0% found this document useful (0 votes)
184 views5 pages

Question Bank With Solutions

The document is a question bank focused on inverse trigonometric functions, featuring multiple-choice questions and fill-in-the-blank questions. It includes questions about the principal branches, domains, and ranges of various inverse trigonometric functions, along with their corresponding answers. The document serves as a study aid for students in mathematics, particularly in understanding inverse trigonometric concepts.

Uploaded by

lamesahal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
184 views5 pages

Question Bank With Solutions

The document is a question bank focused on inverse trigonometric functions, featuring multiple-choice questions and fill-in-the-blank questions. It includes questions about the principal branches, domains, and ranges of various inverse trigonometric functions, along with their corresponding answers. The document serves as a study aid for students in mathematics, particularly in understanding inverse trigonometric concepts.

Uploaded by

lamesahal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Question Bank with Solutions Inverse Trigonometric Functions

INVERSE TRIGONOMETRIC FUNCTIONS


One Mark Questions (MCQ) 13. One branch of cos −1 𝑥 other than the principal
1. The principal branch of sin−1 𝑥 is value branch corresponds to
𝜋 3𝜋 3𝜋
𝜋 𝜋 𝜋 𝜋 a) [ 2 , ] b) [𝜋, 2𝜋] − { 2 }
a) [− 2 , 2 ] b) (− 2 , 2 ) 2

c) [0, 𝜋] d) (0, 𝜋) c) (0, 𝜋) d) [2𝜋, 3𝜋]


𝜋 𝜋
2. The principal branch of cos −1 𝑥 is 14. The range of 𝑓(𝑥) = sin−1 𝑥 other than [− , ] is
2 2
𝜋 𝜋 𝜋 𝜋 𝜋 𝜋 3𝜋
a) [− 2 , 2 ] b) (− 2 , 2 ) a) [− 2 , 𝜋] b) [ 2 , ]
2
c) [0, 𝜋] d) (0, 𝜋) c) [0 , 𝜋] d) [−𝜋, 𝜋]
3. The principal branch of tan−1 𝑥 is 15. The principal value of cos −1 ( 2 ) is
√3
𝜋 𝜋 𝜋 𝜋
a) [− 2 , 2 ] b) (− 2 , 2 ) 𝜋 𝜋 𝜋 𝜋
a) 3 b) 6 c) 2 d) 4
c) [0, 𝜋] d) (0, 𝜋) 1
16. The principal value of sin−1 (− 2) =
4. The principal branch of cot −1 𝑥 is
𝜋 𝜋 𝜋 𝜋
𝜋 𝜋 𝜋 𝜋 a) 3 b) − 3 c) 6 d) − 6
a) [− 2 , 2 ] b) (− 2 , 2 )
√3
c) [0, 𝜋] d) (0, 𝜋) 17. The principal value of cos −1 (− 2
) =
5. The principal branch of sec −1 𝑥 is a) 3
𝜋
b) 6
𝜋
c)
5𝜋
d)
2𝜋
𝜋 𝜋 𝜋 6 3
a) [0, 𝜋] − { 2 } b) [− 2 , 2 ] − {0} 18. Principal value of tan−1(−1)
𝜋 𝜋 𝜋 𝜋 𝜋 3𝜋 5𝜋
c) (− 2 , 2 ) − {0} d) (0, 𝜋) − { 2 } a) 4 b) − 4 c) d)
4 4
6. The principal branch of cosec −1 𝑥 is 19. The principal value of cot −1(−√3) =
𝜋 𝜋 𝜋 𝜋 2𝜋 5𝜋 𝜋
a) [0, 𝜋] − { 2 } b) [− 2 , 2 ] − {0} a) b) c) d)
3 3 6 4
𝜋 𝜋 𝜋
c) (− 2 , 2 ) − {0} d) (0, 𝜋) − { 2 } 20. The domain of 𝑓(𝑥) = cos −1 (2𝑥 − 1) is
7. The domain of 𝑓(𝑥) = sin−1 𝑥 is a) (0, 1) b) [0, 1]
a) (−1, 1) b) [−1, 1] c) (0, 1] d) [0, 1)
−1
c) (0, 1] d) 𝑅 21. The domain of sin 2𝑥 𝑖𝑠
1 1
8. −1
The domain of 𝑓(𝑥) = cos 𝑥 is a) [0,1] b) [−1, 1] c) [− , ] d) [−2, 2]
2 2
a) (−1, 1) b) [−1, 1] 22. The principal value of cos −1 (cos
3𝜋
)+ sin−1 sin 4
𝜋
4
c) (0, 1] d) 𝑅
−1
is
9. The domain of 𝑓(𝑥) = tan 𝑥 is 7𝜋 𝜋 𝜋
a) 𝜋 b) c) − 3 d) 2
a) 𝑅 b) 𝑅 − [−1, 1] 6
1
c) 𝑅 − (−1, 1) d) [−1, 1] 23. tan−1 (2 cos (2 sin−1 (2))) =
10. The domain of 𝑓(𝑥) = cot −1 𝑥 is a) 3
𝜋
b) 6
𝜋
c) 4
𝜋
d) 0
a) (−1, 1) b) 𝑅 − [−1, 1] 1
24. The value of sec −1 √2 − cos−1 ( 2) is
c) 𝑅 − (−1, 1) d) (−∞, ∞) √

