0 ratings 0% found this document useful (0 votes) 74 views 30 pages Matrix Notes Btech
The document discusses various types of matrices, their properties, and applications in algebra, particularly in solving linear equations. It covers concepts such as square matrices, diagonal matrices, symmetric matrices, and the rank of a matrix, along with methods for finding the adjoint and determinants. Additionally, it touches on the importance of matrix rank in determining linear independence among vectors.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save matrix notes btech For Later we lar cera of a tealacs
Lktules oF operation ————
PEt teh as etal APE cnayley Jor Mu aeiea ake 5
to the faren of a rectangular are, A_baving tot
nes) Ad A Column vertices} Lines feb then A &
cai OF ran! matrce each of the mn! no. # led an =
aentot OF tne matnty =
Phere ar, aA ferent notation of ¢nctesing the elem
- § Me
of the motets CTC) I te Bus duare matric «% generally us el —
ord meet + mately 25 olay called 0 matetc of orgentonen’ a
ea) eh em | 24, ~
3 4
° =r a
ane
eg =
2X8! “mates or pas order of matriy 1g 4x9. =
AzA(A set Coy] = fa a,
Orn a
Sy aa, =. Gn -
Ss aan Ss
es J men
BP the mada oF the order mens
2
ArPlecatiton of Merterees i= In algebra the matrices and then larger et
Be tbbira yin tn tne of Simultonwus equation and tynear 4: Cur Sor rvartin, —
“US for eg: the $0 ; acne
+ 4,9 + yz = by =
a Gye + G24 14s z= by
Wy + Mend 4%? > beAx e
Ty pis of matress
Os eg:
Wi) Square Matnies— 4 ematme en nikten thy no of tous
S Calted Sauare main. Obbrrurse
16 Sard tobe
gia Az fy a 4 1 4
fa 4% a |
: [a] gy =F
tO Rel etete tA opts houhg aniy one sau And tiny noob colemat
pHi a mate OF eden “inn! Us catted ous motriy,
eq [2 = -2 9] #3 Rts Gasinie,
Co luma meteve: = matee hav,
boa ae aed
eter
come ea} s Met matress
5
> coy. a « {
hub moter of 4
8 30 3 6 6ub- metry pf A Os) 2S 5
win te {42} stomaton af O2f S22
forth Columns of a és —
iy Di'egenal matric Let us suppor thas M2 (Ody S men 8S ¢
matrie 14 fo ee ft Ly
tin genat_me ed eee
—_— eo Ff
em
al
~
Wiguan rately in. inich ql) -nen= diag onal élemenis are. are cxited
diagonal enaine f ;
Thins iit a AS tN nn Ne
(nto teint 1S Catted tne transpose ofa —
——Selumns and the Colunan,
Alor at or AT
atrir and ht o:
too 2 = =
a clearly the order of AUS myn, ‘
2a : thn “ene order of +1008 pose
fi Motrx Avs mamPrebertiis of transpose matey 3 “
DAF phtah Cyrecnstal
Mes Pair ot stracahe 2eere B = —
440 bab, atb-o ;
Crectongular hyperbola ) .
Propertees of transpose matr's§ .
$f Aond @ he the to motnices then the 4ronSpose ef A aod
O13 A! god a’ respectively.
ues A
(Avej7 = a7 97
| &ay7 = atat
Ghe +rans pase 04 the braciuet oF the mig trier paimen cFenitien
the product of their trenshace later tn the reverse order
Symmetric Matriei= A sauare mosrts A = lees ues
4 motery As COyI ay) -
tft Als op
Cay
$s eguat to the matey
moctery
Seth.
This for ne sy
Ory tagei stalar Motriy:— A clragona) mete'y en
ore equel o Stalar Say Ks called 2
7 : Az (aj ]ain 1's Scalar meters ;
— a eee
—— ore 2
——— rey a
nqerdeiy or Pelentivey eertrye — A) Scalar metres so bite ech
i Ee
Dengerod clement de untty (ees) 6 datted cant enmtede on erty.
motre
A= Gti]nxn (5 unit mate of Oi) = f_ 0 then ej
is i ta teen
egee fisnugt fe De teed
ta ca saomlES
di ea
Vue quiangutan emery A squcn crotrss ih Lkseh alt the tlecathis. —
+
bins the prenedpet oliagonal wre ter 5 Calted upper triangeda:
Lr) actrees ; =
Az [Oj Tnvn 0S Ubper trtngulan mater Hf Gey = 0 for Oj
a 2 gt
Stes 25 an Upper trtangulan matrie =
be catty
tower trang eileen ences
=o ty
the dvagonol oe terg ts Caled
Renfinendas a
a= (aj, Jano €$ Lowera
spi il zona
72 mortrvy om tthich 2!
