0% found this document useful (0 votes)
74 views30 pages

Matrix Notes Btech

The document discusses various types of matrices, their properties, and applications in algebra, particularly in solving linear equations. It covers concepts such as square matrices, diagonal matrices, symmetric matrices, and the rank of a matrix, along with methods for finding the adjoint and determinants. Additionally, it touches on the importance of matrix rank in determining linear independence among vectors.

Uploaded by

shubham prasad
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
74 views30 pages

Matrix Notes Btech

The document discusses various types of matrices, their properties, and applications in algebra, particularly in solving linear equations. It covers concepts such as square matrices, diagonal matrices, symmetric matrices, and the rank of a matrix, along with methods for finding the adjoint and determinants. Additionally, it touches on the importance of matrix rank in determining linear independence among vectors.

Uploaded by

shubham prasad
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 30
we lar cera of a tealacs Lktules oF operation ———— PEt teh as etal APE cnayley Jor Mu aeiea ake 5 to the faren of a rectangular are, A_baving tot nes) Ad A Column vertices} Lines feb then A & cai OF ran! matrce each of the mn! no. # led an = aentot OF tne matnty = Phere ar, aA ferent notation of ¢nctesing the elem - § Me of the motets CTC) I te Bus duare matric «% generally us el — ord meet + mately 25 olay called 0 matetc of orgentonen’ a ea) eh em | 24, ~ 3 4 ° =r a ane eg = 2X8! “mates or pas order of matriy 1g 4x9. = AzA(A set Coy] = fa a, Orn a Sy aa, =. Gn - Ss aan Ss es J men BP the mada oF the order mens 2 ArPlecatiton of Merterees i= In algebra the matrices and then larger et Be tbbira yin tn tne of Simultonwus equation and tynear 4: Cur Sor rvartin, — “US for eg: the $0 ; acne + 4,9 + yz = by = a Gye + G24 14s z= by Wy + Mend 4%? > be Ax e Ty pis of matress Os eg: Wi) Square Matnies— 4 ematme en nikten thy no of tous S Calted Sauare main. Obbrrurse 16 Sard tobe gia Az fy a 4 1 4 fa 4% a | : [a] gy =F tO Rel etete tA opts houhg aniy one sau And tiny noob colemat pHi a mate OF eden “inn! Us catted ous motriy, eq [2 = -2 9] #3 Rts Gasinie, Co luma meteve: = matee hav, boa ae aed eter come ea } s Met matress 5 > coy. a « { hub moter of 4 8 30 3 6 6ub- metry pf A Os) 2S 5 win te {42} stomaton af O2f S22 forth Columns of a és — iy Di'egenal matric Let us suppor thas M2 (Ody S men 8S ¢ matrie 14 fo ee ft Ly tin genat_me ed eee —_— eo Ff em al ~ Wiguan rately in. inich ql) -nen= diag onal élemenis are. are cxited diagonal enaine f ; Thins iit a AS tN nn Ne (nto teint 1S Catted tne transpose ofa — ——Selumns and the Colunan, Alor at or AT atrir and ht o: too 2 = = a clearly the order of AUS myn, ‘ 2a : thn “ene order of +1008 pose fi Motrx Avs mam Prebertiis of transpose matey 3 “ DAF phtah Cyrecnstal Mes Pair ot stracahe 2eere B = — 440 bab, atb-o ; Crectongular hyperbola ) . Propertees of transpose matr's§ . $f Aond @ he the to motnices then the 4ronSpose ef A aod O13 A! god a’ respectively. ues A (Avej7 = a7 97 | &ay7 = atat Ghe +rans pase 04 the braciuet oF the mig trier