0% found this document useful (0 votes)
26 views6 pages

Solution p65

This document contains the answers to an online test series for Class XII NEET 2020, covering subjects Biology, Physics, and Chemistry. Each subject is listed with corresponding question numbers and their correct answers. The document is structured in a clear format, making it easy to reference specific answers.

Uploaded by

RakeshKumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views6 pages

Solution p65

This document contains the answers to an online test series for Class XII NEET 2020, covering subjects Biology, Physics, and Chemistry. Each subject is listed with corresponding question numbers and their correct answers. The document is structured in a clear format, making it easy to reference specific answers.

Uploaded by

RakeshKumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

TM

HINT & SOLUTIONS


CLASS-XII _ NEET - 2020
ONLINE TEST SERIES _ UNIT TEST - 02
[ DATE : 04-08-2019 ]
BIOLOGY
1. C 2. A 3. C 4. C 5. C 6. C 7. B
8. B 9. A 10. B 11. D 12. C 13. B 14. D
15. C 16. D 17. A 18. B 19. B 20. B 21. B
22. B 23. C 24. C 25. B 26. B 27. A 28. D
29. C 30. A 31. B 32. D 33. C 34. A 35. B
36. C 37. B 38. D 39. A 40. C 41. C 42. C
43. D 44. D 45. D 46. D 47. A 48. A 49. C
50. C 51. D 52. C 53. C 54. A 55. B 56. C
57. D 58. A 59. C 60. C 61. D 62. C 63. B
64. A 65. C 66. B 67. B 68. D 69. A 70. A
71. D 72. B 73. A 74. C 75. C 76. C 77. C
78. D 79. A 80. C 81. C 82. B 83. B 84. C
85. B 86. C 87. C 88. D 89. D 90. C
PHYSICS
91. A 92. D 93. B 94. C 95. A 96. C 97. B
98. C 99. A 100. D 101. A 102. C 103. A 104. C
105. A 106. B 107. B 108. B 109. B 110. A 111. B
112. C 113. B 114. A 115. A 116. A 117. B 118. A
119. A 120. C 121. B 122. A 123. D 124. C 125. A
126. B 127. A 128. B 129. A 130. A 131. C 132. B
133. D 134. B 135. D

CHEMISTRY
136. D 137. D 138. B 139. D 140. A 141. B 142. C
143. A 144. A 145. B 146. D 147. C 148. B 149. D
150. A 151. C 152. D 153. B 154. A 155. D 156. D
157. A 158. C 159. D 160. A 161. A 162. D 163. C
164. B 165. A 166. D 167. C 168. C 169. A 170. C
171. D 172. D 173. B 174. D 175. D 176. A 177. C
178. C 179. A 180. C

Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.)
: 1800-212-1799, 8003899588 | url : www.motion.ac.in | : info@motion.ac.in
PHYSICS
91. A 99. A
Diffraction of sound is more evident in daily
2
 = x life than diffraction of light. Because the wave

length of sound waves is greater than that
f = 7.69 2
of light

92. D
Both produce interference 100. D
For easy occurrence of Fresnel's diffraction
93. B obstacle should be of the order of wave
y1 = A1 sin t length, narrow opening should be of the order
y2 = A2 cos (t + ) of wave length, source and screen should be
at finite distance from the obstacle

y2 = A2 sin (t + + )
2
101. A
2 Diffraction of sound is more evident in daily
 = x
 life than light waves, because wavelength
( s) of sound waves >> wavelength (1) of
 
    = 2 x light waves
 2  

102. C
     
x = Distance from central ring to first maxima
2  2
3 D D D
x= – =
2 a a 2a
94. C
I  KA2 l = 6000 Å, D = 1m, a = 10–4 m

