26.
F = av2 = 103 × 10 × 10–4 × 20 × 20 75 105 N 1
2
2
729 4 10
F = 400 10
2
m 9
27. Apply Bernoulli’s theorem between Piston
4 10 4
1 2 729 75 10 3
and hole PA gh P0 v e 81
2
= 9 [942 × 10–7 J]
Assuming there is no atmospheric pressure
Gain in surface energy
on piston
U = 9 × 942 × 10–7 – 942 × 10–7
5 105 1
103 10 10 1.01 105 103 v e2 = 8 × 942 × 10–7 = 7536 × 10–7 J
2
ve = 17.8 m/s = 7.5 × 10–4 J
28. P2A – P1A = 5.4 × 105 × g 30. Surface area of soap bubble = 2 × 4R2
5.4 106 Work done = change in surface energy × Ts
P2 – P1 = = 5.4 × 2 × 102 × 10 =
500 = Ts × 8 × R22 R12
10.8 × 103
22 3
1 1 = 2 × 10–2 × 8 × × 49 × × 10–4
P2 + 0 + V22 = P1 + 0 + V12 7 4
2 2
= 18.48 × 10–4 J
1 1
P2 – P1 = (V12 – V22) = = (V1 –
2 2 31. E/ A
Y
V2)(V1 + V2)
1
10.8 × 103 = × 1.2(V1 – V2) × 2 × 3 × 102
2 YA
F
10.8 × 10 = 3.6(V1 – V2)
V1 – V2 = 30 A A
V1 V2 30 1 2
V 100 300 100 10%
2 A1 2
29. Initial surface energy = TA 1 A 2 1
Where T is surface tension and A is 2 1 2
surface area 0.2 2.4 2.4 1
75 10 5 N 2 6.9 10 2 mm
Ui 4(1 10 2 )2
10 2 m 32. Heat given by block to get 0ºC temperature
= 75 × 10–3 × 4 × 10–4 = 942 × 10–7 J Q1 = 5 × (0.39 × 103) × (500 – 0)
To get final radius of drops by volume = 975 × 103 J
conservation Heat absorbed by ice to melt m mass
4 3 4 Q2 = m × (335 × 103)J
R 729 r 3
3 3 Q1 = Q2
R = Initial radius m × (335 × 103) = 975 × 103
r = final radius 975
m 2.910kg
R R 1 335
r cm
(729)1/3 9 9
Final surface energy
Uf = 729 (TA)
33. R = R0 (1 + T) for (i) and (ii)
3 = R0 (1 + (30 – 0)) 800
K
2 = R0 (1 + (10 – 0)) 3
3 1 30 TH = 266.7 K
2 1 10 38. 1
WDE (600 300)3 J
1 2
0.033
30 = 1350 J
34. = 6.241 – 6.230 = 0.011 cm WEF = – 300 × 3 = – 900 J
WDEF = 450 J
=
39. y = 2 sin (t – kx)
0.011 = 6.230 × 1.4 × 10–5 ( – 27)
Maximum particle velocity = A
0.011 105
27
6.230 1.4 Wave velocity
k
= 153.11 nearest is 152.7°C. 1 2
A k
35. No of moles of H2 = 8 moles k A
= 2A
No of moles of O2 = 4 moles
= 4 cm
Total moles = 12 moles
40. 2 2
y 0.5 sin 400t x
At STP 1 mole occupy = 22.4 = 22.4 × 103 cm3
12 moles will occupy = 12 × 22.4 × 103 cm3
2
26.8 × 104 cm3 400
36. Constant entropy means process is 2
K
adiabatic
PV = constant
v [v 400m / s]
k
V1
V2 VP max = 4Vwave
8
4
P1V1 = P2 V2 A 4 A
k 2
5/3
V 2A 20
P1V1 P2 1 5
8 4 4
P V 5/3 41. From the given equation k = 8 m–1 and =
PV
1 1
5/3
2 1 4 rad/s
32
P2 = 32P1
Velocity of wave =
k
37. TL
1 4
TH v= = 0.5m/s
8
1 T 1 k
1 L ...(i) 42. f
2 TH 2 m
T 40 YA
1 L 0.65 ...(ii) k
TH L
1 YA
f
2 mL
43. 48. 41 5 C 0
95 5 100 0
36
C 100 40C 313K
90
49. m m
While approaching PV = const d p const
v d
c
0
c v cos p d2
const 32
While receding d d1
c p1 d1 1
7/5
1
0
c v cos p2 d2 32 128
44. Initially beat frequency = 5 Hz
T1 P1V1 1 1
so, A 340 5 345Hz, or 335 Hz 32
T2 P2 V2 128 4
after filing frequency increases slightly n1Cv1 n2 Cv 2
50. Cv / mix
so, new value of frequency of A > A n1 n2
Now, beat frequency = 2Hz 3R 5R
1. 3.
2 9R R
2
A 340 2 342Hz, or 338 Hz 2
1 3 4 4
hence, original frequency of A is A = 335
=3
Hz
45. fb = f1 – f2
v v 40
4.08 4.16 12
v = 707.2
46. A1V1 = A2V2
750 × 10–4V1 = 500 × 10–6 × 0.3
500 3 10 3
V1 m / s = 2 × 10–3 m/s
750
dh
–2 10 3 m / s
dt
47.
4T 4T
P2 P0 & P1 P2
6 3
4T
P1 P0 2
2