11. The domain of 𝑓(𝑥) = sec −1 𝑥 is a) 0 b) 1 c) 2 d) √2


a) (−∞, −1) ∪ (1, ∞) b) (−∞, −1) ∪ [1, ∞) 25. tan−1 √3 − cot −1(−√3) is equal to
𝜋
c) (−∞, −1) ∩ (1, ∞) d) (−∞, −1] ∪ [1, ∞) a) 𝜋 b) − 2 c) 0 d) 2√3
12. The domain of 𝑓(𝑥) = cosec −1 𝑥 is 26. The value of [cos−1(−1) − sin−1(1)] is
a) 𝑅 − (−1, 1) b) 𝑅 − [−1, 1] 𝜋 3𝜋 3𝜋
a) 2 b) 𝜋 c) − 2
d) 2
c) (−1, 1] d) [−1, 1)
27. tan−1 √3 − sec −1 (−2)is equal to
𝜋 𝜋 2𝜋
a) 𝜋 b) − 3 c) 3 d) 3

Mr. Sharath Patil G H, Lecturer, Dept of Mathematics, DAVANGERE Page 1


Question Bank with Solutions Inverse Trigonometric Functions

13𝜋 1
28. cos−1 (𝑐𝑜𝑠 6
) is equal to 8. The value of cos (2 sin−1 (2)) is ______
13𝜋 𝜋 13𝜋 7𝜋
a) b) 6 c) − d) 9. The value of sin[𝑡𝑎𝑛−1 √3 − cot −1(−√3)] is _____
6 6 6
29. sin(tan−1 𝑥) , |𝑥| < 1 is equal to 10. The cos[tan−1 √3 − sec −1 (−2)] is ______
𝑥 1 𝜋 √3
a)
√1−𝑥 2
b)
√1−𝑥 2
11. The value of sin [ − sin−1 (− )] is ______
3 2
1 𝑥 𝜋 1
c)
√1+𝑥 2
d)
√1+𝑥 2
12. The value of cos [ 3 − sin−1 (− 2)] is ______
−1 (−𝑥) −1
30. The value of 𝑥 for which sin = − sin 𝑥 13.
𝜋 1
The value of sin [ 3 − sin−1 (− 2)] is ______
holds is 𝜋 1
𝜋 𝜋 14. The value of sin [ 2 − sin−1 (− 2)] is ______
a) [0, 𝜋] b) [− 2 , 2 ] c) [−1,1] d) [0,1]
7𝜋
31. The set of value of 𝑥 for which 15. The principal value of cos −1 (cos 6 ) is ______
3𝜋
3 sin−1 𝑥 = sin−1(3𝑥 − 4𝑥 3 ), holds 16. The principal value of cos −1 (cos 2 ) is ______
1 1 √3 √3 3𝜋
a) [− 2 , 2] b) [− , ]
2 2 17. The value of sin−1 (sin ( 5 )) is ______
1 1 √3 √3 2𝜋
c) [− 2 , 2) d) (− 2 , 2 ] 18. The value of sin−1 (sin ( )) is ______
3
32. The set of value of 𝑥 for which −1 3𝜋
