(Ebook) Quantum Phase Transitions by Subir: Sachdev ISBN 9780521514682, 0521514681
(Ebook) Quantum Phase Transitions by Subir: Sachdev ISBN 9780521514682, 0521514681
https://ebooknice.com/product/quantum-phase-transitions-2604040
https://ebooknice.com/product/understanding-quantum-phase-transitions-
condensed-matter-physics-2152978
https://ebooknice.com/product/quantum-scaling-in-many-body-systems-an-
approach-to-quantum-phase-transitions-10789792
https://ebooknice.com/product/quantum-scaling-in-many-body-systems-an-
approach-to-quantum-phase-transitions-43272974
(Ebook) Phase Transitions in Materials by Brent Fultz ISBN
9781108485784, 1108485782
https://ebooknice.com/product/phase-transitions-in-materials-10996182
https://ebooknice.com/product/phase-transitions-in-polymers-1132560
https://ebooknice.com/product/first-order-phase-transitions-of-
magnetic-materials-broad-and-interrupted-transitions-6837842
https://ebooknice.com/product/dissipative-phase-transitions-1525764
https://ebooknice.com/product/gibbs-measures-and-phase-
transitions-50378794
Quantum Phase Transitions 2nd Edition Subir Sachdev
Digital Instant Download
Author(s): Subir Sachdev
ISBN(s): 9780521514682, 0521514681
Edition: 2
File Details: PDF, 2.65 MB
Year: 2011
Language: english
This page intentionally left blank
Quantum Phase Transitions
Second Edition
This is the first book to describe the physical properties of quantum materials near critical
points with long-range many-body quantum entanglement. Readers are introduced to the
basic theory of quantum phases, their phase transitions, and their observable properties.
This second edition begins with nine chapters, six of them new, suitable for an introduc-
tory course on quantum phase transitions, assuming no prior knowledge of quantum field
theory. There are several new chapters covering important recent advances, such as the
Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quan-
tum magnetism, and solvable models obtained from string theory. After introducing the
basic theory, it moves on to a detailed description of the canonical quantum-critical phase
diagram at nonzero temperatures. Finally, a variety of more complex models is explored.
This book is ideal for graduate students and researchers in condensed matter physics and
particle and string theory.
SUBIR SACHDEV
Harvard University
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521514682
c S. Sachdev 2011
A catalog record for this publication is available from the British Library
Part I Introduction 1
1 Basic concepts 3
1.1 What is a quantum phase transition? 3
1.2 Nonzero temperature transitions and crossovers 5
1.3 Experimental examples 8
1.4 Theoretical models 9
1.4.1 Quantum Ising model 10
1.4.2 Quantum rotor model 12
1.4.3 Physical realizations of quantum rotors 14
2 Overview 18
2.1 Quantum field theories 21
2.2 What’s different about quantum transitions? 24
15 Transport in d = 2 260
15.1 Perturbation theory 264
15.1.1 σ I 268
15.1.2 σ I I 269
15.2 Collisionless transport equations 269
15.3 Collision-dominated transport 273
15.3.1 expansion 273
15.3.2 Large-N limit 279
15.4 Physical interpretation 281
15.5 The AdS/CFT correspondence 283
15.5.1 Exact results for quantum critical transport 285
15.5.2 Implications 288
15.6 Applications and extensions 289
The past decade has seen a substantial rejuvenation of interest in the study of quantum
phase transitions, driven by experiments on cuprate superconductors, heavy fermion mate-
rials, organic conductors, and related compounds. Although quantum phase transitions in
simple spin systems, like the Ising model in a transverse field, were studied in the early
1970s, much of the subsequent theoretical work examined a particular example: the metal–
insulator transition. While this is a subject of considerable experimental importance, the
greatest theoretical progress was made for the case of the Anderson transition of non-
interacting electrons, which is driven by localization of the electronic states in the presence
of a random potential. The critical properties of this transition of noninteracting electrons
constituted the primary basis upon which most condensed matter physicists have formed
their intuition on the behavior of the systems near a quantum phase transition. However,
it is clear that strong electronic interactions play a crucial role in the systems of current
interest noted earlier, and simple paradigms for the behavior of such systems near quantum
critical points are not widely known.
It is the purpose of this book to move interactions to center stage by describing and clas-
sifying the physical properties of the simplest interacting systems undergoing a quantum
phase transition. The effects of disorder will be neglected for the most part but will be con-
sidered in the concluding chapters. Our focus will be on the dynamical properties of such
systems at nonzero temperature, and it will become apparent that these differ substantially
from the noninteracting case. We shall also be considering inelastic collision-dominated
quantum dynamics and transport: our results will apply to clean physical systems whose
inelastic scattering time is much shorter than their disorder-induced elastic scattering time.
This is the converse of the usual theoretical situation in Anderson localization or meso-
scopic system theory, where inelastic collision times are conventionally taken to be much
larger than all other timescales.
One of the most interesting and significant regimes of the systems we shall study is one
in which the inelastic scattering and phase coherence times are of order /k B T , where T
is the absolute temperature. The importance of such a regime was pointed out by Varma
et al. [523, 524] by an analysis of transport and optical data on the cuprate superconduc-
tors. Neutron scattering measurements of Hayden et al. [210] and Keimer et al. [263]
also supported such an interpretation in the low doping region. It was subsequently real-
ized [86, 419, 440] that the inelastic rates are in fact a universal number times k B T /,
and they are a robust property of the high-temperature limit of renormalizable, interacting
quantum field theories that are not asymptotically free at high energies. In the Wilsonian
picture, such a field theory is defined by renormalization group flows away from a crit-
ical point describing a second-order quantum phase transition. It is not essential for this
xiii
xiv From the Preface to the first edition
critical point to be in an experimentally accessible regime of the phase diagram: the quan-
tum field theory it defines may still be an appropriate description of the physics over a
substantial intermediate energy and temperature scale. Among the implications of such an
interpretation of the experiments was the requirement that response functions should have
prefactors of anomalous powers of T and a singular dependence on the wavevector; recent
observations of Aeppli et al. [5], at somewhat higher dopings, appear to be consistent with
this. These recent experiments also suggest that the appropriate quantum critical points
involve competition between phases with or without conventional superconducting, spin-,
or charge-density-wave order. There is no global theory yet for such quantum transitions,
but we shall discuss numerous simpler models here that capture some of the basic features.
It is also appropriate to note here theoretical studies [25, 93, 94, 336, 514] on the
relevance of finite temperature crossovers near quantum critical points of Fermi liquids
[218] to the physics of heavy fermion compounds.
A separate motivation for the study of quantum phase transitions is simply the value in
having another perspective on the physics of an interacting many-body system. A tradi-
tional analysis of such a system would begin from either a weak-coupling Hamiltonian,
and then build in interactions among the nearly free excitations, or a strong-coupling limit,
where the local interactions are well accounted for, but their coherent propagation through
the system is not fully described. In contrast, a quantum critical point begins from an inter-
mediate coupling regime, which straddles these limiting cases. One can then use the power-
ful technology of scaling to set up a systematic expansion of physical properties away from
the special critical point. For many low-dimensional strongly correlated systems, I believe
that such an approach holds the most promise for a comprehensive understanding. Many
of the vexing open problems are related to phenomena at intermediate temperatures, and
this is precisely the region over which the influence of a quantum critical point is dominant.
Related motivations for the study of quantum phase transitions appear in a recent discourse
by Laughlin [286].
The particular quantum phase transitions that are examined in this book are undoubt-
edly heavily influenced by my own research. However, I believe that my choices can also
be justified on pedagogical grounds and lead to a logical development of the main phys-
ical concepts in the simplest possible contexts. Throughout, I have also attempted to pro-
vide experimental motivations for the models considered; this is mainly in the form of a
guide to the literature, rather than in-depth discussion of the experimental issues. I have
highlighted some especially interesting experiments in a recent popular introduction to
quantum phase transitions [428]. An experimentally oriented introduction to the subject
of quantum phase transitions can also be found in the excellent review article of Sondhi,
Girvin, Carini, and Shahar [481]. Readers may also be interested in a recent introductory
article [533], intended for a general science audience.