paimen cFenitien the product of their trenshace later tn the reverse order Symmetric Matriei= A sauare mosrts A = lees ues 4 motery As COyI ay) - tft Als op Cay $s eguat to the matey moctery Seth. This for ne sy Ory tage i stalar Motriy:— A clragona) mete'y en ore equel o Stalar Say Ks called 2 7 : Az (aj ]ain 1's Scalar meters ; — a eee —— ore 2 ——— rey a nqerdeiy or Pelentivey eertrye — A) Scalar metres so bite ech i Ee Dengerod clement de untty (ees) 6 datted cant enmtede on erty. motre A= Gti]nxn (5 unit mate of Oi) = f_ 0 then ej is i ta teen egee fisnugt fe De teed ta ca saomlES di ea Vue quiangutan emery A squcn crotrss ih Lkseh alt the tlecathis. — + bins the prenedpet oliagonal wre ter 5 Calted upper triangeda: Lr) actrees ; = Az [Oj Tnvn 0S Ubper trtngulan mater Hf Gey = 0 for Oj a 2 gt Stes 25 an Upper trtangulan matrie = be catty tower trang eileen ences =o ty the dvagonol oe terg ts Caled Renfinendas a a= (aj, Jano €$ Lower a spi il zona 72 mortrvy om tthich 2! tied tr’ongular peter 1S lor p Or tormtee setung _Equel Hatryi- Dito me Aand B cre said fenenin ogee Ehiy have Some order and thelr cori pending @leménis 7 ne element _1'5 co Single Element Meters 4 motery having nly one tlen tS colt ; gl slement mines 2 Single element matey Shur [97 os @ Single et tes ingulor £ Non— Singular elatn'eesi- A sq. mosey ¢s £ non- Singular vf tal po <2 Ac [eg 4 o=3 4 | FS © Singular mate gince tal ao Es et ‘i Trédtagenal Motedy'- Matry having non- Zeta tndeits only inthe leading cléagonat_ Sub ~ déogonel and clitergonal + —— In other words real maine 2 fan] ets tridiagonal ae Saeed) a egy ale Sy ay 6 6 4 = pea cere $n a2 apg J z —2__ "$a Fae = a Stostes ie ea —~E —=aarcc_aeet ratieny ef att 4 > 2 mae Be 4 Peto tv-9 43 scutg0-92 +4 $-ovev-9g no SiH) Saint mew 46s — 162 tn 0 Bist So 4 6 Ice + 14 Jay oo. = 3 2 a3" ~ 49% 9-0 = as [ae “Lan — 49) = 0 | Adjatot of @ square. Madre poet A= OT bee cour bimatny of order Hn nd bet '6;.' be the as aippctn A then +h Ara S Jawa ta the. mogrtr® the. fost or, the ot Aus caltent tht adoint of A. and es denoted The adjoint of a matey A= | p $4 tathen adpa — — aupspee a fiseat 7, £ [=r Pd a ee eee Ain 2-3 r Aa, (It + factor Petry og Ay = Cr92{Z4+6) = 2 ta = t-199. (6-3) = 23 Aig= C04. (as = © ~UB-2) = = . (980) = 4 Azg = nS. (adn) = -3 adj A = q_-t -4] Ralalttetsl an) = =4 34 | at Fees (ies zd 993 = (lel tay = <1 aé-< Remartes- Let A be the square mein Pordin ty) then A-tachal = Alt, = lade ada At = waa ¥_jald¢o Tay a)" = tat G82) = erta-tq4 Condrtion t= Golf det 4 be the non Singuteen value of adj A Lihen the foctor 2 Cageg t= PEG i = 8 4 Feng, adja £ a+ ‘a Lo -é ic (29430) = 2 Oye Cat Caste Me Hes Sig = 198 (OB) = 0 7 N22 at (me) = 7nd Ge Fig a (-194e (Og) 378 4 Oe CUE Lb)= 6 “ poe oe he ee ee ees a rae) ai ensue) Tan 4 La =9) @ ] | Sojutvon of lénean £quatbnt— : ld Homogeneous equaicont— Att Us Supy ae = fi £99. Ay xtbry $922 GxtbsY tz =o wu tbsy +Qtze ele [Ax=0] uation = insat 69 —Non-homagenenu eger. the system of): G74 4 +42 = 4, atic bY tq2 2h Seong ae me Ry a, L euuraie ae) ia| ale y Siewie oa = - 7 (ax= 87 at = Se -_ AhAx = Ale + Ly = a-'g [*= 478] rf lal +o Luhin the hes trite! Soin. | bigs 7Seire) ol bomatenene of) Ax =0 "Alto zero] steal