Lewis Mateson
DaTa
Feed Top
Ortho 70 mole % Ortho
Meta 5 mole %
para-mononitro toluene 25 mole % Bottom
Ortho
Distillation
Temperature 410 K relarive volatility temperature range 380-415
Pressure in the boiler 6 kn/m2 para/ortho
Reflux ratio 5 meta/para
para/para
Estimate
At the top
Meta 0.9 mole %
D and W kmol of product and bottoms, and Xdo
Para 2.1 mole % Xwo the mole fraction of ortho in the distillate
Feed 100 kmol bottoms
Mass balance
100 = D + W
70 = Dxdo + WXwo
70 = 100 - W 0.97 + 0.15 W
70 = 97 - 0.97 W + 0.15 W
70 = 97 + -0.82 w
0.82 w = 27
W = 32.92683
D = 67.07317
Feed Distillate Bottoms
Componemt Kmol mole% Kmol mole% Kmol mole%
O 70 0.7 65.06098 0.97 4.939024 0.15
M 5 0.05 0.603659 0.009 4.396341 0.133519
P 25 0.25 1.408537 0.021 23.59146 0.716481
100 1 67.07317 1 32.92683 1
Equations of operating line
Above the feed-point:
Liquid down flow
Ln=Reflux*D
Ln 335.3659
Vapour up,
Vn=Ln+D
Vn 402.439
Below the feed-point, assumiongthe feed is liquid at its boiling then:
Liquid down flow,
Lm=Ln+F
Lm 435.3659
Vapour up,
Vm=Lm-W
Vm 402.439
Ymo = 1.081818 X(m-1) - 0.012273
Ymm = 1.081818 X(m-1) - 0.010924
Ymp = 1.081818 X(m-1) - 0.058621
Yno = 0.833333 X(n+1) + 0.161667
Ynm = 0.833333 X(n+1) + 0.0015
Ynp = 0.833333 X(n+1) + 0.0035
Composition of liquid from the bottom first plate:
The composition of the vapour
Plate compositions below the feed plate
Componet Xs αXs Ys X1 αX1 Y1 X2 αX2
O 0.15 0.26 0.23 0.22 0.38 0.32 0.31 0.52
M 0.13 0.15 0.14 0.14 0.16 0.14 0.14 0.16
P 0.72 0.72 0.64 0.64 0.64 0.55 0.56 0.56
1.13 1.00 1.00 1.18 1.00 1.00 1.24
As we can see from the table the plate "7" have almost same as the feed so from the bottom to feed we need 7 p
Plate composition above the feed plate
Componet X7 αX7 Y7 X8 αX8 Y8 X9 αX9
O 0.71 1.21 0.80 0.77 1.30 0.84 0.82 1.39
M 0.07 0.08 0.06 0.07 0.08 0.05 0.06 0.07
P 0.22 0.22 0.14 0.17 0.17 0.11 0.13 0.13
1.00 1.51 1.00 1.00 1.55 1.00 1.00 1.58
At the "14" the composition is match with the top product so from feed to the top of the distillate we need 7 produ
Top
97 mole %
Bottom
15 mole %
temperature range 380-415 k
1.7
1.16
1
oduct and bottoms, and Xdo and
tion of ortho in the distillate and
bottoms
Y2 X3 αX3 Y3 X4 αX4 Y4 X5 αX5 Y5
0.42 0.40 0.68 0.52 0.50 0.84 0.62 0.58 0.99 0.69
0.13 0.13 0.15 0.11 0.12 0.13 0.10 0.10 0.12 0.08
0.45 0.47 0.47 0.36 0.39 0.39 0.29 0.32 0.32 0.22
1.00 1.00 1.30 1.00 1.00 1.37 1.00 1.00 1.42 1.00
bottom to feed we need 7 plate
Y9 X10 αX10 Y10 X11 αX11 Y11 X12 αX12 Y12
0.88 0.86 1.46 0.91 0.90 1.52 0.93 0.92 1.57 0.95
0.04 0.05 0.06 0.03 0.04 0.05 0.03 0.03 0.04 0.02
0.08 0.09 0.09 0.06 0.06 0.06 0.04 0.04 0.04 0.03
1.00 1.00 1.61 1.00 1.00 1.63 1.00 1.00 1.65 1.00
e distillate we need 7 product
X6 αX6 Y6 X7
0.65 1.11 0.76 0.709
0.09 0.10 0.07 0.073
0.26 0.26 0.18 0.218
1.00 1.47 1.00 1.00
X13 αX13 Y13 X14 αX14 Y14
0.95 1.61 0.97 0.97 1.64 0.977
0.03 0.03 0.02 0.02 0.02 0.013
0.03 0.03 0.02 0.02 0.02 0.009
1.00 1.67 1.00 1.00 1.68 1.00
in this method the multicomponet feed is seperated in two flow(to