Acknowledgments
Chapter 21 was co-authored with T. Senthil and adapted from his 1997 Yale University
Ph.D. thesis; I am grateful to him for agreeing to this arrangement.
xv From the Preface to the first edition
Some portions of this book grew out of lectures and write-ups I prepared for schools
and conferences in Trieste, Italy [418], Xiamen, China [419], Madrid, Spain [421], Geilo,
Norway [424], and Seoul, Korea [427]. I am obliged to Professors Yu Lu, S. Lundqvist,
G. Morandi, Hao Bai-Lin, German Sierra, Miguel Martin-Delgado, Arne Skjeltorp, David
Sherrington, Jisoon Ihm, Yunkyu Bang, and Jaejun Yu for the opportunities to present these
lectures. I also taught two graduate courses at Yale University and a mini-course at the
Université Joseph Fourier, Grenoble, France on topics discussed in this book; I thank both
institutions for arranging and supporting these courses. I am indebted to the participants
and students at these lectures for stimulating discussions, valuable feedback, and their
interest. Part of this book was written during a sojourn at the Laboratoire des Champs
Magnétiques Intenses in Grenoble, and I thank Professors Claude Berthier and Benoy
Chakraverty for their hospitality. My research has been supported by grants from the Divi-
sion of Materials Research of the U.S. National Science Foundation.
I have been fortunate in having the benefit of interactions and collaborations with numer-
ous colleagues and students who have generously shared insights that appear in many of
these pages. I would particularly like to thank my collaborators Chiranjeeb Buragohain,
Andrey Chubukov, Kedar Damle, Sankar Das Sarma, Antoine Georges, Ilya Gruzberg,
Satya Majumdar, Reinhold Oppermann, Nick Read, R. Shankar, T. Senthil, Sasha Sokol,
Matthias Troyer, Jinwu Ye, Peter Young, and Lian Zheng.
The evolution of the book owes a great deal to comments of readers of earlier versions,
who unselfishly donated their time in working through unpolished drafts; naturally, they
bear no responsibility for the remaining errors and obscurities. I am most grateful to Sudip
Chakravarty, Andrey Chubukov, Kedar Damle, Ilya Gruzberg, Sankar Das Sarma, Bert
Halperin, T. Senthil, R. Shankar, Oleg Starykh, Chandra Varma, Peter Young, Jan Zaanen,
and two anonymous referees. The detailed comments provided by Steve Girvin and Wim
van Saarloos were especially valuable. My thanks to them, and the others, accompany an
admiration for their generous collegial spirit. I also acknowledge salutary encouragement
from Jan Zaanen.
My wife, Usha, and my daughters, Monisha and Menaka, patiently tolerated my mental
and physical absences during the writing (and rewritings) of this book. Ultimately, it was
their cheerful support that made the project possible and worthwhile.
Preface to the second edition
Research on quantum phase transitions has undergone a vast expansion since the publica-
tion of the first edition, over a decade ago. Many new theoretical ideas have emerged, and
the arena of experimental systems has grown rapidly. The cuprates have been firmly estab-
lished to be d-wave superconductors, with a massless Dirac spectrum for their electronic
excitations; the latter spectrum has also been observed in graphene and on the surface of
topological insulators. Such fermions play a key role in a variety of quantum phase tran-
sitions. The observation of quantum oscillations in the presence of strong magnetic fields
in the underdoped cuprates has highlighted the relevance of competing orders, and their
quantum critical points. Optical lattices of ultracold atoms now offer a realization of the
boson Hubbard model, and exhibit the superfluid–insulator transition. And ideas on quan-
tum criticality and entanglement have had an interesting interplay with developments in
quantum information science.
The second edition does not present a fully comprehensive survey of these ongoing
developments. I believe the core topics of the first edition had a certain coherence, and
they continue to be central to the more modern developments; I did not wish to dilute the
global perspective they offer in understanding both condensed matter and ultracold atom
experiments. However, wherever possible, I have discussed important advances, or directed
the reader to review articles.
Also, in the last few years, a remarkable connection has developed between ideas on
quantum criticality and the string theory of quantum black holes. I briefly survey the initial
developments in Section 15.5. The subject has advanced rapidly since then, with interesting
applications to quantum critical states of fermions at nonzero density: this recent work is
not discussed here. In any case, this book should be useful background reading for this
emerging and growing field of research.
The primary change in the second edition is pedagogical. I have had the benefit of teach-
ing a course on quantum phase transitions several times since the first edition, both at Yale
and at Harvard. I am also grateful for the opportunity to lecture at various summer and
winter schools (Altenberg, Boulder, Cargese, Goa, Groningen, Jerusalem, Les Houches,
Mahabaleshwar, Milos, Prague, Trieste, Windsor). The content of these lectures is now in
the new Part II of the book. Chapters 3–8 are new, although they do extract some material
from the earlier chapters of the first edition. Part II, titled “A first course,” is intended for
a stand-alone course on the basic theory of quantum phase transitions, and for self-study.
It should be accessible to students in both theory and experiment, after they have taken the
core graduate courses on quantum mechanics and statistical mechanics. No prior knowl-
edge of quantum field theory is assumed. Exercises are included at the ends of chapters,
drawn from the problem sets of my courses.
xvii
xviii Preface to the second edition
After completing Part II, a course can choose from the more advanced topics in Parts III
and IV. I recommend a basic survey of the nonzero temperature phase diagram from
Chapters 10 and 11. This can be followed by a treatment of Fermi systems drawn from
Chapters 17 and 18. Chapters 19 and 20 offer many possibilities for student presentations.
The chapters in the new Parts III and IV have been significantly updated from the first
edition. Chapter 16 has a new section on the Fermi gas near unitarity: this was a simple and
natural extension of the previous discussion on dilute quantum liquids. These results apply
to ultracold atomic systems near a Feshbach resonance. Chapter 17, on Dirac fermions,
is entirely new. I took this opportunity to introduce the basics of the theory of unconven-
tional superconductivity induced by antiferromagnetism, as it applies to the cuprates and
the pnictides. Dirac fermions also offer a gentle way of introducing non-trivial quantum
phase transitions of Fermi systems. Chapter 18, on Fermi liquids and their phase transi-
tions, has been almost completely re-written: this reflects advances in our understanding,
and its relevance in many experimental contexts. Chapter 19, on quantum magnetism, has
numerous updates to reflect our improved understanding of spin liquids, and a brief dis-
cussion of deconfined criticality. However, I have not attempted to cover the many modern
developments in quantum magnetism: a more comprehensive starting point is offered by
my Solvay lecture [430].
My web site, http://sachdev.physics.harvard.edu, will have updates and corrections.
Acknowledgments
I am very grateful to all the students in my courses for their interest and valuable feed-
back. The notes of Suzanne Pittman and Jihye Seo were invaluable in writing Chap-
ters 3–8. Gilad Ben-Shach, Thiparat Chotibut, Debanjan Chowdhury, Sean Hartnoll, Yejin
Huh, Max Metlitski, and Eun Gook Moon provided very useful feedback on the initial
drafts. The treatment of Fermi liquids in Chapter 18 is based on the ideas of Max Metlit-
ski [333, 334].
I thank Simon Capelin, from Cambridge University Press, for guiding both editions over
many years.
I thank the Perimeter Institute, Waterloo for hospitality while I was working on the
second edition. Finally, I remain grateful to the National Science Foundation for continued
support of my research.