19. The value of tan (tan 4 ) is ______
3 cos −1 𝑥 = cos−1(4𝑥 3 − 3𝑥), holds 8
1 1 1 1 20. The value of tan (cos −1 17) is ______
a) [2 , 1] b) (2 , 1) c) [2 , 1) d) (2 , 1]
1
21. The value of cos[sin−1 3 + sec −1 3] is ______
33. The set of value of 𝑥 for which
1
3 tan−1 𝑥 = tan−1 (
3𝑥−𝑥 3
), holds 22. If sin [sin−1 5 + cos −1 𝑥] = 1, then 𝑥 is______
1−3𝑥 2
−1 −1
1 1 1 1 23. The value of cot(tan 𝑥 + cot 𝑥) =______
a) [− , ] b) (− , )
√3 √3 √3 √3
1 1 1 1
c) [− 3 , 3) d) (− 3 , 3]
√ √ √ √
34. The set of value of 𝑥 for which ANSWER KEY
sin−1(2𝑥√1 − 𝑥 2 = 2 sin−1 𝑥, holds MCQ
1 1 1 1 QN KEY QN KEY QN KEY QN KEY QN KEY
a) [− , ] b) [− , ]
√2 √2 2 2
1 √3 √3
1 a 2 c 3 b 4 d 5 a
c) [2 , 1] d) [− , ]
2 2 6 b 7 b 8 b 9 a 10 d
35. The set of value of 𝑥 for which
11 d 12 a 13 d 14 b 15 b
sin−1(2𝑥√1 − 𝑥 2 ) = 2 cos−1 𝑥, holds
16 d 17 c 18 b 19 c 20 b
1 1 1
a) [ 2 , 1] b) [− 2 , 2] 21 c 22 a 23 c 24 a 25 b

1 √3 √3 26 a 27 b 28 b 29 d 30 c
c) [2 , 1] d) [− 2 , 2 ]
31 a 32 a 33 b 34 a 35 a

One Mark Questions (Fill in the blanks) FILL IN THE BLANK


1 QN KEY QN KEY QN KEY QN KEY QN KEY
1. The principal value of 𝑐𝑜𝑠 −1 (2) is ______ 𝜋 𝜋
2𝜋 2𝜋
1 1
3
2 3 𝜋 4 5 −3
3 3
2. The principal value of cos −1 (− ) is ______
2 2𝜋 1 1 1
−1 6 7 8 9 −1 10
3. The principal value of cos (−1) is ______ 3 2 2 2

1 √3 √3 5𝜋
4. The principal value of cot −1 (− ) is ______ 11 12 0 13 1 14 15
2 2 6
√3
𝜋 2𝜋 𝜋 𝜋 15
5. The principal value of 𝑡𝑎𝑛−1 (−√3) is ______ 16 17 18 19 − 20
2 5 3 4 8
1 1 1
6. The value of cos −1 (2) + 2𝑠𝑖𝑛−1 (2) is ______ 21 0 22 5
23 0
−1
7. The value of sin[𝑐𝑜𝑠𝑒𝑐 (2)] is ______