A= A12  A 22  2A1A 2 cos  6  10 7  1


x= = 3 × 10–3 = 3 mm
2  10 4
A= I1  I2  2 I1 I2 cos 

103. A
95. A
conditions of interference 10 
= (2 × 6 – 1)
µ 2
96. C
the phenomenon of di ffracti on can be 10 11 20
= µ = = 1.8
observed, when the obstacle is of the same µ 2 11
order as the wavelength of light used
104. C
Fringe width . Therefore,  and hence 
97. B decreases 1.5 times when immersed in liquid.
Phenomenon of diffraction occurs for all kinds The distance between central maxima and
of waves 10th maxima is 3 cm in vacuum. When immersed
98. C in liquid it will reduce to 2 cm. Position of
central maxima will not change while 10th
Diffraction of light is observed only, when
maxima will be obtained at y = 4cm.
the obstacle size is of the same order that
of wavelength of light
Motion Education Pvt. Ltd. | 394 - Rajeev Gandhi Nagar | : 1800-212-1799, 8003899588 | url : www.motion.ac.in | Page : 2
105. A 112. C
Statement-I is true, Statement-II is true and 113. 8
Statement-II is correct expl anation of
Statement-I. t 1.7  1 D t 1.4  1 D D
Shift S    5 
d d d
106. B
By theory  t  8  103 mm  8  m
n11 = (2n2 – 1) 2/2
31 = (2 × 5 – 1) 2/2 114. A
9 2
31 = 115. A
2
21 = 32 116. A
10liquidD 11 airD 1
107. B = 
d 2d 
 I
IR = 4I0 cos2  (4I 0 ) 20  air 20 liquid
2 2 =   =
11 liquid 11  air
 1  1.8 = liquid
cos2   =
2 2 2
117. B
dx
 = d sin =
b 
=
D
 d.x
 
2 D  
0.1 × =
180 f
/2 d.x
 
2 D 600  10 9  180
d=
  0. 1
D
x= = 1.25 × 10–4 m = 0.125 mm
4d 6  18  10 6
d=
108. B 
12.27 D d = 34.39 × 10–5
  Y
V d d = 3.44 × 10–4
V
118. A
109. B
119. A
12.27 D
 Y
V d Imax  Imin
f= I
V   max  Imin

110. A
D 2
=  I1 
d   1
 I2 
  1
111. B
When light travels through a medium of Imax

I1  I2 2

 I1
1


2

1
refractive index n, the wavelength changes f=
Imin
=

I1  I2
2
 
 I2 

Imax  I1  I2 
2
 
2
1  I1
o Imin   1  1
to . Therefore the path difference  I  I   I2 
 1 2    1
n 2
 I1 
 1 
 2   2   I2 
    x  n  x  
    o 
Motion Education Pvt. Ltd. | 394 - Rajeev Gandhi Nagar | : 1800-212-1799, 8003899588 | url : www.motion.ac.in | Page : 3
2
  1
130. A
  1
   1  (   1)2  (   1)2 
 I1 = 4I0 cos2
f= = 2
  1
2
(   1)2  (   1)2
  1 x=0 I1 = 4I0
   1 
  2x  x
Dx=  = × =
y  y 2
4  2 
= = x I1 2
2  2  1 I2 = 4I0 cos2 = 2I0 Þ =
4 I2 1
120. C
131. C
A1 = 2A2 Þ I1 = 4I2 = 4I0
121. B
2 2
d
no. of maxima = 2    + 1
Imax =  I1  I2  =  I1  4I2  = 9I2
  = 9I0
 2  I = I1 + I2 I1  I2 cos
no. of maxima = 2    + 1 = 5
 
= I2 + 4I2 + 2 I2  4I2 cosf
122. A Im
Hyperbolic = 5I2 + 4I2 cos = (5 + 4 cos)
9
123. D Im Im  2  
= [1 + 4 (cos)] = 1  8 cos 
2 6  9 9  2  
 = × =
  3
  132. B
I = I0 cos2 = I0 cos2
2 6
B
I 3
= R
I0 4
124. C S1 d S2 O

31D 42D
=  31 = 41 Path differnce on the circle of radius R around
d d
O on the wall will be same hence concentric
3 3 circle.
2 = 1 = × 590 = 442.5 nm
4 4
133. D
125. A
134. B
Initiancity of parallel beam is cylindrical
therefore the wave front will be planar.
135. D
126. B 
 = (2n - 1)
2
127. A
D
128. B x5 =
d
Both statements I and II are correct but
statement II does not explain statement I. 9
129. A D=
2
Constant + source

I1 = 4I0 cos2 = 4I0
2
For incomepent source
I2 = I0 + I0 = 2I0
I1
I2
= 2.