PART I
INTRODUCTION
1 Basic concepts
Consider a Hamiltonian, H (g), whose degrees of freedom reside on the sites of a lattice,
and which varies as a function of a dimensionless coupling, g. Let us follow the evolu-
tion of the ground state energy of H (g) as a function of g. For the case of a finite lattice,
this ground state energy will generically be a smooth, analytic function of g. The main
possibility of an exception comes from the case when g couples only to a conserved quan-
tity (i.e. H (g) = H0 + g H1 , where H0 and H1 commute). This means that H0 and H1
can be simultaneously diagonalized and so the eigenfunctions are independent of g even
though the eigenvalues vary with g; then there can be a level-crossing where an excited
level becomes the ground state at g = gc (say), creating a point of nonanalyticity of
the ground state energy as a function of g (see Fig. 1.1). The possibilities for an infi-
nite lattice are richer. An avoided level-crossing between the ground and an excited state
in a finite lattice could become progressively sharper as the lattice size increases, lead-
ing to a nonanalyticity at g = gc in the infinite lattice limit. We shall identify any point of
nonanalyticity in the ground state energy of the infinite lattice system as a quantum phase
transition: The nonanalyticity could be either the limiting case of an avoided level-crossing
or an actual level-crossing. The first kind is more common, but we shall also discuss transi-
tions of the second kind in Chapters 16 and 19. The phase transition is usually accompanied
by a qualitative change in the nature of the correlations in the ground state, and describing
this change will clearly be one of our major interests.
Actually our focus will be on a limited class of quantum phase transitions – those that
are second order. Loosely speaking, these are transitions at which the characteristic energy
scale of fluctuations above the ground state vanishes as g approaches gc . Let the energy
represent a scale characterizing some significant spectral density of fluctuations at zero
temperature (T ) for g = gc . Thus could be the energy of the lowest excitation above the
ground state, if this is nonzero (i.e. there is an energy gap ), or if there are excitations at
arbitrarily low energies in the infinite lattice limit (i.e. the energy spectrum is gapless),
is the scale at which there is a qualitative change in the nature of the frequency spectrum
from its lowest frequency to its higher frequency behavior. In most cases, we will find that
as g approaches gc , vanishes as
∼ J |g − gc |zν , (1.1)
3
4 Basic concepts
g
(a)
t
(b)
Fig. 1.1 Low eigenvalues, E, of a Hamiltonian H(g) on a finite lattice, as a function of some dimensionless coupling, g. For the
case where H(g) = H0 + gH1 , where H0 and H1 commute and are independent of g, there can be an actual
level-crossing, as in (a). More generally, however, there is an “avoided level-crossing,” as in (b).
(exceptions to this behavior appear in Section 20.2.6). Here J is the energy scale of a
characteristic microscopic coupling, and zν is a critical exponent. The value of zν is usually
universal, that is, it is independent of most of the microscopic details of the Hamiltonian
H (g) (we shall have much more to say about the concept of universality below, and in
the following chapters). The behavior (1.1) holds both for g > gc and for g < gc with the
same value of the exponent zν, but with different nonuniversal constants of proportionality.
We shall sometimes use the symbol + (− ) to represent the characteristic energy scale
for g > gc (g < gc ).
In addition to a vanishing energy scale, second-order quantum phase transitions invari-
ably have a diverging characteristic length scale ξ . This could be the length scale determin-
ing the exponential decay of equal-time correlations in the ground state or the length scale
at which some characteristic crossover occurs to the correlations at the longest distances.
This length diverges as
ξ −1 ∼ |g − gc |ν , (1.2)
∼ ξ −z . (1.3)
It is important to note that the discussion above refers to singularities in the ground
state of the system. So strictly speaking, quantum phase transitions occur only at zero
temperature, T = 0. Because all experiments are necessarily at some nonzero, though
5 1.2 Nonzero temperature transitions and crossovers
possibly very small, temperature, a central task of the theory of quantum phase transitions
is to describe the consequences of this T = 0 singularity on physical properties at T > 0.
It turns out that working outward from the quantum critical point at g = gc and T = 0 is a
powerful way of understanding and describing the thermodynamic and dynamic properties
of numerous systems over a broad range of values of |g − gc | and T . Indeed, it is not even
necessary that the system of interest ever have its microscopic couplings reach a value
such that g = gc : it can still be very useful to argue that there is a quantum critical point
at a physically inaccessible coupling g = gc and to develop a description in the deviation
|g − gc |. It is one of the purposes of this book to describe the physical perspective that such
an approach offers, and to contrast it with more conventional expansions about very weak
(say g → 0) or very strong couplings (say g → ∞).
Let us now discuss some basic aspects of the T > 0 phase diagram. First, let us ask only
about the presence of phase transitions at nonzero T . With this limited criterion, there are
two important possibilities for the T > 0 phase diagram of a system near a quantum critical
point. These are shown in Fig. 1.2, and we will meet examples of both kinds in this book.
In the first, shown in Fig. 1.2a, the thermodynamic singularity is present only at T = 0, and
all T > 0 properties are analytic as a function of g near g = gc . In the second, shown in
0
gc g
(a)
0
gc g
t
(b)
Fig. 1.2 Two possible phase diagrams of a system near a quantum phase transition. In both cases there is a quantum critical
point at g = gc and T = 0. In (b), there is a line of T > 0 second-order phase transitions terminating at the
quantum critical point. The theory of phase transitions in classical systems driven by thermal fluctuations can be
applied within the shaded region of (b).
6 Basic concepts
Fig. 1.2b, there is a line of T > 0 second-order phase transitions (this is a line at which the
thermodynamic free energy is not analytic) that terminates at the T = 0 quantum critical
point at g = gc .
Moving beyond phase transitions, let us ask some basic questions about the dynamics
of the system. A very general way to characterize the dynamics at T > 0 is in terms of the
thermal equilibration time τeq . This is the characteristic time in which local thermal equi-
librium is established after imposition of a weak external perturbation (say, a heat pulse).
Here we are excluding equilibration with respect to globally conserved quantities (such as
energy or charge) which will take a long time to equilibrate, dependent upon the length
scale of the perturbation: hence the emphasis on local equilibration. Global equilibration
is described by the equations of hydrodynamics, and we expect such equations to apply
in all cases at times much larger than τeq . We focus here on the value of τeq as a function
of g − gc and T . From the energy scales discussed in Section 1.1, we can immediately
draw an important distinction between two regimes of the phase diagram. We character-
ized the ground state by the energy in (1.1). At nonzero temperature, we have a second
energy scale, k B T . Comparing the values of and k B T , we are immediately led to the
important phase diagram in Fig. 1.3. We will see that the two regimes, > k B T and
< k B T , are distinguished by different theories of thermal equilibration and of the val-
ues of τeq . In the regime where > k B T , we will always find long equilibration times
which satisfy
τeq , > k B T. (1.4)
kB T
One of the important consequences of this large value of τeq is that the dynamics of the
system becomes effectively classical. Thus we can use classical equations of motion to
describe the re-equilibration dynamics at the time scale τeq .
Let us now turn our attention to the important “Quantum Critical” region in Fig. 1.3,
where k B T > . We shall mainly be interested in quantum critical points which are
strongly interacting, and not amenable to a nearly-free particle description. In such cases
we find a short equilibration time given by
gc g
t
Fig. 1.3 Separation of the phase diagram into distinct regimes determined by the energy scale , which characterizes the
ground state, and kB T. The dashed lines are not phase transitions, but smooth crossovers at T ∼ |g − gc |zν .
The phase transition in Fig. 1.2b lies within the > kB T region, and is not shown above.
7 1.2 Nonzero temperature transitions and crossovers
τeq ∼ , k B T > . (1.5)
kB T
Now the equilibration occurs in a time which is actually independent of the microscopic
energy scale J , and is determined by k B T alone. Moreover, and most interestingly, we
cannot use an effectively classical description for the re-equilibration at times of order τeq .
Quantum and thermal fluctuations are equally important in the dynamics in the quantum
critical region, and developing a theory for this dynamics will be a central focus of Part III.
