0% found this document useful (0 votes)
27 views68 pages

Distilation

The document details a distillation process involving a feed mixture of ortho, meta, and para components, with specific mole percentages and operating conditions. It includes mass balance calculations, operating line equations, and plate compositions for both the top and bottom sections of the distillation column. Additionally, it discusses various methods for analyzing the separation efficiency and compositions of the distillate and bottoms.

Uploaded by

mahirmchauhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
27 views68 pages

Distilation

The document details a distillation process involving a feed mixture of ortho, meta, and para components, with specific mole percentages and operating conditions. It includes mass balance calculations, operating line equations, and plate compositions for both the top and bottom sections of the distillation column. Additionally, it discusses various methods for analyzing the separation efficiency and compositions of the distillate and bottoms.

Uploaded by

mahirmchauhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 68

Lewis Mateson

DaTa

Feed Top
Ortho 70 mole % Ortho
Meta 5 mole %
para-mononitro toluene 25 mole % Bottom
Ortho
Distillation
Temperature 410 K relarive volatility temperature range 380-415
Pressure in the boiler 6 kn/m2 para/ortho
Reflux ratio 5 meta/para
para/para

Estimate
At the top
Meta 0.9 mole %
D and W kmol of product and bottoms, and Xdo
Para 2.1 mole % Xwo the mole fraction of ortho in the distillate
Feed 100 kmol bottoms
Mass balance

100 = D + W
70 = Dxdo + WXwo
70 = 100 - W 0.97 + 0.15 W
70 = 97 - 0.97 W + 0.15 W
70 = 97 + -0.82 w
0.82 w = 27

W = 32.92683
D = 67.07317

Feed Distillate Bottoms


Componemt Kmol mole% Kmol mole% Kmol mole%
O 70 0.7 65.06098 0.97 4.939024 0.15
M 5 0.05 0.603659 0.009 4.396341 0.133519
P 25 0.25 1.408537 0.021 23.59146 0.716481
100 1 67.07317 1 32.92683 1

Equations of operating line

Above the feed-point:

Liquid down flow


Ln=Reflux*D
Ln 335.3659

Vapour up,
Vn=Ln+D
Vn 402.439

Below the feed-point, assumiongthe feed is liquid at its boiling then:


Liquid down flow,
Lm=Ln+F
Lm 435.3659

Vapour up,
Vm=Lm-W
Vm 402.439
Ymo = 1.081818 X(m-1) - 0.012273

Ymm = 1.081818 X(m-1) - 0.010924

Ymp = 1.081818 X(m-1) - 0.058621

Yno = 0.833333 X(n+1) + 0.161667

Ynm = 0.833333 X(n+1) + 0.0015

Ynp = 0.833333 X(n+1) + 0.0035

Composition of liquid from the bottom first plate:

The composition of the vapour

Plate compositions below the feed plate


Componet Xs αXs Ys X1 αX1 Y1 X2 αX2
O 0.15 0.26 0.23 0.22 0.38 0.32 0.31 0.52
M 0.13 0.15 0.14 0.14 0.16 0.14 0.14 0.16
P 0.72 0.72 0.64 0.64 0.64 0.55 0.56 0.56
1.13 1.00 1.00 1.18 1.00 1.00 1.24

As we can see from the table the plate "7" have almost same as the feed so from the bottom to feed we need 7 p
Plate composition above the feed plate
Componet X7 αX7 Y7 X8 αX8 Y8 X9 αX9
O 0.71 1.21 0.80 0.77 1.30 0.84 0.82 1.39
M 0.07 0.08 0.06 0.07 0.08 0.05 0.06 0.07
P 0.22 0.22 0.14 0.17 0.17 0.11 0.13 0.13
1.00 1.51 1.00 1.00 1.55 1.00 1.00 1.58

At the "14" the composition is match with the top product so from feed to the top of the distillate we need 7 produ
Top
97 mole %

Bottom
15 mole %

temperature range 380-415 k


1.7
1.16
1

oduct and bottoms, and Xdo and


tion of ortho in the distillate and
bottoms
Y2 X3 αX3 Y3 X4 αX4 Y4 X5 αX5 Y5
0.42 0.40 0.68 0.52 0.50 0.84 0.62 0.58 0.99 0.69
0.13 0.13 0.15 0.11 0.12 0.13 0.10 0.10 0.12 0.08
0.45 0.47 0.47 0.36 0.39 0.39 0.29 0.32 0.32 0.22
1.00 1.00 1.30 1.00 1.00 1.37 1.00 1.00 1.42 1.00