Hengstebeck's method in this we assum that the other component then LK and HK are rem
DaTa
Compositions Volatilities
component
Feed Top Bottom Top(˚C) Bottom(˚C)
C1 5 4 1 5 4.5
C2 15 13 2 3 2.8
C3(LK) 30 28 2 2 1.8
C4(HK) 20 1 19 1 1
C5 30 0 30 0.8 0.82
100 46 54
Reflux ratio 3
Volatilities
componentTop(˚C) Bottom(˚C) AverageV
olatilities
C1 5 4.5 4.75
C2 3 2.8 2.9
C3(LK) 2 1.8 1.9
C4(HK) 1 1 1
C5 0.8 0.82 0.81
Limiting flow rate of non key component
αi di li=di/(αi-1) vi=li+di
C1 4.75 4 1.06666667 5.066667
C2 2.9 13 6.84210526 19.84211
7.90877193 24.90877
Σli Σvi
αi di vi' li'=vi'+bi'
C5 0.81 30 22.293578 52.29358
22.293578 52.29358
Σvi' Σli'
Flows of combined keys:
Ln=Reflux*D L 138
V=L+D V 184
L'=V'+B L' 238
Le 130.0912
Ve 159.0912
Le' 185.7064
Ve' 161.7064
Slope
Slope of the top operating line
0.817715
Slope of the bottom operating line
1.148417
Xb
0.0952381
Xd 0.965517
Xf 0.6
eperated in two flow(top and bottom) in which the light key and heavy key are seprated so it will become the binary system
then LK and HK are remaing same
LK=Light key component
HK=heavy key component
the binary system
LK=Light key component
HK=heavy key component
Erbar-Maddox method
DaTa
Compositions Volatilities
component
Feed Top Bottom Top(˚C) Bottom(˚C)
C1 5 4 1 5 4.5
C2 15 13 2 3 2.8
C3(LK) 30 28 2 2 1.8
C4(HK) 20 1 19 1 1
C5 30 0 30 0.8 0.82
100 46 54
Reflux ratio 3
q 1
Volatilities
componentTop(˚C) Bottom(˚C)AverageV
olatilities
C1 5 4.5 4.75
C2 3 2.8 2.9
C3(LK) 2 1.8 1.9
C4(HK) 1 1 1
C5 0.8 0.82 0.81
Nm 8.699015
1
100 [ 4.75 -
23.75
ø
+
2.9 -
43.5
ø
ø 1.274
0.11882724 + 0.504038 + 1.847479 + -0.07934 = Rm+1
2.391004 = Rm+1
Rm 1.391004
0.581766
0.75
0.74 from graph
N 11.75543
12 Stages
57 20
+ + +
1.9 - ø 1- ø 0.81
-
24.3
ø ] = 1-q 0
O'Connell's correlation
DaTa
Component Feed(f) Tops(d) Bottoms(b) top
Peopane,C3 5 5 0 Temp.(˚C) 65
i-butane,iC4 15 15 0 Peopane,C3 5.5
n-butane,nC4(LK) 25 24 1 i-butane,iC4 2.7
i-Pentane,iC5(HK) 20 1 19 n-butane,nC4 2.1
n-pentane,nC5 35 0 35 i-Pentane,iC5 1
100 45 55 n-pentane,nC5 0.84
For feed composition
Molar average viscosity 0.1265
αaUa 0.259325
bottom Average viscosities
120 Propane 0.03 mNs/m2
4.5 5 butane 0.12 mNs/m2
2.5 2.6 pentane 0.14 mNs/m2
2 2.05
1 1
0.85 0.845
Oveall efficiency
Eo 67%
AIChE method
DaTa
Vaopr flow rate 300 kmol/h Liquid properties
Liquid flow rate 900 kmol/h mol.wt 21
Column diameter 0.8 m ρL 920 kg/m3
Downcomer area 12 %of column area µL 0.0093 Ns/m2
liquid composition 10 mol% σL 0.06 N/m
Slope equilibrium line 3 DL 4.6E-09 m2/s
weir hight 50 mm
lh 0.144 m
Active area=Ac-2Ad
Ac=(π*d^2)/4
Ac= 0.5026548 m2
Ad 0.0603186 m2
Active area 0.3820177 m2
Lngth between down comers
ZL=column dia-2lh
lnght og liquid parth
ZL 0.512 m
Average width over act surface=(act area)/ZL
Average width over act surface 0.746128 m
Liquid volumetric flowrate=(L*Mw)/ρl
Liquid volumetric flowrate 0.005707 m3/sec
Lp=(liquid volume flow rate)/(areage width)
Lp 0.0076482 m2/sec
Vap. volumetric flowrate=(V*Mw)/ρv
Vap. volumetric flowrate 2.128954 m3/sec
ua=(vapour volumetric flow rate)/(active are)
Ua 5.5729197 m/sec
Fv 6.5229352 m/sec