tied tr’ongular
peter 1S
lor
p Or tormtee setung
_Equel Hatryi- Dito me Aand B cre said
fenenin ogee
Ehiy have Some order and thelr cori pending @leménis
7 ne element _1'5 co
Single Element Meters 4 motery having nly one tlen tS colt
; gl slement mines
2 Single element matey Shur [97 os @ Single et tes
ingulor £ Non— Singular elatn'eesi- A sq. mosey ¢s
£ non- Singular vf tal po
<2 Ac [eg 4
o=3 4 | FS © Singular mate gince tal ao Es
et ‘i
Trédtagenal Motedy'- Matry having non- Zeta tndeits only inthe
leading cléagonat_ Sub ~ déogonel and clitergonal + ——
In other words real maine 2 fan] ets tridiagonal ae
Saeed) a egy ale Sy ay 6 6 4 =
pea cere
$n a2 apg J
z —2__ "$a Fae =
a
Stostes ie ea —~E
—=aarcc_aeet ratieny ef att 4 >
2 maeBe
4
Peto tv-9 43 scutg0-92 +4 $-ovev-9g no
SiH) Saint mew 46s — 162 tn 0
Bist So 4 6 Ice + 14 Jay oo. =
3 2
a3" ~ 49% 9-0
= as [ae
“Lan — 49) = 0 |
Adjatot of @ square. Madre
poet A= OT bee cour
bimatny of order Hn nd bet '6;.' be the as aippctn A
then +h Ara S Jawa ta the. mogrtr® the. fost or, the
ot Aus caltent tht adoint of A. and es denoted
The adjoint of a matey A= | p $4 tathen adpa — —
aupspee a fiseat 7,
£ [=r Pd
a ee eee
Ain 2-3 r
Aa, (It+ factor
Petry og
Ay = Cr92{Z4+6) = 2
ta = t-199. (6-3) = 23
Aig= C04. (as = ©
~UB-2) = =
. (980) = 4
Azg = nS. (adn) = -3 adj A = q_-t -4]
Ralalttetsl an) = =4 34 |
at
Fees (ies zd
993 = (lel tay = <1 aé-<
Remartes- Let A be the square mein Pordin ty) then A-tachal
= Alt, = lade ada
At = waa ¥_jald¢o
Tay
a)" = tat G82) = erta-tq4
Condrtion t= Golf det 4 be the non Singuteenvalue of adj A Lihen the
foctor
2 Cageg t= PEG
i =
8 4 Feng, adja £ a+ ‘a
Lo -é ic
(29430) = 2 Oye Cat Caste Me Hes
Sig = 198 (OB) = 0 7 N22 at (me) = 7nd Ge
Fig a (-194e (Og) 378 4 Oe CUE Lb)= 6 “
poe oe he ee ee ees
a rae) ai ensue)
Tan 4 La =9) @ ]
| Sojutvon of lénean £quatbnt— :
ld Homogeneous equaicont— Att Us Supy ae
=
fi £99. Ay xtbry $922
GxtbsY tz =o
wu tbsy +Qtze
ele[Ax=0]
uation
= insat 69
—Non-homagenenu eger. the system of):
G74 4 +42 = 4, atic
bY tq2 2h
Seong ae
me Ry a, L
euuraie ae) ia| ale y
Siewie oa =
- 7 (ax= 87 at = Se
-_ AhAx = Ale +
Ly = a-'g
[*= 478]
rf lal +o
Luhin the hes trite! Soin. | bigs 7Seire) ol bomatenene of)
Ax =0
"Alto zero] steal goin (x22 729)
$£[Aleo then the sgn. ha pena tnwat sain (mon -xere Ing
Sy siren OF non— hemegentous
Linear gn.