Mr. Sharath Patil G H, Lecturer, Dept of Mathematics, DAVANGERE Page 2


Question Bank with Solutions Inverse Trigonometric Functions

Two or Three Marks Questions 6) 𝐭𝐚𝐧−𝟏 √𝟑 − 𝐬𝐞𝐜 −𝟏 (−𝟐)


1) Find the value of the following Solution: tan−1 √3 − sec −1(−2)
𝝅 𝟏 𝜋 𝜋
1) 𝐬𝐢𝐧 [ 𝟑 − 𝐬𝐢𝐧−𝟏 (− 𝟐)] = tan−1 √3 − (𝜋 − sec −1 2) = − 𝜋 +
3 3
Solution: 𝜋−3𝜋+𝜋 𝜋
= 3
= −3
𝜋 1 𝜋 1
sin ( 3 − sin−1 (− 2)) = sin (3 − (− sin−1 2))
𝟏
𝜋 𝜋
= sin ( 3 + 6 ) = sin (
2𝜋+𝜋
) 7) 𝐭𝐚𝐧−𝟏 (𝟐 𝐜𝐨𝐬 (𝟐 𝐬𝐢𝐧−𝟏 ))
6 𝟐
1
3𝜋
= sin ( 6 ) = sin 2 = 1
𝜋 Solution: tan−1 (2 cos (2 sin−1 2))
𝜋 𝜋
= tan−1 [2 cos (2 6 )] = tan−1 [2 cos 3 ]
𝟐
2) 𝐬𝐢𝐧−𝟏 (𝐬𝐢𝐧 𝟑 ) 1
= tan−1 [2 ] = tan−1 1 =
𝜋
2 4
2𝜋
Solution: sin−1 (sin 3
)= sin−1 (sin 1200 )
𝟏 𝟏
= sin−1 sin(1800 − 60 0)
8) 𝐜𝐨𝐬 −𝟏 (𝟐) + 𝟐 𝐬𝐢𝐧−𝟏 (𝟐)
𝜋
= sin−1 sin 600 = 600 = 3 1 1
Solution: cos−1 (2) + 2 sin−1 (2)
𝜋 𝜋 𝜋 𝜋 2𝜋
−𝟏 𝟑𝝅 =3 +26 = 3 + 3 = 3
3) 𝐬𝐢𝐧 (𝐬𝐢𝐧 )
𝟓
3
Solution: sin−1 (sin ) = sin−1 𝑠𝑖𝑛 (1080 ) 𝟏 𝟏
5 9) 𝐭𝐚𝐧−𝟏(𝟏) + 𝐜𝐨𝐬 −𝟏 (− 𝟐) + 𝐬𝐢𝐧−𝟏 (− 𝟐)
−1 0 0) −1 0
= 𝑠𝑖𝑛 sin(180 − 72 = 𝑠𝑖𝑛 sin 72 1 1
3 Solution: tan−1 (1) + cos −1 (− 2) + sin−1 (− 2)
⟹ sin−1 (sin ) = 72 0
5 𝜋 1 1
𝑶𝑹 = 4 + 𝜋 − cos−1 (2) − sin−1 (2)
3 2𝜋 𝜋 𝜋 𝜋 3𝜋+12𝜋−4𝜋−2𝜋 9𝜋 3𝜋
sin−1 (sin ) = sin−1 𝑠𝑖𝑛 (𝜋 − ) = 4+𝜋−3−6 = 12
= 12 = 4
5 5
2𝜋 2𝜋
= 𝑠𝑖𝑛−1 sin ( 5 ) = 5
2) Prove the following
−𝟏 𝟏
𝟏𝟑𝛑 1) 𝐬𝐢𝐧−𝟏 (𝟐𝐱√𝟏 − 𝐱 𝟐 ) = 𝟐 𝐬𝐢𝐧−𝟏 𝐱 , ≤𝐱≤ .
4) 𝐜𝐨𝐬 −𝟏 (𝐜𝐨𝐬 ) √𝟐 √𝟐
𝟔 −1
13𝜋 𝜋
Solution: 𝐋et x = sinθ ⇒ θ = sin x
Solution: cos−1 cos ( ) = cos −1 cos (2𝜋 + 6 )
6 LHS = sin−1 (2x√1 − x 2 )
−1𝜋 𝜋
= cos cos 6 = 6 𝑶𝑹
= sin−1(2sinθ√1 − sin2 θ)
13𝜋
cos−1 cos ( 6 ) = cos −1 cos(3900 ) = sin−1(2sinθ√cos 2 θ)
−1
= cos cos(360 + 300 ) = cos −1 cos(300 )
0
= sin−1(2sinθ. cosθ) = sin−1 (sin2θ)
𝜋
= 300 = = 2θ = 2 sin−1 x = RHS
6

