin(tan−1 𝑥) , |𝑥| < 1 is equal to 10. The cos[tan−1 √3 − sec −1 (−2)] is ______
𝑥 1 𝜋 √3
a)
√1−𝑥 2
b)
√1−𝑥 2
11. The value of sin [ − sin−1 (− )] is ______
3 2
1 𝑥 𝜋 1
c)
√1+𝑥 2
d)
√1+𝑥 2
12. The value of cos [ 3 − sin−1 (− 2)] is ______
−1 (−𝑥) −1
30. The value of 𝑥 for which sin = − sin 𝑥 13.
𝜋 1
The value of sin [ 3 − sin−1 (− 2)] is ______
holds is 𝜋 1
𝜋 𝜋 14. The value of sin [ 2 − sin−1 (− 2)] is ______
a) [0, 𝜋] b) [− 2 , 2 ] c) [−1,1] d) [0,1]
7𝜋
31. The set of value of 𝑥 for which 15. The principal value of cos −1 (cos 6 ) is ______
3𝜋
3 sin−1 𝑥 = sin−1(3𝑥 − 4𝑥 3 ), holds 16. The principal value of cos −1 (cos 2 ) is ______
1 1 √3 √3 3𝜋
a) [− 2 , 2] b) [− , ]
2 2 17. The value of sin−1 (sin ( 5 )) is ______
1 1 √3 √3 2𝜋
c) [− 2 , 2) d) (− 2 , 2 ] 18. The value of sin−1 (sin ( )) is ______
3
32. The set of value of 𝑥 for which −1 3𝜋
19. The value of tan (tan 4 ) is ______
3 cos −1 𝑥 = cos−1(4𝑥 3 − 3𝑥), holds 8
1 1 1 1 20. The value of tan (cos −1 17) is ______
a) [2 , 1] b) (2 , 1) c) [2 , 1) d) (2 , 1]
1
21. The value of cos[sin−1 3 + sec −1 3] is ______
33. The set of value of 𝑥 for which
1
3 tan−1 𝑥 = tan−1 (
3𝑥−𝑥 3
), holds 22. If sin [sin−1 5 + cos −1 𝑥] = 1, then 𝑥 is______
1−3𝑥 2
−1 −1
1 1 1 1 23. The value of cot(tan 𝑥 + cot 𝑥) =______
a) [− , ] b) (− , )
√3 √3 √3 √3
1 1 1 1
c) [− 3 , 3) d) (− 3 , 3]
√ √ √ √
34. The set of value of 𝑥 for which ANSWER KEY
sin−1(2𝑥√1 − 𝑥 2 = 2 sin−1 𝑥, holds MCQ
1 1 1 1 QN KEY QN KEY QN KEY QN KEY QN KEY
a) [− , ] b) [− , ]
√2 √2 2 2
1 √3 √3
1 a 2 c 3 b 4 d 5 a
c) [2 , 1] d) [− , ]
2 2 6 b 7 b 8 b 9 a 10 d
35. The set of value of 𝑥 for which
11 d 12 a 13 d 14 b 15 b
sin−1(2𝑥√1 − 𝑥 2 ) = 2 cos−1 𝑥, holds
16 d 17 c 18 b 19 c 20 b
1 1 1
a) [ 2 , 1] b) [− 2 , 2] 21 c 22 a 23 c 24 a 25 b
√
1 √3 √3 26 a 27 b 28 b 29 d 30 c
c) [2 , 1] d) [− 2 , 2 ]
31 a 32 a 33 b 34 a 35 a
1 √3 √3 5𝜋
4. The principal value of cot −1 (− ) is ______ 11 12 0 13 1 14 15
2 2 6
√3
𝜋 2𝜋 𝜋 𝜋 15
5. The principal value of 𝑡𝑎𝑛−1 (−√3) is ______ 16 17 18 19 − 20
2 5 3 4 8
1 1 1
6. The value of cos −1 (2) + 2𝑠𝑖𝑛−1 (2) is ______ 21 0 22 5
23 0
−1
7. The value of sin[𝑐𝑜𝑠𝑒𝑐 (2)] is ______
𝟕𝛑 𝟏−𝐱 𝟐
5) 𝐜𝐨𝐬 −𝟏 (𝐜𝐨𝐬 ) 2) 𝟐 𝐭𝐚𝐧−𝟏 𝐱 = 𝐜𝐨𝐬 −𝟏 (𝟏+𝐱 𝟐) , 𝐱 ≥ 𝟎
𝟔
Now, Now,
cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 tan 𝐴+tan 𝐵
tan(𝐴 + 𝐵) = 1−tan 𝐴 tan 𝐵
4 12 3 5
⟹ cos(A + B) = . − . 8 3
+
32+45
5 13 5 13 15 4 60
48 15 ⟹ tan(A + B) = 8 3 = 60−24
⟹ cos(A + B) = 65 − 65 1− .
