0 ratings 0% found this document useful (0 votes) 50 views 15 pages Electromagnetic Field and Wave
The document appears to be a fragmented and disorganized collection of notes related to electrical engineering concepts, including charge distribution, divergence theorem, and Maxwell's equations. It discusses various mathematical principles and theorems relevant to electromagnetic theory but lacks coherence and clarity. Overall, it serves as a rough compilation of ideas rather than a structured document.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save 1. Electromagnetic Field and Wave For Later Be ep
Khan ot
rein. thiginuer (AGEN
Hleefromagrehc
Conrom i '¢ Cow:
Gum, ree benveen
S Pom + Changes Si ny
=e
eh
rede aa & Corlain Aigdonce ts olivecsl brobertinat
ats weekice chores and (huersel, prebetheny
he ie Samore fol tcdance benoren them, | te.
Res = @
Foe TEE — ke ray
neve Pfs Ln k Vecter
eee 3 a
by a unk hocihive
echne Vert le Cates!@
ot Talonsily dive
1 bine home.
best p oddete Furgep es
Ban af
e
Bleriypibeere }
peseaie aise: Tntentily goa +o Rie Siettere thane
BLE 7
#6 OW
¥ E due +o Surbee
one
"Cams tank
Query Where.
tes ton
Shoes
Boo
tron but th ts——— CCU
Ereshie Ft oa
leshrie Frux
a The ne Cteckc Gner cf Greed (tury Crossin
O unt drea of a vface normal -te -the Lnot &&
Cauesw Cleckic Aue tel) aenden a] >.
St eS mace i) toe
es <2) Surface areg
We ps = pres
4 ane Re ee | &
Qrauec’ fow:. ‘
> Cs The toteat no. f Cteclr'e La bose, Ahrough
Q@ Cloke surface i's Cquar +e HEC
Chovge OnctoAcey by that surface tie.
due -to Unorm Lana chare
© wr ie
@ Tr eae E due +o unform Sheet surkace)
@ TE clue te tanec Cae
Spherical Charye.Maud at @ hom. ®
SE Ae
eS
fq: eve chil "
fig. + Pa se Rig: “Ve diaorqen ce
(sinus
@ \\\l
\\\N
Rig. zee divergence
(Cnetihen Sees nar sink)
Maxw
Bmwe'sS Tat Cquahienn-
ly Oy Ss L
a i ea vera ence f Ploe te 1
dl mathy cee ste the Volume Che rqe ou
VP: &y
Preef! From fhe lef” et dive rence, We have
= lin, $F ae (7)©
Maxweets tay equ 's athe
late! ai folat fiom of
Braucs tau.
Se Mee aris TERE GUN 1S Tike all opait ala eee Chareye
alates i ag O fotieutar bot a vegien -
Awwo Uden 4. Aelormine tos pes cubfies -
Ceclic flue Ok a boing ae ane Chasge clint
bubew is Kneon
Bivergence Theorem:
Rice mein Pane aiae tue surly
Wecte,
ts ot
ho Ane Wetume tnbegrear of diversence thot
Weeter Fre vet Ahreuugh act he Wotume Rn CloAeet
ty that cloreat turfaca Ce
j pides (v® ay 4
I =
Proof. : fis
= Fan Deuces ta,
Raa
= { hyde
Maxwen’s Ts
5 { janie es or: fy Fam vl
Iv
pve
ee
0 Coordinate Hsien:B
es $s
a ea
Gy tha Polen tras \}—+,——_
auflereses bencesa ho \ _—————
Pots (my A ond BS) 4
Qeekis Bet 's defnes! ab dee wwer, dene required
a ee : - twiy boewhue hens Chorge fam B te A
- Yr TH
Nag > wai -| ear Saree d- dray
ure?
©
va ™
vi aee xe]
F % ®@
une Lae
44 QR vero, ther bolas at owt A ts
a fei
Va = UNE Th be oo. °|
'
w Tm Aererat Vv UnBee
true le es ax hotentiar aria \
Hert ts ef,
Dink iy an Creche: g
eo ah tne Amon, Wor~e olena
ae to omwme ao unit bositue shear Charge peck
iy aah SORE ok: Pow.
ty ke state Glechic Pa 4Pd=o be.
No won ts tc Coarcowe) Gdvve
Meng @ Charge wa Clome nt bate.