𝟕𝛑 𝟏−𝐱 𝟐
5) 𝐜𝐨𝐬 −𝟏 (𝐜𝐨𝐬 ) 2) 𝟐 𝐭𝐚𝐧−𝟏 𝐱 = 𝐜𝐨𝐬 −𝟏 (𝟏+𝐱 𝟐) , 𝐱 ≥ 𝟎
𝟔

Solution: cos−1 (cos


7𝜋
) = cos−1(cos 2100 ) Solution: Let 𝑥 = tan 𝜃 ⟹ 𝜃 = tan−1 𝑥
6
1−𝑥 2 1−𝑡𝑎𝑛2 𝜃
= cos−1(cos(1800 + 30)) = cos−1 (−𝑐𝑜𝑠 300 ) RHS = cos −1 (1+𝑥2 ) = cos−1 (1+𝑡𝑎𝑛2 𝜃)
= 1800 − cos−1(𝑐𝑜𝑠 300 ) = 1800 − 300 = cos −1 cos 2𝜃 = 2𝜃 = 2 tan−1 𝑥 = LHS.
7𝜋
⟹ cos−1 (cos ) = 1500
6
𝟏 𝟏
𝑶𝑹 3) 𝟑 𝐬𝐢𝐧−𝟏 𝐱 = 𝐬𝐢𝐧−𝟏 (𝟑𝐱 − 𝟒𝐱 𝟑 ), 𝐱 ∈ [− 𝟐 , 𝟐]
7𝜋 5𝜋
cos−1 (cos ) = cos −1 (cos (2𝜋 − )) Solution: Let x = sinθ ⇒ θ = sin−1 x
6 6
5𝜋 5𝜋 RHS = sin−1(3x − 4x 3 )
= cos−1 (cos ) =
6 6 = sin−1 (3sinθ − 4 sin3 θ)
= sin−1(sin3θ) = 3θ = 3 sin−1 x = LHS

Mr. Sharath Patil G H, Lecturer, Dept of Mathematics, DAVANGERE Page 3


Question Bank with Solutions Inverse Trigonometric Functions

𝟏 √sec2 θ−1 secθ−1


4) 𝟑 𝐜𝐨𝐬 −𝟏 𝐱 = 𝐜𝐨𝐬 −𝟏 (𝟒𝐱 𝟑 − 𝟑𝐱) 𝐱 ∈ [𝟐 , 𝟏] . = tan−1 ( )= tan−1 ( )
tanθ tanθ
Solution: Let x = cosθ ⇒ θ = cos−1 x 1
−1
1−cosθ