bottom to feed we need 7 plate


Y9 X10 αX10 Y10 X11 αX11 Y11 X12 αX12 Y12
0.88 0.86 1.46 0.91 0.90 1.52 0.93 0.92 1.57 0.95
0.04 0.05 0.06 0.03 0.04 0.05 0.03 0.03 0.04 0.02
0.08 0.09 0.09 0.06 0.06 0.06 0.04 0.04 0.04 0.03
1.00 1.00 1.61 1.00 1.00 1.63 1.00 1.00 1.65 1.00

e distillate we need 7 product


X6 αX6 Y6 X7
0.65 1.11 0.76 0.709
0.09 0.10 0.07 0.073
0.26 0.26 0.18 0.218
1.00 1.47 1.00 1.00
X13 αX13 Y13 X14 αX14 Y14
0.95 1.61 0.97 0.97 1.64 0.977
0.03 0.03 0.02 0.02 0.02 0.013
0.03 0.03 0.02 0.02 0.02 0.009
1.00 1.67 1.00 1.00 1.68 1.00
in this method the multicomponet feed is seperated in two flow(to
Hengstebeck's method in this we assum that the other component then LK and HK are rem

DaTa

Compositions Volatilities
component
Feed Top Bottom Top(˚C) Bottom(˚C)
C1 5 4 1 5 4.5
C2 15 13 2 3 2.8
C3(LK) 30 28 2 2 1.8
C4(HK) 20 1 19 1 1
C5 30 0 30 0.8 0.82
100 46 54
Reflux ratio 3

Volatilities
componentTop(˚C) Bottom(˚C) AverageV
olatilities
C1 5 4.5 4.75
C2 3 2.8 2.9
C3(LK) 2 1.8 1.9
C4(HK) 1 1 1
C5 0.8 0.82 0.81

Limiting flow rate of non key component

αi di li=di/(αi-1) vi=li+di
C1 4.75 4 1.06666667 5.066667
C2 2.9 13 6.84210526 19.84211
7.90877193 24.90877
Σli Σvi

αi di vi' li'=vi'+bi'
C5 0.81 30 22.293578 52.29358
22.293578 52.29358
Σvi' Σli'

Flows of combined keys:

Ln=Reflux*D L 138
V=L+D V 184
L'=V'+B L' 238
Le 130.0912
Ve 159.0912
Le' 185.7064
Ve' 161.7064

Slope

Slope of the top operating line


0.817715

Slope of the bottom operating line

1.148417

Xb

0.0952381

Xd 0.965517

Xf 0.6
eperated in two flow(top and bottom) in which the light key and heavy key are seprated so it will become the binary system
then LK and HK are remaing same

LK=Light key component


HK=heavy key component
the binary system

LK=Light key component


HK=heavy key component
Erbar-Maddox method

DaTa

Compositions Volatilities
component
Feed Top Bottom Top(˚C) Bottom(˚C)
C1 5 4 1 5 4.5
C2 15 13 2 3 2.8
C3(LK) 30 28 2 2 1.8
C4(HK) 20 1 19 1 1
C5 30 0 30 0.8 0.82
100 46 54
Reflux ratio 3
q 1

Volatilities
componentTop(˚C) Bottom(˚C)AverageV
olatilities
C1 5 4.5 4.75
C2 3 2.8 2.9
C3(LK) 2 1.8 1.9
C4(HK) 1 1 1
C5 0.8 0.82 0.81

Nm 8.699015

1
100 [ 4.75 -
23.75
ø
+
2.9 -
43.5
ø

ø 1.274

0.11882724 + 0.504038 + 1.847479 + -0.07934 = Rm+1

2.391004 = Rm+1
Rm 1.391004

0.581766
0.75

0.74 from graph

N 11.75543
12 Stages
57 20
+ + +
1.9 - ø 1- ø 0.81
-
24.3
ø ] = 1-q 0
O'Connell's correlation

DaTa

Component Feed(f) Tops(d) Bottoms(b) top


Peopane,C3 5 5 0 Temp.(˚C) 65
i-butane,iC4 15 15 0 Peopane,C3 5.5
n-butane,nC4(LK) 25 24 1 i-butane,iC4 2.7
i-Pentane,iC5(HK) 20 1 19 n-butane,nC4 2.1
n-pentane,nC5 35 0 35 i-Pentane,iC5 1
100 45 55 n-pentane,nC5 0.84

For feed composition


Molar average viscosity 0.1265

αaUa 0.259325
bottom Average viscosities
120 Propane 0.03 mNs/m2
4.5 5 butane 0.12 mNs/m2
2.5 2.6 pentane 0.14 mNs/m2
2 2.05
1 1
0.85 0.845
Oveall efficiency
Eo 67%
AIChE method

DaTa

Vaopr flow rate 300 kmol/h Liquid properties


Liquid flow rate 900 kmol/h mol.wt 21
Column diameter 0.8 m ρL 920 kg/m3
Downcomer area 12 %of column area µL 0.0093 Ns/m2
liquid composition 10 mol% σL 0.06 N/m
Slope equilibrium line 3 DL 4.6E-09 m2/s
weir hight 50 mm
lh 0.144 m