What about the T > 0 phase transition line in Fig. 1.2b? We have not shown this line
in Fig. 1.3. Such a transition should be viewed as reflecting the physics of the > k B T
region, and so the transition line lies in the corresponding region of Fig. 1.3. In other words,
this transition is not really a property of the quantum critical point at g = gc , but of the
quantum phase at g < gc . (There could also be a separate transition reflecting the physics
of the g > gc phase, which we have not shown in our phase diagrams.) As we move closer
to this phase transition line, we will show that not only does τeq become long, but so do
all the time scales associated with long wavelength thermal fluctuations. Indeed we will
find that the typical frequency at which the important long-distance degrees of freedom
fluctuate, ωtyp , satisfies
ωtyp k B T. (1.6)
Under these conditions, it will be seen that a purely classical description can be applied
to these important degrees of freedom – this classical description works in the shaded
region of Fig. 1.2b. Consequently, the ultimate critical singularity along the line of T > 0
phase transitions in Fig. 1.2b is described by the theory of second-order phase transitions
in classical systems. This theory was developed thoroughly in the past three decades and
has been explained in many popular reviews and books [59, 172, 244, 312, 557]. We will
discuss the needed basic features of this theory in Chapters 3 and 4. Note that the shaded
region of classical behavior in Fig. 1.2b lies within the wider window of the phase diagram,
with moderate values of |g − gc | and T , which we asserted above should be described as
an expansion about the quantum critical point at g = gc and T = 0. So our study of
quantum phase transitions will also apply to the shaded region of Fig. 1.2b, where it will
yield information complementary to that available by directly thinking of the T > 0 phase
transition in terms of purely classical models.
We note that phase transitions in classical models are driven only by thermal fluctuations,
as classical systems usually freeze into a fluctuationless ground state at T = 0. In contrast,
quantum systems have fluctuations driven by the Heisenberg uncertainty principle even in
the ground state, and these can drive interesting phase transitions at T = 0. The T > 0
region in the vicinity of a quantum critical point therefore offers a fascinating interplay of
effects driven by quantum and thermal fluctuations; sometimes, as in the shaded region of
Fig. 1.2b, we can find some dominant, effective degrees of freedom whose fluctuations are
purely classical and thermal, and then the classical theory will apply. However, as already
noted, our attention will not be limited to such regions, and we shall be interested in a
broader section of the phase diagram.
8 Basic concepts
To make the concepts of the previous sections less abstract, let us mention some experi-
mental studies of simple second-order quantum phase transitions. We will meet numerous
other examples in this book, but for now we focus on examples directly related to the
canonical theoretical models of quantum phase transitions to be discussed in Section 1.4,
and in Parts II and III.
• The low-lying magnetic excitations of the insulator LiHoF4 consist of fluctuations of the
Ho ions between two spin states that are aligned parallel and antiparallel to a particular
crystalline axis. These states can be represented by a two-state “Ising” spin variable on
each Ho ion. At T = 0, the magnetic dipolar interactions between the Ho ions cause all
the Ising spins to align in the same orientation, and so the ground state is a ferromagnet.
Bitko, Rosenbaum, and Aeppli [49] placed this material in a magnetic field transverse
to the magnetic axis. Such a field induces quantum tunneling between the two states of
each Ho ion, and a sufficiently strong tunneling rate can eventually destroy the long-
range magnetic order. Such a quantum phase transition was indeed observed [49], with
the ferromagnetic moment vanishing continuously at a quantum critical point. Note that
such a transition can, in principle, occur precisely at T = 0, when it is driven entirely
by quantum fluctuations. We shall call the T = 0 state without magnetic order a quan-
tum paramagnet. However, we can also destroy the magnetic order at a fixed transverse
magnetic field (possibly zero), simply by raising the temperature, enabling the material
to undergo a conventional Curie transition to a high-temperature magnetically disor-
dered state. Among the objectives of this book is to provide a description of the intricate
crossover between the zero-temperature quantum transition and the finite-temperature
transition driven partially by thermal fluctuations; we shall also delineate the important
differences between the T = 0 quantum paramagnet and the high-temperature “thermal
paramagnet;” see Chapters 11, 13, and 14.
A more recent realization of an Ising model in a transverse field has appeared in exper-
iments by Coldea and collaborators [90] on crystals of CoNb2 O6 , which belongs to the
columbite family of minerals. In this case, the Ising spin resides on the Co++ ion, again
aligned by the spin–orbit interaction to orient parallel or anti-parallel to a crystalline
axis. An important difference from LiHoF4 is that the interactions between the spins are
essentially nearest-neighbor, and the long-range dipolar couplings are unimportant; the
short-range interactions arise from the Heisenberg exchange process, and their energy
scale is determined by the electrostatic Coulomb interactions. Thus CoNb2 O6 provides a
nearly ideal realization of the quantum Ising models which will be the focus of our study
in Parts II and III. The dominant exchange couplings are along a particular crystalline
axis, and so it is also a useful testing ground for exact results in one dimension.
• Experiments on ultracold atoms in optical lattices by Greiner, Bloch, and collabora-
tors [175] have provided a celebrated example of the superfluid–insulator quantum phase
transition. Atoms of 87 Rb are cooled to temperatures so low that their quantum statistics
9 1.4 Theoretical models
is important. These atoms are bosons and so they ultimately Bose condense into a
superfluid state. Then, by applying a periodic potential on the atoms by an optical lattice,
Greiner et al. localized the atoms in the minima of the periodic potential, leading to a
quantum phase transition to an insulating state. At densities where the number of atoms
is commensurate with the number of minima of the periodic potential, this transition
is described by the O(2) quantum rotor model, which we introduce in Section 1.4 and
discuss at length in Parts II and III.
• TlCuCl3 is an insulator whose only low-lying electronic excitations are rotations of
the S = 1/2 spins residing on the Cu++ ions. Unlike the case for the Co++ ions in
CoNb2 O6 , the spin-orbit interactions are relatively weak on Cu++ , and a single spin can
freely orient along any direction in spin space. A special feature of the crystal struc-
ture of TlCuCl3 is that the Cu atoms are naturally dimerized, i.e. each Cu site has a
single partner Cu site, and the exchange interactions are strongest between the partners
in each pair. The exchange interaction has an antiferromagnetic sign, and consequently
neighboring spins prefer to be oriented in anti-parallel directions. Under ambient pres-
sure, each Cu spin forms a singlet valence bond with its partner, much like that between
the two electrons in a hydrogen molecule. Thus although the neighboring spins within
a dimer are always anti-parallel, they fluctuate along all directions in spin space in a
rotationally invariant manner. We will refer to this state as a quantum paramagnet; it
has an energy gap to all excitations above the ground state. Under applied pressure,
TlCuCl3 undergoes a quantum phase transition [414] to an ordered antiferromagnet: a
Néel state. In this Néel state, the spins freeze into a definite orientation so that nearby
spins are anti-parallel to each other. Such an arrangement is more nearly optimal when
the exchange couplings between spins in different dimers are significant. As we discuss
below in Section 1.4, this transition between the quantum paramagnet and the Néel state
is described by the O(3) quantum rotor model, which will also be discussed in Parts II
and III.
Our strategy in this book will be to thoroughly analyze the physical properties of quantum
phase transitions in two simple theoretical model systems in Parts II and III: the quantum
Ising and rotor models. Fortunately, these simple models also have direct experimental
realizations in the systems already surveyed in Section 1.3. Below, we introduce the quan-
tum Ising and rotor models in turn, discussing the nature of the quantum phase transitions
in them, and relating them to the experimental systems above. Other experimental connec-
tions will be discussed in subsequent chapters.
Part IV will survey some important quantum phase transitions in other models of phys-
ical interest. Our motivation in dividing the discussion in this manner is mainly pedagogi-
cal: the quantum transitions of the Ising/rotor models have an essential simplicity, but their
behavior is rich enough to display most of the basic phenomena we wish to explore. It will
therefore pay to meet the central physical ideas in this simple context first.