RHS = cos −1 (4x 3 − 3x) = tan−1 (sinθ/cosθ


cosθ
) = tan−1 ( cosθ
sinθ )
cosθ
= cos−1(4 cos3 θ − 3cosθ) 1−cosθ sinθ/2
= tan−1 ( ) = tan−1 (cosθ/2)
= cos −1 (cos3θ) = 3θ = 3 cos−1 𝑥 = 𝐿𝐻𝑆 sinθ
θ tan−1 x
= tan−1 (tanθ/2) = =
2 2
√𝟏+𝐬𝐢𝐧 𝐱 + √𝟏−𝐬𝐢𝐧𝐱 𝐱
8) 𝐜𝐨𝐭 −𝟏 ( ) =𝟐
√𝟏+𝐬𝐢𝐧 𝐱− √𝟏−𝐬𝐢𝐧 𝐱
√1+sin 𝑥 + √1−sin 𝑥 𝒄𝒐𝒔 𝒙
Solution: LHS = cot −1 [ ] 5) 𝐭𝐚𝐧−𝟏 (𝟏−𝒔𝒊𝒏 𝒙)
√1+sin 𝑥 – √1−sin 𝑥
𝜋
𝑥 𝑥 𝑥
cos + sin + cos – sin
𝑥 cos 𝑥 sin ( −𝑥)
= cot −1
[ 2 2 2 2
] Solution: tan−1 ( ) = tan−1 ( 2
𝜋 )
𝑥 𝑥 𝑥 𝑥 1−sin 𝑥 1−cos( − 𝑥)
cos + sin −( cos − sin ) 2
2 2 2 2
𝑥 𝑥 𝑥 𝜋⁄ −𝑥 𝜋⁄ −𝑥
cos + cos 2 cos 2 sin( 2 ) cos( 2 )
−1 2 2 −1 2 −1 22
= cot [ 𝑥 𝑥 𝑥 𝑥 ] = cot [ 𝑥 ] = tan [ 𝜋⁄ −𝑥 ]
cos + sin − cos + sin 2 sin 2 2
2 2 2 2 2 1−[1−2 𝑠𝑖𝑛 ( )]
2
𝑥 𝑥
= cot −1 cot 2 = 2 = 𝑅𝐻𝑆 𝜋
2 sin( − ) cos( − )
𝑥 𝜋 𝑥 𝜋 𝑥
cos( − )
−1 4 2 4 2 −1 4 2
= tan [ 𝜋 𝑥 ] = tan [ 𝜋 𝑥 ]
2𝑠𝑖𝑛2 ( − ) sin( − )
4 2 4 2
3) Write the following in simplest form 𝜋 𝑥 𝜋 𝜋 𝑥
= tan−1 [cot ( − )] = − cot −1 cot ( − )
𝐜𝐨𝐬 𝐱−𝐬𝐢𝐧 𝐱 4 2 2 4 2
1) 𝐭𝐚𝐧−𝟏 ( 𝐜𝐨𝐬 𝐱+𝐬𝐢𝐧 𝐱 ) , 𝟎 <𝐱<𝛑 𝜋 𝜋 𝑥 𝜋 𝜋 𝑥 2𝜋−𝜋 𝑥 𝜋 𝑥
= −[ − ]= − + = + = +
cos x sin x
− 2 4 2 2 4 2 4 2 4 2
cos x−sin x
Solution: tan−1 ( ) = tan−1 ( cos x cos x
cos x sin x )