Sf A¥= 8 susie of non-heme, eMeouA lemear ean ~
Cases. IF lato then eon. tax Krtagtee Sat. ( cows tend)
AEC 1 Oe
Gose8. SF IBl=0 (asal-e- 5 ean:
$n consis tent)
fet Corfintte ayn, ( dacontesind
Qe eeay 49% -4 — &
Bay eee
Sut sy +97Gnd Solving 4Lhi's clelerminant
%+ Dd : Beta tsde and ot ete
|
$ Rank of a murtric (Rank methact) =
i 4! be any oxo patie cb bas & Square Sub metrics
1 of ort teria orgins the atte tnants of the Square Sts metriteet a
tien coed moirons of 4+ = 4
A_matrivy A) és said to be rank of © or fa
ele “hug gtlastene nenstsca miners ef orden te" : :
Wi An the movin of order Hts are higher than rte) + |
The rant of Aa SA) from the definition of the rank ef +h
reeled fatamd
=a]
j=
—
Remark d.
| i
4 22 le |__every element of the _
°. Sauna | if pines —
motn'y 29s minor of the ¢ order 1. or wate
ee I
| 12] [3« fz [eee [321 | cee miners of
a a merle
7 T+ —
J fe J aya a a2 Wve
order 2. etetand {3 4 o a a oe 4
js 136 +3 6 | 443 e
pats OSes ae oaeai lone
406 ¢: are minors af order ]
a Baa rite pense ator eatin HL C8 non caro iN A dt. |
Shere entsts at leat one mined gn A Of grcler'M tal latch tncto
Gi Bier, » A aS sdi= cap be pinvttenasy
a=4%
ind the tank (f) of the matrix A= d2e2ie aoe
247\
Uf 40-424 -26 o00213 [3 6 40 t
Fas ta-tag Z
724240 =0 lalz=o |
= L
wGela 2]
[é to] = -2 40 TAla oD
A= |t >» 3 a T
au lalrns
aT il eo 8 e
36 fe | — — at SG
Rata 7 ;
a: fi. ee CAN ae 5
mettny = 2—
paticle Echelon's
fotm of a matrix? a
the non
Fett ot Att nny presides the tere ralel§— ~~
jhe Oe ot tera precy, fired = tera elements 24 =
(S$ l64S than ihe no of Such rh tere Wn the Suecedeng —— —
first Men Zere ¢ bements tt O rani tea tinity, then if oS ia
Echelon's
find the. rane, maine A= {| 2 3
Bik esas
= LA82 e Saas
aed otAl = OS 2-8) -35 6424 446 6419%
= | = —t =2f $24 = 24-24 = 0 Ais
eo-factor = a 4 2el a> B~%
el) ze
= ee a ae)
— fo 2
Py ~14Pa -F 1 t
42f 4 24 LAI: 2
-10=
“
Vectors x, ¥,, ¥) -- ¥n £6 Sold ta be -
re exists FF MS ao See an ( Tblen bets Kenko a
: Mot all cero Such that beyati + Kata tKa 8 1 f
eT Pa gR IPAS Gicinpe: | oh got kee Nir Ceeeeeeee
Remark i= Tf a Set of a victors fs lencarty pendent ther 7
lenst ane member of the Sot con be exprened oS a
tion of the telaining veeto J
frmark 0: the on ond n diinensmocl vectors * Ng a Xe a
_| ore tee early dependent if the rank 0-£ the matret =
{. pong ]_tebith the gui. vectors oF toluma fs 2
Lege than M- ay
+ Step st astr +h et hercent toys Ler ees 35,
flerminds of am
fend he conk ote A = a
4f f_ A=
no of Vectors Given the Set ofa
Pe ed
+ of)_ ¥) 4% 4 Xp
z $f X= [4,00] x,
Co +,0]
(i) 2% + Xp =¥a
Kittie = Cyopo) + tao] +lees]
ut hatte = Cope] +tetrel >
+ [itere, otra, osost]
= tne =
Steer aT
Show that the vectors = [12,3] *2= - a
Ine pemctent drt
Seltr= the $l of co- eftretent of matrix se
eS A i.
fae Jeu —
Ry > Ry +R —i7
i 2] —
r3f —
A= ifatae | eg ee, E
esac i=
UES a PING rerWvecger « —
Hence the geen Sel of yestons U6 tontarly ena, at.