10 Basic concepts
As in the general notation introduced above, J > 0 is an exchange constant, which sets
the microscopic energy scale, and g > 0 is a dimensionless coupling, which will be used
to tune H I across a quantum phase transition. The quantum degrees of freedom are repre-
sented by operators σ̂iz,x , which reside on the sites, i, of a hypercubic lattice in d dimen-
sions; the sum i j is over pairs of nearest-neighbor sites i, j. The σ̂ix,z are the familiar
Pauli matrices; the matrices on different sites i act on different spin states, and so matrices
with i = j commute with each other. In the basis where the σ̂iz are diagonal, these matrices
have the well-known form
1 0 0 −i 0 1
σ̂ z = , σ̂ y = , σ̂ x = , (1.8)
0 −1 i 0 1 0
on each site i. We will denote the eigenvalues of σ̂iz simply by σiz , and so σiz takes the values
±1. We identify the two states with eigenvalues σiz = +1, −1 as the two possible orien-
tations of an “Ising spin,” which can be oriented up or down in | ↑ i , | ↓ i . Consequently
at g = 0, when H I involves only the σ̂iz , H I will be diagonal in the basis of eigenvalues
of σ̂iz , and it reduces simply to the familiar classical Ising model. However, the σ̂ix are off-
diagonal in the basis of these states, and therefore they induce quantum-mechanical tunnel-
ing events that flip the orientation of the Ising spin on a site. The physical significance of
the two terms in H I should be clear in the context of our earlier discussion in Section 1.3 for
LiHoF4 and CoNb2 O6 . The term proportional to J is the magnetic interaction between the
spins, which prefers their global ferromagnetic alignment. While the interaction in LiHoF4
has a long-range dipolar nature, that in CoNb2 O6 has a nearest-neighbor form like that in
(1.7). The term proportional to J g is the applied external transverse magnetic field, which
disrupts the magnetic order.
Let us make these qualitative considerations somewhat more precise. The ground state
of H I can depend only upon the value of the dimensionless coupling g, and so it pays to
consider the two opposing limits g 1 and g 1.
First consider g 1. In this case the first term in (1.7) dominates, and, to leading order
in 1/g, the ground state is simply
|0 = | → i, (1.9)
i
where
√
| → i = (| ↑ i + | ↓ i )/ 2,
√
| ← i = (| ↑ i − | ↓ i )/ 2, (1.10)
are the two eigenstates of σ̂ix with eigenvalues ±1. The values of σiz on different sites are
totally uncorrelated in the state (1.9), and so 0|σ̂iz σ̂ jz |0 = δi j . Perturbative corrections in
11 1.4 Theoretical models
1/g will build in correlations in σ z that increase in range at each order in 1/g; for g large
enough these correlations are expected to remain short-ranged, and we expect in general
that
z z
0σ̂i σ̂ j 0 ∼ e−|xi −x j |/ξ (1.11)
for large |xi − x j |, where xi is the spatial coordinate of site i, |0 is the exact ground state
for large-g, and ξ is the “correlation length” introduced above (1.2).
Next we consider the opposing limit g 1. We will find that the nature of the ground
state is qualitatively different from the large-g limit above, and we shall use this to argue
that there must be a quantum phase transition between the two limiting cases at a critical
g = gc of order unity. For g 1, the second term in (1.7) coupling neighboring sites
dominates; at g = 0 the spins are either all up or all down (in eigenstates of σ z ):
|↑ = | ↑ i or |↓ = |↓ i . (1.12)
i i
Turning on a small-g will mix in a small fraction of spins of the opposite orientation, but in
an infinite system the degeneracy will survive at any finite order in a perturbation theory in
g. This is because there is an exact global Z 2 symmetry transformation (generated by the
unitary operator i σix ), which maps the two ground states into each other, under which
H I remains invariant:
σ̂iz → −σ̂iz , σ̂ix → −σ̂ix , (1.13)
and there is no tunneling matrix element between the majority up and down spin sectors
of the infinite system at any finite order in g. The mathematically alert reader will note
that establishing the degeneracy to all orders in g, is not the same thing as establishing its
existence for any small nonzero g, but more sophisticated considerations show that this is
indeed the case. A thermodynamic system will always choose one or other of the states as
its ground states (which may be preferred by some infinitesimal external perturbation), and
this is commonly referred to as a “spontaneous breaking” of the Z 2 symmetry. As in the
large-g limit, we can characterize the ground states by the behavior of correlations of σ̂iz ;
the nature of the states (1.12) and small-g perturbation theory suggest that
z z
lim 0σ̂i σ̂ j 0 = N02 , (1.14)
|xi −x j |→∞
focus of intensive study in this book. Our arguments so far do not exclude the possibility
that there could be more than one critical point, but this is known not to happen for H I , and
we will assume here that there is only one critical point at g = gc . For g > gc the ground
state is, as noted earlier, a quantum paramagnet, and (1.11) is obeyed. We will find that
as g approaches gc from above, the correlation length, ξ , diverges as in (1.2). Precisely at
g = gc , neither (1.11) nor (1.14) is obeyed, and we find instead a power-law dependence
on |xi − x j | at large distances. The result (1.14) holds for all g < gc , when the ground state
is magnetically ordered. The spontaneous magnetization of the ground state, N0 , vanishes
as a power law as g approaches gc from below.
Finally, we make a comment about the excited states of H I . In a finite lattice, there is
necessarily a nonzero energy separating the ground state and the first excited state. How-
ever, this energy spacing can either remain finite or approach zero in the infinite lattice
limit, the two cases being identified as having a gapped or gapless energy spectrum, respec-
tively. We will find that there is an energy gap that is nonzero for all g = gc , but that it
vanishes upon approaching gc as in (1.1), producing a gapless spectrum at g = gc .
We turn to the somewhat less familiar quantum rotor models. Elementary quantum rotors
do not exist in nature; rather, each quantum rotor is an effective quantum degree of freedom
for the low-energy states of a small number of electrons or atoms. We will first define the
quantum mechanics of a single rotor and then turn to the lattice quantum rotor model.
The connection to the experimental models introduced in Section 1.3 is described below in
Section 1.4.3. Further details of this connection appear in Chapters 9 and 19.
Each rotor can be visualized as a particle constrained to move on the surface of a (fic-
titious) (N > 1)-dimensional sphere. The orientation of each rotor is represented by an
N -component unit vector n̂i which satisfies
n̂i2 = 1. (1.16)
The caret on n̂i reminds us that the orientation of the rotor is a quantum mechanical oper-
ator, while i represents the site on which the rotor resides; we will shortly consider an
infinite number of such rotors residing on the sites of a d-dimensional lattice. Each rotor
has a momentum p̂i , and the constraint (1.16) implies that this must be tangential to the
surface of the N -dimensional sphere. The rotor position and momentum satisfy the usual
commutation relations
on each site i; here α, β = 1 . . . N . (Here, and in the remainder of the book, we will always
measure time in units in which
= 1, (1.18)
unless stated explicitly otherwise. This is also a good point to note that we will also set
Boltzmann’s constant
13 1.4 Theoretical models
kB = 1 (1.19)
by absorbing it into the units of temperature, T .) We will actually find it more convenient
to work with the N (N − 1)/2 components of the rotor angular momentum
L̂ αβ = n̂ α p̂ β − n̂ β p̂ α . (1.20)
These operators are the generators of the group of rotations in N dimensions, denoted
O(N ). Their commutation relations follow straightforwardly from (1.17) and (1.20). The
case N = 3 will be of particular interest to us. For this we define L̂ α = (1/2) αβγ L βγ
(where αβγ is a totally antisymmetric tensor with 123 = 1), and then the commutation
relations between the operators on each site are
[ L̂ α , L̂ β ] = i αβγ L̂ γ ,
[ L̂ α , n̂ β ] = i αβγ n̂ γ ,
[n̂ α , n̂ β ] = 0; (1.21)
Note that there is a nondegenerate ground state with = 0, while all excited states are
two-fold degenerate, corresponding to a left- or right-moving rotor. This spectrum will be
important in the mapping to physical models to be discussed in Section 1.4.3. For N = 3,
the eigenvalues of HK are
corresponding to the familiar angular momentum states in three dimensions. These states
can be viewed as representing the eigenstates of an even number of antiferromagnetically
coupled Heisenberg spins, as discussed more explicitly in Section 1.4.3 and in Chapter 19,
where we will see that there is a general and powerful correspondence between quantum
antiferromagnets and N = 3 rotors.
We are ready to write down the full quantum rotor Hamiltonian, which will be the focus
of intensive study in Parts II and III. We place a single quantum rotor on the sites, i, of a
d-dimensional lattice, obeying the Hamiltonian
14 Basic concepts
J g̃ 2
HR = L̂i − J n̂i · n̂ j . (1.25)
2
i ij
We have augmented the sum of kinetic energies of each site with a coupling, J , between
rotor orientations on neighboring sites. This coupling energy is minimized by the simple
“magnetically ordered” state in which all the rotors are oriented in the same direction. In
contrast, the rotor kinetic energy is minimized when the orientation of the rotor is maxi-
mally uncertain (by the uncertainty principle), and so the first term in H R prefers a quantum
paramagnetic state in which the rotors do not have a definite orientation (i.e. n = 0). Thus
the roles of the two terms in H R closely parallel those of the terms in the Ising model H I .