Motion Education Pvt. Ltd. | 394 - Rajeev Gandhi Nagar | : 1800-212-1799, 8003899588 | url : www.motion.ac.in | Page : 4
CHEMISTRY
136. D 161. A
2.5 M aqueous solution means 2.5 moles of
137. D the solute is dissolved in 1000 g of water.
nsolute = 2.5 mol
138. B 1000
nwater =  55.55mol
18
139. D nsolute
Xsolute =  n
solute  nwater
140. A
2.5
  0.043
141. B 2.5  55.55

142. C 162. D
2.4 M-KCl and 1M-K3[Fe(CN)6]
143. A
163. C
P n solute
144. A =
Ps n solvent
145. B 10 – 9 (1 / m)
=
9 (20 / 200)
146. D
m = 90
147. C
164. B
The vapour pressure and freezing point are
148. B the highest for urea

149. D 165. A
Molality of solution should be same
150. A M1=M2;
4 1000 10 1000
151. C    or MB=160
60 96 MB 90

152. D 166. D
0.1 M Ca(NO3)2 and 0.1 M Na2SO4
153. B
167. C
154. A sugar= x

155. D
 w   w 
   
156. D  mw  v sugar  mw  v X

157. A 5 1

342  100 mw  100
158. C mw=68.4

159. D 168. C
Mole fraction = Osmosis takes place if osmotic pressure of
both sides of solution is different.
moles of alcohol 2 2
   0.25
total moles 26 8 169. A
+ —
KBr  K + Br
1 – –
160. A
1–  
P  – Ps n 6  10 1–     
 x2  2   0.02 i 1
P n1 60  90 1
i=1+0.8=1.8

Motion Education Pvt. Ltd. | 394 - Rajeev Gandhi Nagar | : 1800-212-1799, 8003899588 | url : www.motion.ac.in | Page : 5
174. D
80
  0.8 Hsoln = H1+ H2 – H3
100
Tf=i. Kf.m = 1.8×1.86×0.5 175. D
= 1.674 K
F.P. of solution = 273–1.674=271.326 K i

m.wt
170. C
given PS = 550 mm III < IV < I < II
p 0A = 400 p 0B = 600
176. A
1 x
Now 550 = 400 × + 600 A C A 7  58.5
1 x 1 x    0.61
550 + 550x = 400 + 600x B C B 95  7
50x = 150
150 177. C
x= =3 p°–Ps  loss in mass of water chamber
50
ps  loss in mass of solution chamber
171. D P   PS n w solute M
Largest no. of solute particle’s highest will   
PS N m W
be B.P.
0.05 10 18
172. D  
2.5 msolute 90
p 0A = 100 nA = 1
msolute = 50 × 2 =100
p 0B = 60 nB = 3
178. C
PS = p 0A × XA + p 0B × XB
Tf =Kf.m = 1.86 × 0.01 = 0.0186K .
1 3
PS = 100 × + 60 × 179. A
1 3 1 3
= 25 + 45 = 70  = CRT
given PS = 75 w
Hence calculated PS is less than given PS  = M  r × RT
So D, all options are correct w

0.6  1000
173. B 2.463 = M  100 × 0.08 × 300
w
HBr H+ + Br– Mw = 60

i = 1 + (2 – 1) × 0.9 = 1.9 180. C


More is the pol arity more wi ll be the
 8.1 / 81 
Tf = iKf m = 1.9 × 1.86   = 3.53º attraction.
100 / 1000 
Tf = 0ºC – Tf = – 3.5ºC

Motion Education Pvt. Ltd. | 394 - Rajeev Gandhi Nagar | : 1800-212-1799, 8003899588 | url : www.motion.ac.in | Page : 6

You might also like