goin (x22 729) $£[Aleo then the sgn. ha pena tnwat sain (mon -xere Ing Sy siren OF non— hemegentous Linear gn. Sf A¥= 8 susie of non-heme, eMeouA lemear ean ~ Cases. IF lato then eon. tax Krtagtee Sat. ( cows tend) AEC 1 Oe Gose8. SF IBl=0 (asal-e- 5 ean: $n consis tent) fet Corfintte ayn, ( dacontesind Qe eeay 49% -4 — & Bay eee Sut sy +97 Gnd Solving 4Lhi's clelerminant %+ Dd : Beta tsde and ot ete | $ Rank of a murtric (Rank methact) = i 4! be any oxo patie cb bas & Square Sub metrics 1 of ort teria orgins the atte tnants of the Square Sts metriteet a tien coed moirons of 4+ = 4 A_matrivy A) és said to be rank of © or fa ele “hug gtlastene nenstsca miners ef orden te" : : Wi An the movin of order Hts are higher than rte) + | The rant of Aa SA) from the definition of the rank ef +h reeled fat amd =a] j= — Remark d. | i 4 22 le |__every element of the _ °. Sauna | if pines — motn'y 29s minor of the ¢ order 1. or wate ee I | 12] [3« fz [eee [321 | cee miners of a a merle 7 T+ — J fe J aya a a2 Wve order 2. etetand {3 4 o a a oe 4 js 136 +3 6 | 443 e pats OSes ae oaeai lone 406 ¢: are minors af order ] a Baa rite pense ator eatin HL C8 non caro iN A dt. | Shere entsts at leat one mined gn A Of grcler'M tal latch tncto Gi Bier, » A aS sdi= cap be pinvttenasy a =4% ind the tank (f) of the matrix A= d2e2ie aoe 247\ Uf 40-424 -26 o00213 [3 6 40 t Fas ta-tag Z 724240 =0 lalz=o | = L wGela 2] [é to] = -2 40 TAla oD A= |t >» 3 a T au lalrns aT il eo 8 e 36 fe | — — at SG Rata 7 ; a: fi. ee CAN ae 5 mettny = 2 — paticle Echelon's fotm of a matrix? a the non Fett ot Att nny presides the tere ralel§— ~~ jhe Oe ot tera precy, fired = tera elements 24 = (S$ l64S than ihe no of Such rh tere Wn the Suecedeng —— — first Men Zere ¢ bements tt O rani tea tinity, then if oS ia Echelon's find the. rane, maine A= {| 2 3 Bik esas = LA82 e Saas aed otAl = OS 2-8) -35 6424 446 6419% = | = —t =2f $24 = 24-24 = 0 Ais eo-factor = a 4 2el a> B~% el) ze = ee a ae) — fo 2 Py ~14Pa -F 1 t 42f 4 24 LAI: 2 -10 = “ Vectors x, ¥,, ¥) -- ¥n £6 Sold ta be - re exists FF MS ao See an ( Tblen bets Kenko a : Mot all cero Such that beyati + Kata tKa 8 1 f eT Pa gR IPAS Gicinpe: | oh got kee Nir Ceeeeeeee Remark i= Tf a Set of a victors fs lencarty pendent ther 7 lenst ane member of the Sot con be exprened oS a tion of the telaining veeto J frmark 0: the on ond n diinensmocl vectors * Ng a Xe a _| ore tee early dependent if the rank 0-£ the matret = {. pong ]_tebith the gui. vectors oF toluma fs 2 Lege than M- ay + Step st astr +h et hercent toys Ler ees 35, flerminds of am fend he conk ote A = a 4f f_ A= no of Vectors Given the Set ofa Pe ed + of )_ ¥) 4% 4 Xp z $f X= [4,00] x, Co +,0] (i) 2% + Xp =¥a Kittie = Cyopo) + tao] +lees] ut hatte = Cope] +tetrel > + [itere, otra, osost] = tne = Steer aT Show that the vectors = [12,3] *2= - a Ine pemctent drt Seltr= the $l of co- eftretent of matrix se eS A i. fae Jeu — Ry > Ry +R —i7 i 2] — r3f — A= ifatae | eg ee, E esac i= UES a PING rerWvecger « — Hence the geen Sel of yestons U6 tontarly ena, at. @. Prove that the vectors ™ SiMe pepeel ees, a), y= (ea em ——frem—tentarly —dipindint éystim «Mia fay an, samunn tia thorn » 1 ee ea Cur F402 + eo fo Si ° = ooo S o -9 -8 