As in Section 1.4.1, for g̃ 1, when the kinetic energy dominates, we expect a quantum
paramagnet in which, following (1.11),
Similarly, for g̃ 1, when the coupling term dominates, we expect a magnetically ordered
state in which, as in (1.14),
Finally, we can anticipate a second-order quantum phase transition between the two phases
at g̃ = g̃ c , and the behavior of N0 and ξ upon approaching this point will be similar to that
in the Ising case. These expectations turn out to be correct for d > 1, but we will see that
they need some modifications for d = 1. In one dimension, we will show that g̃ c = 0 for
N ≥ 3, and so the ground state is a quantum paramagnetic state for all nonzero g̃. The
case N = 2, d = 1 is special: there is a transition at a finite g̃ c , but the divergence of
the correlation length does not obey (1.2) and the long-distance behavior of the correlation
function g̃ < g̃ c differs from (1.27). This case will not be considered until Section 20.3 in
Part IV.
We will consider the N = 3 quantum rotors first, and expose a simple and important
connection between O(3) quantum rotor models and a certain class of “dimerized” anti-
ferromagnets, of which TlCuCl3 is the example we highlighted in Section 1.3. Actually
the connection between rotor models and antiferromagnets is far more general than the
present discussion may suggest, as we see later in Chapter 19. However, this discussion
should enable the reader to gain an intuitive feeling for the physical interpretation of the
degrees of freedom of the rotor model.
Consider a dimerized system of “Heisenberg spins” Ŝ1i and Ŝ2i , where i now labels a
pair of spins (a “dimer”). Their Hamiltonian is
Hd = K Ŝ1i · Ŝ2i + J Ŝ1i · Ŝ1 j + Ŝ2i · Ŝ2 j . (1.28)
i ij
15 1.4 Theoretical models
t
J
Fig. 1.4 A dimerized quantum spin system. Spins with angular momentum S reside on the circles, with antiferromagnetic
exchange couplings as shown.
The Ŝni (n = 1, 2 labels the spins within a dimer) are spin operators usually representing
the total spin of a set of electrons in some localized atomic states, see Fig. 1.4. On each
site, the spins Ŝni obey the angular momentum commutation relations
Ŝ α , Ŝ β = i αβγ Ŝ γ (1.29)
(the site index has been dropped above), while spin operators on different sites commute.
These commutation relations are the same as those of the L̂ operators in (1.21). However,
there is one crucial difference between the Hilbert spaces of states acted on by the quantum
rotors and the Heisenberg spins. For the rotor models we allowed states with arbitrary total
angular momentum on each site, as in (1.24), and so there were an infinite number of
states on each site. For the present Heisenberg spins, however, we will only allow states
with total spin S on each site, and we will permit S to be integer or half-integer. Thus there
are precisely 2S + 1 states on each site
holds for each i and n. In addition to describing TlCuCl3 , Hamiltonians like Hd describe
spin-ladder compounds in d = 1 [33, 102] and “double layer” antiferromagnets in the
family of the high-temperature superconductors in d = 2 [129,322,337,443,444,506,507].
Let us examine the properties of Hd in the limit K J . As a first approximation, we
can neglect the J couplings entirely, and then Hd splits into decoupled pairs of sites, each
with a strong antiferromagnetic coupling K between two spins. The Hamiltonian for each
pair can be diagonalized by noting that S1i and S2i couple into states with total angular
momentum 0 ≤ ≤ 2S, and so we obtain the eigenenergies
Note that these energies and degeneracies are in one-to-one correspondence with those of
a single quantum rotor in (1.24), apart from the difference that the upper restriction on
being smaller than 2S is absent in the rotor model case. If one is interested primarily
in low-energy properties, then it appears reasonable to represent each pair of spins by a
quantum rotor.
We have seen that the K /J → ∞ limit of Hd closely resembles the g̃ → ∞ limit of
H R . To first order in g̃, we can compare the matrix elements of the term proportional to
J in H R among the low-lying states, with those of the J term in Hd ; it is not difficult to
16 Basic concepts
see that these matrix elements become equal to each other for an appropriate choice of
couplings: see Exercise 6.1. Therefore we may conclude that the low-energy properties of
the two models are closely related for large K /J and g̃. Somewhat different considerations
in Chapter 19 will show that the correspondence also applies to the quantum critical point
and to the magnetically ordered phase.
The main lesson of the above analysis is that the O(3) quantum rotor model represents
the low-energy properties of quantum antiferromagnets of Heisenberg spins, with each
rotor being an effective representation of a pair of antiferromagnetically coupled spins. The
strong-coupling spectra clearly indicate the operator correspondence L̂i = Ŝ1i + Ŝ2i , and so
the rotor angular momentum represents the total angular momentum of the underlying spin
system. Examination of matrix elements in the large-S limit shows that n̂i ∝ Ŝ1i − Ŝ2i : the
rotor coordinate n̂i is the antiferromagnetic order parameter of the spin system. Magneti-
cally ordered states of the rotor model with n̂i = 0, which we will encounter below, are
therefore spin states with long-range antiferromagnetic order and have a vanishing total fer-
romagnetic moment. Quantum Heisenberg spin systems with a net ferromagnetic moment
are not modeled by the quantum rotor model (11.1) – these will be studied in Section 19.2
by a different approach.
Let us now consider the N = 2 quantum rotors, and introduce their connection to the
superfluid–insulator transition of bosons. For N = 2, it is useful to introduce an angular
variable θi on each site, so that
ni = (cos θi , sin θi ). (1.33)
The rotor angular momentum has only one component, which can be represented in the
Schrödinger picture as the differential operator
1 ∂
L̂ i = (1.34)
i ∂θi
acting on a wavefunction which depends on all the θi . The rotor Hamiltonian is therefore
J g̃ ∂ 2
HR = − −J cos(θi − θ j ), (1.35)
2
i
∂θi2
ij
which is a form that has appeared in numerous studies in different physical contexts. For
g̃ → ∞, the eigenstates of H R are of the form i |m i , where m i is the integer angu-
lar momentum quantum
number of site i; in the Schrödinger form, these states have the
wavefunction exp i i m i θi . Now we interpret m i as the change in occupation number
of a boson trapped in a potential which has its minimum at site i. The boson could be an
ultracold 87 Rb atom, or a Cooper pair in a superconducting quantum dot, as illustrated in
Fig. 1.5. The occupation number is measured with respect to a “background” number of
bosons found in the insulator, and hence m i can take negative values whose absolute value
does not exceed this number. In the rotor model, m i can run all the way to −∞, but as in
the N = 3 case, we do not expect these additional high-energy states to be important for
low-energy physics.
From the wavefunction of these localized boson states, we see that the term propor-
tional to J in (1.35) has the effect of shifting nearest-neighbor pairs of angular momenta
17 1.4 Theoretical models
t
Fig. 1.5 Bosons hopping on a lattice with potential minima at site i. Relative to an insulator with 2 bosons on each site, the
state shown has boson numbers mi = (. . . 0, −1, 1, 0 . . . ).
Having introduced our key players, the quantum Ising model (1.7) and the quantum rotor
model (1.25), we outline here the general strategy followed in describing their physical
properties in Parts II and III. We introduce the idea of a continuum limit, and the classical
and quantum field theories we will study. We also highlight some key questions in the
theory of quantum phase transitions, towards which much of the subsequent discussion is
directed.
A central concept which will play a fundamental role in our analysis is the connection
between (D > 1)-dimensional classical statistical mechanical models and the d-dimensional
quantum Ising and rotor models introduced in Chapter 1, where
D = d + 1. (2.1)
This mapping is not an exact equivalence in general, but does become quantitatively pre-
cise in the vicinity of continuous phase transitions, as we discuss below. The nature of
this general quantum–classical mapping will be discussed and its limitations and utility
will be highlighted. As we noted at the beginning of Chapter 1, the present quantum–
classical mapping should not be confused with the d-dimensional classical physics of d-
dimensional quantum models in the vicinity of T > 0 phase transitions, as in the shaded
region of Fig. 1.2.