cos x+sin x +
cos x cos x
𝟏 𝟐𝒙 𝟏 𝟐
−𝟏 𝟏−𝒚
=
1−tan x
tan−1 (1+tan x) = tan −1 π
(tan ( 4 − x)) 6) 𝐭𝐚𝐧 [ 𝐬𝐢𝐧−𝟏 ( ) + 𝐜𝐨𝐬 ( )]
𝟐 𝟏+𝒙𝟐 𝟐 𝟏+𝒚𝟐
π −1
= −x Solution: Let 𝑥 = tan 𝛼 ⟹ 𝛼 = tan 𝑥
4 −1
𝑦 = tan 𝛽 ⟹ 𝛽 = tan 𝑦
1 2𝑥 1 1−𝑦 2
𝟏−𝐜𝐨𝐬 𝒙 Now, tan [2 sin−1 (1+𝑥2 ) + 2 cos −1 (1+𝑦2 )]
2)𝐭𝐚𝐧−𝟏 (√𝟏+𝐜𝐨𝐬 𝒙) 𝒘𝒉𝒆𝒓𝒆 𝟎 < 𝒙 < 𝝅
1 2 tan 𝛼 1 1−𝑡𝑎𝑛2 𝛽
= tan [2 sin−1 (1+𝑡𝑎𝑛2 𝛼) + 2 cos−1 (1+𝑡𝑎𝑛2 𝛽)]
√1−cos x 2 sin2 x/2
Solution: tan−1 ( ) = tan−1 (√ ) 1 1
√1+cos x 2 cos2 x/2 = tan [2 sin−1 sin 2𝛼 + 2 cos−1 cos 2𝛽]
x 1 1
sin2 x = tan [2 2𝛼 + 2 2𝛽] = tan[𝛼 + 𝛽]
= tan−1 (√ 2
x ) = tan−1 (√tan2 2)
cos2 tan 𝛼+tan 𝛽 𝑥+𝑦
2
= 1−tan 𝛼 tan 𝛽 = 1−𝑥𝑦
x
= tan−1 (tan x/2) = 2
𝟒 𝟏𝟐 𝟑𝟑
4) Prove that 𝐜𝐨𝐬 −𝟏 (𝟓) + 𝒄𝒐𝒔−𝟏 (𝟏𝟑) = 𝒄𝒐𝒔−𝟏 (𝟔𝟓)
𝟏
3) 𝐜𝐨𝐭 −𝟏 ( ) 𝒘𝒉𝒆𝒓𝒆 𝒙 > 𝟏 𝐶
√𝒙𝟐 −𝟏
−1 4
Solution: Let x = secθ ⇒ θ = sec x Solution: Let cos−1 ( ) = 𝐴
1 1
5 5
Now, cot −1 ( ) = cot −1 ( ) ⟹ cos 𝐴 = 5
4 3
√𝑥 2 −1 √sec2 𝜃−1
1 1 3
𝐴
= cot −1 ( )= cot −1 (𝑡𝑎𝑛𝜃) ⟹ sin 𝐴 = 5 𝐴 4 𝐵
√tan2 𝜃
= cot −1(𝑐𝑜𝑡𝜃) = 𝜃 = sec −1
𝑥
𝑍
12
Let cos−1 (13) = 𝐵
√𝟏+𝒙𝟐 −𝟏 13
4) 𝐭𝐚𝐧−𝟏 ( 𝒙
),𝒙 ≠ 𝟎 ⟹ cos 𝐵 = 13
12
5
Solution: Let 𝑥 = tanθ ⇒ θ = tan −1
x ⟹ sin 𝐵 =
5 𝐵
13 𝑋 12 𝑌
−1 √1+x2 −1 √1+tan2 θ−1
Now, tan ( x
)= tan−1 ( x
)