Active area=Ac-2Ad

Ac=(π*d^2)/4
Ac= 0.5026548 m2

Ad 0.0603186 m2

Active area 0.3820177 m2


Lngth between down comers

ZL=column dia-2lh
lnght og liquid parth
ZL 0.512 m

Average width over act surface=(act area)/ZL

Average width over act surface 0.746128 m

Liquid volumetric flowrate=(L*Mw)/ρl

Liquid volumetric flowrate 0.005707 m3/sec

Lp=(liquid volume flow rate)/(areage width)

Lp 0.0076482 m2/sec

Vap. volumetric flowrate=(V*Mw)/ρv

Vap. volumetric flowrate 2.128954 m3/sec

ua=(vapour volumetric flow rate)/(active are)

Ua 5.5729197 m/sec

Fv 6.5229352 m/sec

NG 0.3853531

For sieve plates


liquid hold up
Zc 0.8973025

liquid contect time

tL 60.069062 sec

NL 77.227342

eddy diffusivity

De 0.0187859

peclet number

Pc 0.2323044

-2.607972

0.3184869 this is point efficiency


0.318487

1.15

EmV 0.3662599

Plate efficiency 36.62599


Vapor properties
mol.wt 35
ρV 1.37 kg/m3
µV 0.00001 Ns/m2
σV 0.02 N/m
DV 0.0000185 m2/s
Plate Hydraulic

Data

Feed inlet 4 %by W acetone Botto


Top 95%by w acetone purity Density of vapour
Bottom 100 % water Density of liquid
feed rate 15000 kg/h surface tension
Turn down 75 %
No.of real trays 18 Column S
Bottom slope operating line 4.5 Tray Spacing
Top slope operating line 0.6 Hole/active area

Base temperature 100 ˚C


Top plate temperature 59 ˚C

Top product(D)*0.95=0.04*15000
Top product(D) 631.57894737 kg/h

Top slope
(L/V)= 0.6
(L)/(L+D)
(L/D)/((L/D)+(D/D))
R/(R+1)= 0.6
R= (0.6*R)+0.6
Reflux R 1.5

Vapour flow rate in top


V=(R+1)D
V 1578.947 kg/h

Bottom product 14368.421053 kg/h

Bottom slope
Lm'/Vm' 4.5

Lm'=B+Vm'
Lm'= 14368.42 + Vm'

Vm' 4105.263 kg/h


Lm' 18473.68 kg/h

FLV 0.121514

FLV 0.031913

K1 value at Top 0.12

K1 value at base 0.095


Correction factor for surface tension

Base K1 0.10651

Top K1 0.112929

Flooding velocity

Base 3.942925 m3/s

Top 2.120206 m3/s

Design for 85 % Flooding at mass flow rate

Base Ûv 3.351487

Top Ûv 1.802176

Max volumetric flow rate

Base 1.629073

Top 0.203998

Net area required

Bottom 0.486075

Top 0.113196
As first take down comes area as 12 % of total

Base 0.552358

Base 0.128631

Column diameter

Base 0.83862 m

Top 0.404696 m

In this the larger diameter take for the calculatioin

Max vol of liq Rate 0.0053453947

Cross flow Single pass

3
Provisional plate design

Column diameter Dc 0.83862 m

Column area Ac 0.552358 m2

Down comes area Ad 0.066283 m2

Net area Am=Ac-Ad 0.486075 m2

Active area Aa=Ac-2*Ad 0.419792 m2

(Ad/Ac)*100 12

lw/Dc 0.77

Weir length lw 0.645737 m

The most recommended value


Take weir hight 50 mm
Hole diameter 5 mm 0.005 m
plate thickness 5 mm

Area of the hole 1.963495E-05 m2

number of hole 1710.3854147


1710

FLV bottom 0.1215138881

Take 85 % flooding

Fractional entrainmnet Ψ 0.027

This value should be below 0.1


if the value is not below 0.1 then we need to change the column
diameter and for that need to change the down comer section and
you can also change the flooding percentage

Check the weeping

Maximum liquid rate 5.1315789474 kg/s

minimum liquid rate 3.8486842105 kg/s

Maximum how 30.690961645 mm

minimum how 25.334830638 mm

At, minimum rate = hw + how 75.33483 mm

K2 30.7
ǔh 14.74912 m/s

Actual minimum velocity= minimumvolumetric flow rate/hole area


36.389469467 m/s

If actual minimum velocity <ǔh then we need to change the hole


diameter to change ǔh value

lw/Dc 0.77

Φ˚c 102 ˚

Angle subtended at plate edge by unperforated strip


78 ˚

Mean length,unperforated edge strip pi()*(Dc-50mm)*(Φ/180)


