0% found this document useful (0 votes)
7 views4 pages

Τυπολόγιο

The document discusses various mathematical models related to annuities, mortality, and survival probabilities, including geometric progression and continuously payable varying annuities. It also covers different mortality models such as the Gompertz, Makeham, and Weibull models, along with their respective equations and implications. Additionally, it presents concepts related to probabilities of survival and death over time, as well as the expected life and force of mortality.

Uploaded by

akynigos
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views4 pages

Τυπολόγιο

The document discusses various mathematical models related to annuities, mortality, and survival probabilities, including geometric progression and continuously payable varying annuities. It also covers different mortality models such as the Gompertz, Makeham, and Weibull models, along with their respective equations and implications. Additionally, it presents concepts related to probabilities of survival and death over time, as well as the expected life and force of mortality.

Uploaded by

akynigos
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

d i δ

i= , d= , d=iv , d=1−v ,id =i−v ,1+i=e


1−d 1+i
a ¿¿
s¿ ¿
s¿ ¿
ä ¿¿
s̈¿ ¿
ä ¿¿
a ¿¿
s¿ ¿

( Ia )¿ ¿
( Is )¿¿
( Da )¿¿
( Ds )¿¿
( Ia )¿ ¿
( I ä )¿¿
( I s̈ )¿ ¿
( D ä )¿ ¿
( D s̈ )¿¿
Payment varying in Geometric progression:

( )
n
1+k
1−
2 3 2 n n−1 1+ i
v+ v (1+ k ) +v ( 1+k ) +…+ v ( 1+ i ) =
i−k
t
n
−∫ δ t dr
Continuous Varying Annuities: PV =∫ f (t ) e 0
dt
0

( I a )¿¿
( I s )¿¿
( D a )¿ ¿
Continuously Payable Varying Annuities

I (a)¿¿
I (s )¿¿
D(a)¿ ¿
D(s)¿¿
Deferred Annuities

a ¿¿
s¿ ¿

q =F ( x ) =P( X ≤ x)
x 0

Πιθ. Νεογνό να αποβιώσει μεταξύ [a,b]: P ( a< X ≤ b )=bq 0−aq 0

F ( x +t )−F( x)
Πιθ. άτομο (x) να πεθάνει σε t έτη: P ( x< X ≤ x +t| X > x )=
1−F ( x )
s (x +t)
Πιθ. άτομο (x) να επιβιώσει t έτη: P ( X > x +t| X > x )=
s(x )

s ( x ) η πιθ. νεογνο να επιβιώσει ως την ηλικία x . x p0 =s ( x ) =P ( X > x )


d −d
f ( x )= F ( x) = s (x )
dx dx
f (x ) −s' ( x ) −d
Force of mortality: μ ( x )= = = [lns ( x ) ]
s (x ) s ( x ) dx

Constant Force: x exp ( μ )=¿ Τ ( x ) exp ( μ )=¿ μ ( x )=μ


x
Αθροιστική Συνάρτηση Έντασης Θνησιμότητας: Λ ( x )=∫ μ ( s ) ds
0

∞ ∞
Πλήρη Αναμενόμενη Ζωή: e 0=E ( x )=∫ xf ( x ) dx=∫ s (x )dx
0

0 0

∞ ∞
E ( x )=∫ x f ( x ) dx =2∫ xs (x )dx
2 2

0 0

1
Διάμεσος: P ( X ≤ m ) =P ( X ≥ m )=
2

s (x +t)
p x =ST ( x ) ( t )=P ( X > x +t )=P ( T ( x ) >t )=
t s(x )

s ( x+ t ) F ( x+ t ) −F(x )
t q x =P ( T ( x ) ≤ t )=1− =
s(x) 1−F (x )

Uniform/De Moivre ¿> x U [a , b]

x−a 1 b−x 1
F ( x )= , f ( x )= , s ( x )= , μ ( x )=
b−a b−a b−a b−x
Αν x U [0 ,ω ]

x 1 ω−x 1 0 ω
F ( x )= , f ( x )= , s ( x )= , μ ( x) = ,e 0=
ω ω ω ω−x 2
Αν x U [0 ,ω ] τότε T ( x )= X−x U [0 , ω−x ]

t ω−x−t 1 1
F T ( x ) ( t )= , s ( t )= =t p x , f T (x ) ( t )= , μ (t)=
ω−x T (x ) ω−x ω−x T ( x ) ω−x−t

Constant Force Model/Exponential Model x exp ( μ ) και λόγω έλλειψης μνήμης T (x) exp ( μ )

−μx − μx −μx 0 1 1
s ( x )=x p0 =e , F ( x )= x q 0=1−e , f ( x )=μ e , μ ( x )=μ , e 0= , Var ( x )= 2 ,
μ μ
−tμ
t p x =e

Gompertz Model: μ ( x )=ΒC x , B> 0 ,C >1 , x ≥ 0


x t
B x −B C (C −1 ) B x
(1−C ) (1−C )
s ( x )=e lnC
, s ( x+ t )= t p x =e lnC
, f ( x )=B C x e lnC

Makeham Model: μ ( x )= A+ Β C x , B>0 , A ≥−B ,C >1 , x ≥ 0


x
B BC
− Ax− (C x −1) −At − (C t −1)
s ( x )=e lnC
, s ( x +t )=t p x =e lnC

Κίνδυνος Ατυχήματος = Α

Κίνδυνος Γήρατος = ΒC x

Weibull Model: μ ( x )=k x n


n +1 n
−k x x +1
−k
n
s ( x )=e n+1
, f ( x )=k x e n+ 1

m +n p x =m p x + n p x +m n p x =p x p x+ 1 p x+2 … p x+n−1 t ∨u q x =t +uq x −t q x =t p x −t +u p x

f ( x +t)
t ∨u q x =t p x uq x+t f T ( x) ( t ) =
s (x )

Σελ 193

You might also like