Mr. Sharath Patil G H, Lecturer, Dept of Mathematics, DAVANGERE Page 4


Question Bank with Solutions Inverse Trigonometric Functions

Now, Now,
cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 tan 𝐴+tan 𝐵
tan(𝐴 + 𝐵) = 1−tan 𝐴 tan 𝐵
4 12 3 5
⟹ cos(A + B) = . − . 8 3
+
32+45
5 13 5 13 15 4 60
48 15 ⟹ tan(A + B) = 8 3 = 60−24
⟹ cos(A + B) = 65 − 65 1− .
15 4 60
77
48−15 ⟹ tan(A + B) = 36
⟹ A + B = cos−1 [ 65 ]
77
4 12 33 ⟹ A + B = tan−1 [36]
⟹ cos−1 (5) + cos−1 (13) = cos−1 (65)
8 3 77
⟹ sin−1 ( ) + sin−1 ( ) = tan−1
17 5 36
𝟏𝟐 𝟑 𝟓𝟔
5) Prove that 𝐜𝐨𝐬 −𝟏 + 𝐬𝐢𝐧−𝟏 𝟓 = 𝐬𝐢𝐧−𝟏 𝟔𝟓
𝟏𝟑
7) Find the value of 𝒙 of the following
𝐶
12
Solution: Let cos−1 (13) = 𝐴 𝟏−𝐱 𝟏
13 1) 𝐭𝐚𝐧−𝟏 (𝟏+𝐱) = 𝟐 𝐭𝐚𝐧−𝟏 𝐱 , 𝐱 > 𝟎
12
⟹ cos 𝐴 = 5 1−𝑥 1
13 Solution : Given: tan−1 (1+𝑥) = 2 tan−1 𝑥
5 𝐴
⟹ sin 𝐴 = 13 𝐴 12 𝐵 Let, 𝑥 = tan 𝜃 ⟹ 𝜃 = tan−1 𝑥
1−tan 𝜃 1
𝑍 ⟹ tan−1 ( ) = tan−1 tan 𝜃
3 1+tan 𝜃 2
Let sin−1 ( ) =𝐵 −1 𝜋 1
5
5 ⟹ tan (tan ( 4 − 𝜃)) = 2 𝜃
3
⟹ sin 𝐵 = 3 𝜋 1 𝜋 1
5 ⟹ 4 − 𝜃 = 2 𝜃 ⟹ 4 = 2 𝜃+ 𝜃
4 𝐵
⟹ cos 𝐵 =5 𝜋 𝜃+2𝜃 𝜋 3𝜃
𝑋 4 𝑌 ⟹4= 2 ⟹4 = 2
2𝜋
⟹ 2𝜋 = 12𝜃 ⟹ 𝜃 =
Now, 12
𝜋
sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 ⟹ 2𝜋 = 12𝜃 ⟹ 𝜃 = 6
5 4 12 3 𝜋 1
⟹ sin(A + B) = 13 . 5 + 13
.5 Now, 𝑥 = tan 𝜃 ⟹ 𝑥 = tan 6 ⇒ 𝑥 =
√3
20 36
⟹ sin(A + B) = 65 + 65
𝝅
⟹ A + B = sin−1 [
20+36
] 2) 𝐬𝐢𝐧−𝟏 (𝟏 − 𝒙) − 𝟐 𝐬𝐢𝐧−𝟏 𝒙 = 𝟐
65 π
12 3 56 Solution: sin−1(1 − x) − 2 sin −1
x=
⟹ cos −1 + sin−1 5 = sin−1 65 2
13 π
⟹ sin−1(1 − x) = 2 + 2 sin−1 x
π
𝟖
6) Prove that 𝐬𝐢𝐧−𝟏 (𝟏𝟕) + 𝐬𝐢𝐧−𝟏 (𝟓) = 𝐭𝐚𝐧−𝟏 𝟑𝟔
𝟑 𝟕𝟕 ⟹ 1 − x = sin ( + 2 sin−1 x)
2
⟹ 1 − x = cos(2 sin−1 x)
𝐶
8 ⟹ 1 − x = 1 − 2 sin2(sin−1 x)
Solution: Let sin−1 (17) = 𝐴
17 ⟹ −x = −2[sin(sin−1 x)]2
8
⟹ sin 𝐴 = 17 8 ⟹ x = 2x 2 ⟹ x − 2x 2 = 0
8 𝐴 ⟹ x(1 − 2x) = 0
⟹ tan 𝐴 = 𝐴 15 𝐵
15
⟹ x = 0 or 1 − 2x = 0
𝑍 ⟹ x = 0 or 2x = 1 ⟹ x = 0 or x = 2
1
3
Let sin−1 (5) =𝐵 1
3
5 Since x = 2 is not a solution of the given
⟹ sin 𝐵 = 5 3
𝐵 equation, ⟹ x = 0 is the only solution.
3
⟹ tan 𝐵 = 4 𝑋 4 𝑌

Mr. Sharath Patil G H, Lecturer, Dept of Mathematics, DAVANGERE Page 5

You might also like