at & aos * OF, Pan? 649/ =/ eS ie 06 oe ee 44,20 007 = Fa, -@4y 0 to 7% apawertas ce a SS Tn me Shag ere) apestacs.. purge G2 o2k Sint =e ie Heme sale bf Hen cry ty +2 pire aie peaer anjote brent OF crctny then ~__dhe —- gutnvetle esi Set he un saity depen hie Bam 6s +444 then $A) < re of vectors oe 3 ——— rn a © ep ai Eee ta lS aap 2 #35. ion thet teeta = wel ee nd ee batt _ ares Fi ee Neel Pe Mie ee - ae =4 lt B. ere rant of A: = 2 froth the Bathe = lence, the qeun Set of the vectors = Mer, find the reletion bly them Ss Ss det 0/23, 43 he the Stalars Sut = [2-2 oJ fa, f —= 63 ¢) le. |= 12 a 200) | ws PS eta eA 84a +84, =o nis —______ freon urbe hee ee tet 492 from ean © % = -K Putting the vole of age and y= -k ah fqn th whe ay a, fe Hence, the relation of eqn. Hie ee ane SEX eee =o Skt Yat Wag eio : x. = Xo tay : Sho that the vectors = [1 paca = pn square martes A praise eee dype of nxt Sue 7] of 6 then Ren= cere matey pip the | | that Ae 240" Ve onsig ecegn veolons ob Go kenanccss seta yalue] Correspondmg to tegen value of d- — She: Chanactecrsires value [ Egen vale CS oleeng crete | pA be 0 are matriy then the proble to be the determine RUNG eieca la ar noe eee ect Inthitch 5 semultanecesly | hasilies the teuaiven: In aie Aas ao i AzaAz mT Axe AXE Axz= Ax — @) This equ aicen ty ¢s Knotin ah Charactentt'es oF pro blew [iar t Gin, +41g%e #2. 4 Oin¥n = 42% Pps ee ieee sag tS eo arx Gm, Hi + Om, Xa. 4 hing Hy +--+ Imn%Xn = ATH . Dhts 10. may be biriten a inadtror form ep stag ere rg geet ee Aro St nt ea CUS ta Gp ged ets aaa cee et ant 50 Gee Onan se mat Gained Moye Yan Hit o 7 oa ‘ T ' Grats 1 Ome * ane == tla -Adxn = @ Dhe Characterts A-4Az Alg. fhe Chareteristecs value of A la-az] =o flutting the vate 4 the Mow “eqn: arth: __matri Now, AA! = Mutiep ung ®: Express the fellas a mated ou PE er erie ee anh ho Sie i ees 50 5 Sint cobybd thie! Let the matrix A mate ce pond tts mate + charectermstics equativa ot 4 4 Ayia don are called phors eS ee Eee . my _choreretert Gt teS—— (A=az)x=0 then for tht wolue of 4 (a-azJxso 8 _gndittdeed ond hente the equalion— treveal fat? ed Charcroter's tec roots Lecgen value) of a 0 fend the etgen velues and corres Veeto Lt afaung marr: 4 liexee yal 1h A <2 2 Wo go71 phe chanacterdstres la-az] zo os: a yeafee[ se ate eaten a Al At6) +1 6dtirae a2 hI (446 HA4+ dz = = gait ap eg 4%, — 2fty = 0 —— Puticn itteng the vatus of His & - Lheoremt- Cay ley = Hamilter Every Square mates Sastsby " 4tts ono characteris tres 297 dey 4 = (ory ],,,,,—be 2 sauane motes a Oy Og == i then Jet Characters hes ArAL = Therefore +4 charcctecistees 9 fa-ar|_ to — palate. ayer shee Sines the ef tea ate ot he Can be LirvtHen a degree (nt) nae Thus, any (A=At) i? tetris palipna mal SNES) 6 ee - GON Oty 2 tej (a-a 2) = ~———Llbsre Be 8, — = Cnt _are square mateices o-f pectin ing There Clements be pel renal word = + — * babe lenois thas (a-az)- adj (a-az) = [A-At) rr” (afaie (Aqtz)- Bode! + 47-3 4 + On = (Poa% +P, art 4 (AgG— Gard + Apo Le) a obits ts on sdentity ty Salar de the Co etterint of (11 oe at = Pn zy . res ioe c el eee n-2 es —— Pre mutung ea Ale at [ man! + bn L Up by An te hove Anse, ean Cate thus the Cayley Hamilton 16 theorem Of this eg i

You might also like