15 4 60
77
48−15 ⟹ tan(A + B) = 36
⟹ A + B = cos−1 [ 65 ]
77
4 12 33 ⟹ A + B = tan−1 [36]
⟹ cos−1 (5) + cos−1 (13) = cos−1 (65)
8 3 77
⟹ sin−1 ( ) + sin−1 ( ) = tan−1
17 5 36
𝟏𝟐 𝟑 𝟓𝟔
5) Prove that 𝐜𝐨𝐬 −𝟏 + 𝐬𝐢𝐧−𝟏 𝟓 = 𝐬𝐢𝐧−𝟏 𝟔𝟓
𝟏𝟑
7) Find the value of 𝒙 of the following
𝐶
12
Solution: Let cos−1 (13) = 𝐴 𝟏−𝐱 𝟏
13 1) 𝐭𝐚𝐧−𝟏 (𝟏+𝐱) = 𝟐 𝐭𝐚𝐧−𝟏 𝐱 , 𝐱 > 𝟎
12
⟹ cos 𝐴 = 5 1−𝑥 1
13 Solution : Given: tan−1 (1+𝑥) = 2 tan−1 𝑥
5 𝐴
⟹ sin 𝐴 = 13 𝐴 12 𝐵 Let, 𝑥 = tan 𝜃 ⟹ 𝜃 = tan−1 𝑥
1−tan 𝜃 1
𝑍 ⟹ tan−1 ( ) = tan−1 tan 𝜃
3 1+tan 𝜃 2
Let sin−1 ( ) =𝐵 −1 𝜋 1
5
5 ⟹ tan (tan ( 4 − 𝜃)) = 2 𝜃
3
⟹ sin 𝐵 = 3 𝜋 1 𝜋 1
5 ⟹ 4 − 𝜃 = 2 𝜃 ⟹ 4 = 2 𝜃+ 𝜃
4 𝐵
⟹ cos 𝐵 =5 𝜋 𝜃+2𝜃 𝜋 3𝜃
𝑋 4 𝑌 ⟹4= 2 ⟹4 = 2
2𝜋
⟹ 2𝜋 = 12𝜃 ⟹ 𝜃 =
Now, 12
𝜋
sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 ⟹ 2𝜋 = 12𝜃 ⟹ 𝜃 = 6
5 4 12 3 𝜋 1
⟹ sin(A + B) = 13 . 5 + 13
.5 Now, 𝑥 = tan 𝜃 ⟹ 𝑥 = tan 6 ⇒ 𝑥 =
√3
20 36
⟹ sin(A + B) = 65 + 65
𝝅
⟹ A + B = sin−1 [
20+36
] 2) 𝐬𝐢𝐧−𝟏 (𝟏 − 𝒙) − 𝟐 𝐬𝐢𝐧−𝟏 𝒙 = 𝟐
65 π
12 3 56 Solution: sin−1(1 − x) − 2 sin −1
x=
⟹ cos −1 + sin−1 5 = sin−1 65 2
13 π
⟹ sin−1(1 − x) = 2 + 2 sin−1 x
π
𝟖
6) Prove that 𝐬𝐢𝐧−𝟏 (𝟏𝟕) + 𝐬𝐢𝐧−𝟏 (𝟓) = 𝐭𝐚𝐧−𝟏 𝟑𝟔
𝟑 𝟕𝟕 ⟹ 1 − x = sin ( + 2 sin−1 x)
2
⟹ 1 − x = cos(2 sin−1 x)
𝐶
8 ⟹ 1 − x = 1 − 2 sin2(sin−1 x)
Solution: Let sin−1 (17) = 𝐴
17 ⟹ −x = −2[sin(sin−1 x)]2
8
⟹ sin 𝐴 = 17 8 ⟹ x = 2x 2 ⟹ x − 2x 2 = 0
8 𝐴 ⟹ x(1 − 2x) = 0
⟹ tan 𝐴 = 𝐴 15 𝐵
15
⟹ x = 0 or 1 − 2x = 0
𝑍 ⟹ x = 0 or 2x = 1 ⟹ x = 0 or x = 2
1
3
Let sin−1 (5) =𝐵 1
3
5 Since x = 2 is not a solution of the given
⟹ sin 𝐵 = 5 3
𝐵 equation, ⟹ x = 0 is the only solution.
3
⟹ tan 𝐵 = 4 𝑋 4 𝑌