We set the stage by simply writing down the D-dimensional classical statistical mechani-
cal models. For the quantum Ising case (which we often refer to as the N = 1 case, because
the order parameter has a single component), we consider the classical Ising partition func-
tion
⎛ ⎞
Z= exp⎝ K σiz σ jz ⎠, (2.2)
{σiz =±1} i, j
18
19 Overview
Our claim is that the above classical partition functions are “equal” (in a sense to be
made precise in Part II) to the partition functions of the quantum Ising and rotor models of
Chapter 1:
H I,R
Z ∼ Tr exp − . (2.4)
kB T
It is important to note that the temperature, T , of the quantum models has no connection to
the inverse temperature, K , of the classical models. Instead, as we will see, K determines
the value of the dimensionless coupling g in the quantum Ising and rotor models.
Before we can explain the “classical” interpretation of T , we need to describe the
quantum–classical mapping more precisely. We will show in Part II how the quantum parti-
tion function in (2.4) can be written in a Feynman “sum-over-histories.” In this picture, we
evolve the quantum states forward in imaginary time, τ , using the Heisenberg imaginary-
time evolution operator, exp(−H I,R τ ). We then see that it is useful to take a spacetime
point of view, in which τ is viewed as another dimension, along with the d spacetime
dimensions. In this manner, we obtain a partition function which is to be evaluated in D
spacetime dimensions, which will turn out to be the models in (2.2) and (2.3). This con-
nection is illustrated in Fig. 2.1.
Now we see from (2.4) that the quantum partition function is equivalent to an imaginary
time evolution over a length L τ , given by
Lτ = (2.5)
kB T
(momentarily inserting factors of and k B ). Thus the temperature T in the quantum model
H I,R maps to a finite size in the classical models (2.2) and (2.3). Because the quantum
trace in (2.4) involves the same initial and final traces, periodic boundary conditions are
imposed in the classical model along the τ direction. More formally stated, a quantum
model defined on a d-dimensional space R d maps onto a classical model on R d × S 1 ,
where the circle S 1 has circumference L τ . In particular, the classical model in infinite
D-dimensional spacetime maps onto a quantum model at zero temperature.
The above discussion gives a qualitative and intuitive picture of the mapping, but it is not
numerically precise, as it glossed over the limit of temporal lattice spacing a → 0 we will
t
x
Fig. 2.1 D-dimensional lattice on which (2.2) and (2.3) are defined. The spatial coordinate x is a schematic for d = D − 1
directions. The vertical co-ordinate is imaginary time, τ , and the quantum model evolves forward by exp(−HI,R a),
where a is the “distance” between neighboring rows. The total length of the time coordinate is Lτ = /(kB T), and
periodic boundary conditions are imposed along the time coordinate.
20 Overview
need to take. As we outline below, and discuss in more detail in Part II, mapping becomes
numerically precise in the vicinity of phase transitions.
The models (2.2) and (2.3) are central to the theory of finite-temperature phase transi-
tions in classical statistical mechanics. We will review their basic properties in Chapters 3
and 4. For all values of N in D > 2, and for N = 1, 2 in D = 2, these models display
a phase transition between a low “temperature” magnetically ordered phase for K > K c
and a high “temperature” disordered phase for K < K c . These phases are characterized
by correlations of the order parameter σ z , n in a manner closely analogous to the magneti-
cally ordered and quantum paramagnetic phases of Chapter 1. So in the K < K c disordered
phase we have, as in (1.26),
for large |xi − x j |, where the average is with respect to the classical partition function (3.2)
and xi is a D-dimensional coordinate. Similarly, for K > K c we have, in (1.27),
where N0 is the spontaneous magnetization (this does not apply to the special case D = 2,
N = 1, where the behavior for K > K c will be discussed in Section 20.3). Similar results
hold for the N = 1 case with the variable σ z . Upon approaching K c , N0 vanishes as a
power law, and ξ diverges as
ξ −1 ∼ a|K − K c |ν , (2.8)
with ν a critical exponent. Again, an exception to this is the case N = 2, D = 2 where the
divergence of ξ has a different form. Also for the cases N > 2, D = 2 there is no phase
transition at any finite K , but there is a diverging correlation length for K → ∞, and most
of the considerations below apply to these cases as well.
An important consequence of the divergence of the correlation lengths (2.8) and (1.2)
near the phase transition in both the classical and quantum models is that of universality.
This is the claim that most microscopic details of the lattice models do not modify the
essential structure of the corrections in the critical region at length scales of order ξ . With
ξ a, a lattice spacing, it seems reasonable that fluctuations of individual spins on the
lattice scale do not matter in their details, and some “renormalized” theory is important at
scales ξ and larger. This argument can also be made using energy scales of the quantum
model, in which case the requirement of universality is that J . We provide a specific
justification of the hypothesis of universality using the renormalization group in Chapter 4.
We can now make a more precise statement of quantum–classical mapping. The uni-
versal properties of the d-dimensional quantum Ising and rotor models in their region of
large correlation length are identical to those of the D-dimensional classical models (2.2)
and (2.3). Further, correlators of the classical model in D dimensions map onto imagi-
nary time correlators of the d-dimensional quantum model, where one of the classical D
dimensions behaves like the quantum imaginary time direction, and the remaining D − 1
classical directions map onto the d spatial directions of the quantum model. The mapping
has an immediate consequence: as the quantum imaginary time direction is simply one of
21 2.1 Quantum field theories
the spatial directions of the classical model, we compare (2.8) with (1.1) and (1.2) and con-
clude that we must have the dynamic exponent z = 1 for the quantum Ising/rotor models.
Having identified the appropriate universal limit of the quantum models, it is appropriate
to ask: what is the quantum theory that describes these universal properties? These turn out
to be continuum quantum field theories, which are introduced in the following section.
The following discussion will be carried out in the language of the quantum Ising and rotor
models. However, essentially the same arguments can also be made for the classical models
(2.2) and (2.3), as we will see in Chapters 3 and 4.
Let us consider the regime where |g − gc | is small, so that
J and ξ −1 . (2.9)
Suppose, further, that we are observing the system at a temperature T , a length scale x,
and a frequency scale ω, and all of these are of the order of the temperature, length, and
energy scales that can be created out of , ξ , and the fundamental constants. We will
then be particularly interested in dynamic response functions of the system near a quantum
critical point in the limit where the inequalities (2.9) are well satisfied. From a particle
theorist’s perspective, this means we are taking the limits → ∞ and J → ∞ while
keeping , ξ , x, ω, and T fixed. In terms of dimensionless parameters, this means we
are sending ξ → ∞ and J/ → ∞, while keeping ω/, x/ξ , and k B T / fixed. A
glance at (1.1) and (1.2) shows that these limits can only be taken while tuning g to become
progressively closer to gc . The complementary condensed matter theorist’s perspective
is that we are keeping and J fixed and looking at the system’s response at small ,
large ξ , and at long distances and times and low temperatures; the two approaches are
clearly equivalent as the limits of the dimensionless ratios are the same. The resulting
response functions can be considered to be correlators of a quantum field theory, which is
now associated with a Hamiltonian defined in the continuum and has no intrinsic short-
distance or high-energy cutoff. A quantum field theory shares many of the characteristics
of ordinary quantum mechanics, with a unitary time evolution operator defined by the
continuum Hamiltonian, except that it has an infinite number of degrees of freedom per
unit volume.
The physical utility of the quantum field theory relies mainly on its universality. As we
have sent → ∞ and J → ∞, it appears plausible that changes in the structure of H (g)
at the lattice scale will not modify the nature of the quantum field theory that eventually
appears, and the only consequence is a change in the values of the dimensionful parameters
and ξ (this change results from modifications of the prefactors in (1.1) and (1.2), which,
as we have already asserted, are nonuniversal). A general rule of thumb is that only essen-
tial qualitative features, such as the symmetry of the order parameter, the dimensionality
of space, and constraints placed by conservation laws, survive the continuum limit, and the
structure of the quantum field theory is severely constrained by these restrictions.