@. Prove that the vectors ™
SiMe pepeel ees, a), y= (ea em
——frem—tentarly —dipindint éystim «Mia fay an, samunn tia
thorn » 1
ee
eaCur F402 + eo fo
Si ° =
ooo S
o -9 -8 at &
aos *
OF, Pan? 649/ =/
eS ie 06 oe ee
44,20 007 =
Fa, -@4y 0 to 7%
apawertas ce a
SS Tn
me Shag ere)
apestacs..
purge
G2 o2k
Sint =e
ie
Heme sale bf Hen cry ty +2 pire aie
peaer
anjotebrent OF crctny then
~__dhe —-
gutnvetle esi
Set he un saity depen hie
Bam 6s +444
then $A) < re of vectors oe 3
——— rn
a
©ep ai Eee ta lS aap 2 #35.
ion thet teeta = wel
ee nd ee batt
_ ares Fi ee Neel
Pe Mie ee - ae
=4 lt B.
ere
rant of A: = 2
froth the
Bathe
=lence, the qeun Set of the vectors =
Mer, find the reletion bly them Ss Ss
det 0/23, 43 he the Stalars Sut
= [2-2 oJ fa, f —=
63 ¢) le. |= 12 a
200) | ws PS
eta eA
84a +84, =o nis
—______ freon urbe hee ee
tet 492 from ean © % = -K
Putting the vole of age and y= -k ah fqn th
whe ay
a,
fe
Hence, the relation of eqn.
Hie ee ane
SEX eee =o
Skt Yat Wag eio :
x.
= Xo tay :
Sho that the vectors = [1
paca=
pn square martes
A
praise eee
dype of nxt Sue
7] of 6 then Ren= cere matey pip the |
| that Ae 240" Ve onsig ecegn veolons ob Go kenanccss seta
yalue] Correspondmg to tegen value of d- —
She: Chanactecrsires value [ Egen vale CS oleeng crete
| pA be 0 are matriy then the proble
to be the determine
RUNG eieca la ar noe eee ect Inthitch 5 semultanecesly
| hasilies the teuaiven: In
aie Aas ao
i AzaAz
mT Axe AXE
Axz= Ax — @)
This equ aicen ty ¢s Knotin ah Charactentt'es oF pro blew
[iar t Gin, +41g%e #2. 4 Oin¥n = 42%
Pps ee ieee sag tS eo arx
Gm, Hi + Om, Xa. 4 hing Hy +--+ Imn%Xn = ATH .
Dhts 10. may be biriten a inadtror form
ep stag ere rg geet ee Aro St nt ea
CUS ta Gp ged ets aaa cee et ant 50
Gee Onan se mat Gained Moye Yan Hit o
7 oa
‘
T
'
Grats 1 Ome * ane == tla -Adxn = @Dhe Characterts
A-4Az
Alg. fhe Chareteristecs value of A
la-az] =o
flutting the vate 4 the
Mow
“eqn:arth:
__matri
Now, AA! =
Mutiep ung
®: Express the fellas
a mated ou
PE er erie ee anh ho
Sie i
ees
50 5
Sint cobybd thie! Let the matrix A
mate cepond tts mate
+ charectermstics equativa ot 4
4 Ayia don are called phors
eS ee Eee
. my _choreretert Gt teS——
(A=az)x=0
then for tht wolue of 4
(a-azJxso 8
_gndittdeed ond hente the equalion—
treveal fat?
ed Charcroter's tec
roots Lecgen value) of a
0 fend the etgen velues and corres
Veeto Lt afaung marr:
4 liexee yal 1h A <2 2
Wo go71 phe chanacterdstres
la-az] zo
os:
a yeafee[ se ate eaten
a
Al At6) +1 6dtirae
a2 hI (446 HA4+ dz= = gait ap
eg 4%, — 2fty = 0 ——
Puticn
itteng the vatus of His &- Lheoremt-
Cay ley = Hamilter
Every Square mates Sastsby " 4tts ono characteris tres 297
dey 4 = (ory ],,,,,—be 2 sauane motes
a
Oy Og == i
then
Jet Characters hes
ArAL =Therefore +4 charcctecistees 9
fa-ar|_ to —
palate. ayer shee
Sines the ef
tea ate ot he
Can be LirvtHen a
degree (nt) nae Thus, any (A=At) i?
tetris palipna mal SNES) 6 ee -
GON Oty
2 tej (a-a 2) =
~———Llbsre Be 8, — = Cnt _are square mateices o-f pectin ing
There Clements be pel renal word = + —
* babe lenois thas (a-az)- adj (a-az) = [A-At) rr” (afaie
(Aqtz)- Bode! + 47-3 4 + On = (Poa% +P, art 4 (AgG—
Gard + Apo Le) a
obits ts on sdentity ty Salar de
the Co etterint of (11 oe
at = Pn zy .
res ioe c el eee n-2 es ——Pre mutung ea
Ale at [ man! +
bn L
Up by An te hove
Anse, ean Cate
thus the Cayley Hamilton 16 theorem Of this eg
i