1.073593 m

Area of unperforated edge strip 0.05368 m2

Mean length of calming zone 0.528556 m

Area of claming zone 0.052856 m2

Total area of perforation Ap


Ap = Aa-area of claming zone-Area of unperforated edge strip
Ap 0.313256
Ah/Ap 0.107183

Ip/dh 2.8

Maximum vapour velocity through holes


Ûh 48.51929 m/s

Ah/Ap 0.107183

(Plate thickness)/(Hole diameter) 1

Orifice coefficient Co 0.85

hd 121.168 mm

Residual head hr= 13.020833333 mm liquid

Total plate pressure drop, ht

ht=hd+hw+how+hr
ht 214.8798 mm liquid
7

Downcomer pressure loss


hap=hw-(value between 5 to 10)
hap= 40 mm

Area under apron,


Aap=Lw*hap
Aap= 0.025829 m2 Ad 0.066283 m2

Aap<Ad so the Am=Aap otherwise Am=Ad

hdc= 7.109447 mm

Back up in downcomer
hb 302.6802 mm
0.30268 m

hb

0.30268 < 0.325

Tray spacing is acceptable if not then we need to chang the tray spacing and calculate all thing

residence tiem in down downcomer

tr= 3.753236 s > 3s satisfactory


Bottom plate Top plate
Density of vapour ρv 0.7 Kg/m3 Density of vapour ρv 2.15 Kg/m3
Density of liquid ρl 960 Kg/m3 Density of liquid ρl 760 Kg/m3
surface tension σL 0.06 N/m surface tension σL 0.025 N/m

Column Speacification Viscosity of liquid µL 0.00035 Ns/m2


Tray Spacing 600 mm Viscosity of vapour µv 0.00001 Ns/m2
Hole/active area 0.08 DL 4.8E-09 m2/s
alculate all thing
Mechanical

Data

Shell outside diameter 2.5 m weldjoint efficiency factor


Shell length tangent to tangent 40 m Corrosion allowance
Skirt height 5m Tray spacing
operating temperature 300 ˚c Top disengaging space
Design temperature 320 ˚c Bottom sparator space
Desingn pressure 1.2 MN/m2 weir height
Allowable stress 100 MN/m2 tray loading excluding liquid
Density of shell material 9000 kg/m3 tray support ring
Weight of single head 12 kN

A
Minimum shell thickness

tmin=(P*Do)/(2fj+P)
tmin= 0.014911 m

t standerd 0.016 m

Wshell 440504.2 N 440.5042 kN

Dins,o 2.7 m

Wi 208124.2 N 208.1242 kN

Operation

no.of tray 50.33333


50

Wl 175807.6 N 175.8076 kN

Test

Wl=

Wl 1875281 N 1875.281 kN

Whead 24 kN
Wladder 45 kN

Wtray 239.194 kN

Wattachments 308.194 kN

Deat weight

W= 1132.63 kN

Period of vibration

T= 1.27794
1.3 s

wind blow at bottom

K2 2 since T>5
K1 0.7 because of cylindrical shell
Height 20
Height 2 25
total height 45
H 100 m give P 2 kN/m2
Wind pressure P 1 kN/m2
Pbw 75.6 kN

To find the wind pressure at upper we use interpoliation

height pressure
20 1
32.5 ?

P2 1.15625 kN/m2

pressure of top wind Puw= 109.2656 kN

bending due to wind direction

Mw 4307.133 kN/m

σz,w,m 58151.38 mN/m2


58.15138 MN/m2

Bending moment due to seismic condition

Ms 2718.312 kN*m

σz,s,m 36700.42 N/m2


36.70042 MN/m2

D
stress due to pressure

σzp=(DP*(Di-2t)^2))/(4*t*(Di-t))

σzp= 49.4018 MN/m2

stress due to deat weight

σzw=DW/(π*t*(Di-t))

σzw= 9729.776 mN/m2


9.729776 MN/m2

Tensile

σz= 97.8234 MN/m2

Compression

σz= 18.47936 MN/m2

Equivalent stress

Hook stress

σø= 101.2 MN/m2

Equalent stress

σe= 99.55466 MN/m2


σe= 99.55466 < fj 101.2

σz= 97.8234 < fj

σz= 18.47936 < 149.1054

Design is valied
1 Insulation 100 mm Bearing plate (I)
NILL density of insulating material 650 kg/m3 I/b
0.75 m g
1m Accessories water density
2m one caged ladder loading 1 kn/m
75 mm all tray
1 kn/m2 skirt
60*60*10 mm*mm*mm desing stress 100 Mn/m2
E 200000 Mn/m2
Bearing plate (I) 100 mm
I/b 1
g 9.8 m2/s
water density 1000 kg/m3

You might also like