NG 0.3853531
For sieve plates
liquid hold up
Zc 0.8973025
liquid contect time
tL 60.069062 sec
NL 77.227342
eddy diffusivity
De 0.0187859
peclet number
Pc 0.2323044
-2.607972
0.3184869 this is point efficiency
0.318487
1.15
EmV 0.3662599
Plate efficiency 36.62599
Vapor properties
mol.wt 35
ρV 1.37 kg/m3
µV 0.00001 Ns/m2
σV 0.02 N/m
DV 0.0000185 m2/s
Plate Hydraulic
Data
Feed inlet 4 %by W acetone Botto
Top 95%by w acetone purity Density of vapour
Bottom 100 % water Density of liquid
feed rate 15000 kg/h surface tension
Turn down 75 %
No.of real trays 18 Column S
Bottom slope operating line 4.5 Tray Spacing
Top slope operating line 0.6 Hole/active area
Base temperature 100 ˚C
Top plate temperature 59 ˚C
Top product(D)*0.95=0.04*15000
Top product(D) 631.57894737 kg/h
Top slope
(L/V)= 0.6
(L)/(L+D)
(L/D)/((L/D)+(D/D))
R/(R+1)= 0.6
R= (0.6*R)+0.6
Reflux R 1.5
Vapour flow rate in top
V=(R+1)D
V 1578.947 kg/h
Bottom product 14368.421053 kg/h
Bottom slope
Lm'/Vm' 4.5
Lm'=B+Vm'
Lm'= 14368.42 + Vm'
Vm' 4105.263 kg/h
Lm' 18473.68 kg/h
FLV 0.121514
FLV 0.031913
K1 value at Top 0.12
K1 value at base 0.095
Correction factor for surface tension
Base K1 0.10651
Top K1 0.112929
Flooding velocity
Base 3.942925 m3/s
Top 2.120206 m3/s
Design for 85 % Flooding at mass flow rate
Base Ûv 3.351487
Top Ûv 1.802176
Max volumetric flow rate
Base 1.629073
Top 0.203998
Net area required
Bottom 0.486075
Top 0.113196
As first take down comes area as 12 % of total
Base 0.552358
Base 0.128631
Column diameter
Base 0.83862 m
Top 0.404696 m
In this the larger diameter take for the calculatioin
Max vol of liq Rate 0.0053453947
Cross flow Single pass
3
Provisional plate design
Column diameter Dc 0.83862 m
Column area Ac 0.552358 m2
Down comes area Ad 0.066283 m2
Net area Am=Ac-Ad 0.486075 m2
Active area Aa=Ac-2*Ad 0.419792 m2
(Ad/Ac)*100 12
lw/Dc 0.77
Weir length lw 0.645737 m
The most recommended value
Take weir hight 50 mm
Hole diameter 5 mm 0.005 m
plate thickness 5 mm
Area of the hole 1.963495E-05 m2
number of hole 1710.3854147
1710
FLV bottom 0.1215138881
Take 85 % flooding
Fractional entrainmnet Ψ 0.027
This value should be below 0.1
if the value is not below 0.1 then we need to change the column
diameter and for that need to change the down comer section and
you can also change the flooding percentage
Check the weeping
Maximum liquid rate 5.1315789474 kg/s
minimum liquid rate 3.8486842105 kg/s
Maximum how 30.690961645 mm
minimum how 25.334830638 mm
At, minimum rate = hw + how 75.33483 mm
K2 30.7
ǔh 14.74912 m/s
Actual minimum velocity= minimumvolumetric flow rate/hole area
36.389469467 m/s
If actual minimum velocity <ǔh then we need to change the hole
diameter to change ǔh value
lw/Dc 0.77
Φ˚c 102 ˚
Angle subtended at plate edge by unperforated strip
78 ˚
Mean length,unperforated edge strip pi()*(Dc-50mm)*(Φ/180)
1.073593 m
Area of unperforated edge strip 0.05368 m2
Mean length of calming zone 0.528556 m
Area of claming zone 0.052856 m2
Total area of perforation Ap
Ap = Aa-area of claming zone-Area of unperforated edge strip