@ Roraron benoeen E andl i
clone fa Onome @®
Polentins @ Brecln's Pace Tn benily due +o ctechre chibere:
PAK Syn ef tu thay g = -—— =a
Awa quad magni histad fae
And “obborte polanbed Cefarates by a Collar Wk
clictence (ss cater Cteclic atte
u Pe ad 5 eatie! oliple memmnk- measures! is
Cotlomb— Melber
Ly tet a obibele System Vs
OL Sham in A nel
Pos due olariveact point |
ab Whieh we have +o fel
O@ vod FP ole +
difile- 7
Nao, fl
VL olut te — AG | 3
Nea wera
un ee Re feo
Mi clue-te +a W's wv
ete x
" “UrT Ge Ry
ON glue 4o ielibde wis 15 = NE era
a uy * untey” “uneee
= ee 8 ‘
Zz oe ls ~—heee
WT) Cole Tees anes (Re-R)
Rey
Le bey Poids Sox O WDa. Cae
Ghue Aguve heme “d ay Mon, he
Lene,
RoR = oltesa
Rx arrG Ne, erechte Bese fn dennly E ts oe
ia
ene Seley,
axate + D¥m, 1 AV a
v 9e a ag
Vesey 1 a Pen Ve
= a a sal Ot re* re so
seep ie a OP oo ae ns
Poa
2eesO d+ Sino a ee
un or | ee
= Py dow wig os lends am e
el i, tee
tam Joutte/imn3
Leissegs 4 lattece equakions:
Fem Maxwer’s Tap Couakcow, we Love
VPS &y
& 7. CE te
“ wz (-wv) 2 Se
‘weve: Bile @
af fro@
Pasay slow:
Be lel ed das
au ete Benet Caen, dif)e
a a
muh glue te 6 nat ae eg
Ques ral ora ic
“Se _ ah
x di—~w r
“« Sno -&@)
i
~ =z —O
Gem) as eure. use ger:
Avi ng Tdi cue
eon = Regn > Ll tdisme
rT Z
tole Teismo T lattoet :
Sng hs ee
UUtT
a
To oS ret clue be Oniiwe Omcluc hr,
—_ 4 SA
Ht = | du - | Idtxae
unet
a Be vel Ji
4G
at dur
ivi bnile CurreyQS
Ti dut te finsle cuter Coy concactor
as . ine apes smo) ays
4 ep ave if
Zi Anol Zq ( botn Chelf)
Ove Gheve the plates!
fom'k-p -
K =
Xi e¢g — > — Ve if bo tty
CndA 2, And Zs Ow helad Pp.
Rembere- Qureuitent eg e
net ee
Ly Ok cheten Ahot te Lint whegreat of Magner <
few 28 Cage Lhyougha
wk a Clohed bar. : “a
CQWot to ole
Current enclosed A ay
Closet hake ‘
we,
& snd +e Ss
Creu Cod,@
Gans
& he do nd \ber hy Pes a's doh naa ah dhe
Orutahin Uber unit aren ay Orda Lonel bs gow
ve A oe
» . i AL
Gena wars lm OF
ii00 ag
u Smee {® are T, wie F Ccowes re
Store's Theorem
Me ks ‘ttekacl uni inlesral ef magne he Prasat tom
tS @qual +o dna Surface inlegral of tase
dnot Prot, unove he Surface [s Oncfedes! t
not bare Ve a
beats hos. ae &
per
Bev Fam dels -f curt.
xR shea Gi Na eee eee
ASS055Ww
Monout's Fur equm 1h
Ov. 2
@v.Pre ‘
uve: -28
Ow Fk: Pa
3
WS Few ete 6 entegrat Bow
© $y ars a
@ Patz o here ae
@ 4egz: - (sa
® pRoe= x. \ Be
Max.
RES Fur equ i phater forme:
fog
whew Eis phone de
Ov.
iso
GD) vat: -36%: sue
© wit: Bison. s+ wee
blest equaked in Pra mectisale -
Rt tke dlivechin ef.
Coop = the lone Oot Pree "'s atte bert.
= ond be
, tei oe dlivechow and 4
A. Hive 14 cbvech ad 4
ny ne divechen of * oe,
——.
Ribsachin) (eles Jripagakiens
Ie ch on. [re Z
P Sdluhen of Mar wer’
=
Buty wy ters coke Wl be
E.= Sed“ teos(ut-pt) fer aye 2 oliveches
My= Hye © Ten (wr- Rt) By tye = obivecho
Phe he oreop
Ene sed 5" enue iden oe epee
ra ni (neber fn J
[estes Be] BO Yast Grateny ae
Gro
ts he ff
€= & og
be Jo Tine — fo)
4 Yo w+ TB wik Ogun 0),
x= oO, Re to [aoe
Ex: Ey, Ges(we- pr)
Hy 5 Hye cos (WE-BE) |, where p= WO JobeAWave cquahin 4 onbece Get iicher! :
Re Beceg Conduct Cn os oy Basi
as er
= i Wrens $ pen
Of mba se B- Infea
c, E.= Fee eee (wt- px)
Nye Ho oes (wt-RE)
Sts ole Qnel sk effecs,.
ee befre actu e
Sa: Bee Seg [wok B2)
tate \rfet and pz Pee
Ly WWhon 2 = fo dkon
AmbLitrete of technic boner a ey
ty Umer 2 srr Ompliucla = 6-36 E,, icra
tye Om bLbvate ef Em udave Pain +o 36 fo of a
Oxegen Mnilval Wale
: di tt F
at he a = feu (S$ Cones Skin clahy
Cy heater ae they the EM ave
decays Tabicly Umwe trovetlina, through dhe
Cor chiccter fs “ ¢attest Skin effect.
Less Tangent: ;
ty we ka
Hove -
{maywenS AM Gaur
in Phober |
, — , ae Gsoad ©
eet,
ua Hay vi Ond borfner obieteeln'c.
3 he “@So0 :
het Sen Phukier ener sane >74]
we
Beyer Veeter;
Gof Pp.
-W> ya dew
PS Beare
te = & by oe Wattfn 2,
gtr twa lathe cone
a reyen cae paser Lewd) clowaly se
Re tech
Reflec phen iF trandin exon, Coephc ian la wee Voy:
Gey T(veflecten Coefetent ) ~
= aan,
(ia
ee eet Cool? ‘ a jg
eloaty = i og 7
ee Cg = CAP) os _
(ais
beclium(d )
I Meclum (ay
4.