Ap 0.313256
Ah/Ap 0.107183
Ip/dh 2.8
Maximum vapour velocity through holes
Ûh 48.51929 m/s
Ah/Ap 0.107183
(Plate thickness)/(Hole diameter) 1
Orifice coefficient Co 0.85
hd 121.168 mm
Residual head hr= 13.020833333 mm liquid
Total plate pressure drop, ht
ht=hd+hw+how+hr
ht 214.8798 mm liquid
7
Downcomer pressure loss
hap=hw-(value between 5 to 10)
hap= 40 mm
Area under apron,
Aap=Lw*hap
Aap= 0.025829 m2 Ad 0.066283 m2
Aap<Ad so the Am=Aap otherwise Am=Ad
hdc= 7.109447 mm
Back up in downcomer
hb 302.6802 mm
0.30268 m
hb
0.30268 < 0.325
Tray spacing is acceptable if not then we need to chang the tray spacing and calculate all thing
residence tiem in down downcomer
tr= 3.753236 s > 3s satisfactory
Bottom plate Top plate
Density of vapour ρv 0.7 Kg/m3 Density of vapour ρv 2.15 Kg/m3
Density of liquid ρl 960 Kg/m3 Density of liquid ρl 760 Kg/m3
surface tension σL 0.06 N/m surface tension σL 0.025 N/m
Column Speacification Viscosity of liquid µL 0.00035 Ns/m2
Tray Spacing 600 mm Viscosity of vapour µv 0.00001 Ns/m2
Hole/active area 0.08 DL 4.8E-09 m2/s
alculate all thing
Mechanical
Data
Shell outside diameter 2.5 m weldjoint efficiency factor
Shell length tangent to tangent 40 m Corrosion allowance
Skirt height 5m Tray spacing
operating temperature 300 ˚c Top disengaging space
Design temperature 320 ˚c Bottom sparator space
Desingn pressure 1.2 MN/m2 weir height
Allowable stress 100 MN/m2 tray loading excluding liquid
Density of shell material 9000 kg/m3 tray support ring
Weight of single head 12 kN
A
Minimum shell thickness
tmin=(P*Do)/(2fj+P)
tmin= 0.014911 m
t standerd 0.016 m
Wshell 440504.2 N 440.5042 kN
Dins,o 2.7 m
Wi 208124.2 N 208.1242 kN
Operation
no.of tray 50.33333
50
Wl 175807.6 N 175.8076 kN
Test
Wl=
Wl 1875281 N 1875.281 kN
Whead 24 kN
Wladder 45 kN
Wtray 239.194 kN
Wattachments 308.194 kN
Deat weight
W= 1132.63 kN
Period of vibration
T= 1.27794
1.3 s
wind blow at bottom
K2 2 since T>5
K1 0.7 because of cylindrical shell
Height 20
Height 2 25
total height 45
H 100 m give P 2 kN/m2
Wind pressure P 1 kN/m2
Pbw 75.6 kN
To find the wind pressure at upper we use interpoliation
height pressure
20 1
32.5 ?
P2 1.15625 kN/m2
pressure of top wind Puw= 109.2656 kN
bending due to wind direction
Mw 4307.133 kN/m
σz,w,m 58151.38 mN/m2
58.15138 MN/m2
Bending moment due to seismic condition
Ms 2718.312 kN*m
σz,s,m 36700.42 N/m2
36.70042 MN/m2
D
stress due to pressure
σzp=(DP*(Di-2t)^2))/(4*t*(Di-t))
σzp= 49.4018 MN/m2
stress due to deat weight
σzw=DW/(π*t*(Di-t))
σzw= 9729.776 mN/m2
9.729776 MN/m2
Tensile
σz= 97.8234 MN/m2
Compression
σz= 18.47936 MN/m2
Equivalent stress
Hook stress
σø= 101.2 MN/m2
Equalent stress
σe= 99.55466 MN/m2
σe= 99.55466 < fj 101.2
σz= 97.8234 < fj
σz= 18.47936 < 149.1054
Design is valied
1 Insulation 100 mm Bearing plate (I)
NILL density of insulating material 650 kg/m3 I/b
0.75 m g
1m Accessories water density
2m one caged ladder loading 1 kn/m
75 mm all tray
1 kn/m2 skirt
60*60*10 mm*mm*mm desing stress 100 Mn/m2
E 200000 Mn/m2
Bearing plate (I) 100 mm
I/b 1
g 9.8 m2/s
water density 1000 kg/m3