22 Overview
We have argued above that every second-order quantum phase transition defines a quan-
tum field theory in the continuum. Our attack on the quantum phase transition problem
in this book can be considered as consisting of two essential steps. First, we understand
and classify the various quantum field theories that can arise out of quantum phase transi-
tions in lattice Hamiltonians of physical interest. And second, we describe the dynamical
properties of these quantum field theories at finite temperatures. The latter will then model
the universal properties of the physical lattice Hamiltonians in the vicinity of the quantum
critical point.
We can now answer the basic question: what are the quantum field theories associated
with the second-order quantum phase transitions in the quantum rotor model H R in (1.25)
and the quantum Ising model H I in (1.7)? It is possible to give a common treatment of H I
and H R , with H I simply being the N = 1 case of a general discussion for H R . We attempt to
write down a Feynman path integral for the quantum partition function (2.4). As we argued
earlier, this is expressed in terms of a functional integral over all possible time histories (the
“sum over histories” formulation of quantum mechanics) of the rotor coordinate ni (τ ) over
an imaginary time 0 ≤ τ ≤ /k B T (and similarly for σiz for N = 1). Clearly, this time axis
is the (d + 1)th dimension of the corresponding classical model. The final quantum field
theory is conveniently expressed in terms of a coarse-grained field φα (x, τ ) defined by
φα (x, τ ) ∼ n iα (τ ), (2.10)
i∈N (x)
where c is a velocity, r and u are coupling constants, and the functional integral is over
fields periodic in τ with period /k B T (i.e. φα (x, τ ) = φα (x, τ + /k B T )). The two
23 2.1 Quantum field theories
nongradient terms in (2.11) arise from the polynomial expansion of the potential V (φα2 )
noted above; the spatial gradient term represents the energy cost for the spatial variations
in the orientation of the magnetic order. The time derivative term arises from the quantum-
mechanical tunneling terms proportional to J g (J g̃) in H I (H R ), and we will see how
they lead to second-order time derivatives in Chapters 5 and 6. This quantum field theory
undergoes a quantum phase transition, from a phase with φα = 0 to one with φα = 0,
by tuning the coupling r through a critical value rc at T = 0.
An alternative formulation of this quantum field theory is sometimes useful for analyzing
H R at small g̃ and for low values of d; this formulation applies only for N ≥ 2 and yields
a field theory with precisely the same universal properties as the formulation in (2.11).
The basic idea is that at small g̃, the predominant fluctuations will be variations in the
orientation of the local direction of ni . Also, the orientation should not vary significantly
from site to site, and we can therefore simply promote ni (τ ) to a unit-length continuum
field n(x, τ ) and obtain
Z= Dn(x, τ )δ n2 (x, τ ) − 1 exp(−Sn ),
/k B T
N
Sn = d
d x dτ (∂τ n)2 + c2 (∇x n)2 , (2.12)
2cg 0
where the small g̃ expressions for g and c are given in (6.11) and (6.51), and n(x, τ )
satisfies a periodicity condition similar to that for φα . This field theory is often called the
O(N ) quantum nonlinear sigma model in d dimensions, for obscure historical reasons. The
action is only quadratic in the field n(x, τ ), but the model is not a free field theory because
of the constraint n2 (x, τ ) = 1 imposed at each point in spacetime. Note also that (2.12)
is the obvious higher dimensional generalization of the D = 1 field theory (6.45) studied
in Chapter 3: instead of having only one “quantum” τ direction, we also have d additional
spatial directions labeled by x, along with the corresponding gradient squared term in the
action.
We note one important property of the quantum field theories (2.11) and (2.12), which
will not generalize to some of the other quantum phase transitions studied in Part IV. These
field theories are clearly invariant under “relativistic” transformations in spacetime, with
the velocity c playing the role of the velocity of light. Consequently spatial and tempo-
ral scales must behave equivalently near the quantum critical point; this implies that the
dynamic critical exponent must be z = 1, a value which is implicitly assumed in some of
the discussion in Parts II and III. Our discussion of transitions with z = 1 is deferred to
Part IV.
The description of the universal dynamical properties of (2.11) and (2.12) will occupy
a substantial portion of Part III. Formally, the imaginary time correlations of an infinite
d-dimensional quantum system at a temperature T are simply related to the correlations of
a D-dimensional classical system that is infinite in d directions and of finite extent L τ in
one direction.
24 Overview
The quantum–classical mapping discussed so far in Part I is in fact a very general result and
not a specific property of the Ising/rotor models. One can always reinterpret the
imaginary time functional integral of a d-dimensional quantum field theory as the finite
“temperature” Gibbs ensemble of a D-dimensional classical field theory. We will often
use this mapping between d-dimensional quantum mechanics and D-dimensional classi-
cal statistical mechanics, and we will refer to it as the QC mapping. However, in general,
the resulting classical statistical mechanics problem will not be as simple as it was for the
Ising/rotor models. Quantum critical points often have z = 1, and so correlators of the
classical problem will scale differently along the x and τ directions. Furthermore, as we
note below, there is no guarantee that the Gibbs weights are positive, and they could even
be complex valued.
Given this simple, and ubiquitous, quantum–classical mapping QC, one can now legit-
imately raise the question: why does one need a separate theory of quantum phase transi-
tions? Is it not possible to simply lift results from the corresponding classical theory and
obtain all needed properties of the quantum system? The answer to the second question is
an emphatic “no,” and a direct treatment of the quantum problems is certainly needed. The
reasons for this should become clearer to the reader on proceeding through the book, but
we note some important points here:
• Note that the quantum–classical mapping QC yields quantum correlation functions that are
in imaginary time. The most interesting properties of the quantum critical point are often
related to their real-time dynamics (e.g. their energy spectra, inelastic neutron scattering
cross-sections, or relaxation rates as measured in NMR experiments). To obtain these, one
needs to analytically continue the imaginary time results to real time. The crucial point
is that this analytic continuation is an ill-posed problem; that is, it is possible to continue
exact imaginary time results to real time, but anything short of an exact result leads to
unreliable, and usually unphysical, results. In particular, existing analytic results in the
theory of classical critical phenomena (with the exception of a single exact result in two
spatial dimensions that we shall consider in Chapter 10) are totally inadequate for obtaining
T > 0 dynamic properties of the corresponding quantum critical points; approximation
schemes which work in imaginary time usually fail after analytic continuation to real time,
i.e. the operations of expanding in a control parameter, and analytic continuation, do not
commute. The problem is particularly severe for the long time limit t /k B T , which
is usually of the greatest practical interest. These correlations are essentially impossible
to reconstruct from the equivalent classical problem, which only yields imaginary time
correlations in the domain 0 ≤ τ ≤ /k B T . It is therefore of crucial importance that the
theory be constructed using the physical concepts of the quantum critical point and that
it formulate the dynamic analysis directly in real time at all stages.
• We will see in the following chapters that a fundamental new time scale characterizing
the dynamic properties of systems near a quantum critical point is the phase coherence
25 2.2 What’s different about quantum transitions?
time, τϕ . Loosely speaking, τϕ is the time over which the wavefunction of the many-body
system retains memory of its phase. Local measurements separated by times shorter than
τϕ will display quantum interference effects. Precise definitions of τϕ have to be tailored
to the physical situation at hand, and these will be presented later for the models and
regimes considered. In most cases τϕ is closely related to the thermal equilibration time,
τeq , discussed in Section 1.2. The phase coherence time has no analog near the corre-
sponding classical critical point in D dimensions. Note from (2.5) that an infinite D-
dimensional classical system maps onto a d-dimensional quantum system at T = 0; in
all the models we shall consider in this book, the latter will have either a unique ground
state or one with a degeneracy small enough that the entropy is not thermodynamically
significant: under these circumstances we can expect that it is always possible to define
a τϕ that is infinite at T = 0, and therefore the quantum system has perfect phase coher-
ence at sufficiently low temperatures. From the infinite D-dimensional classical point of
view, however, this result may seem extremely peculiar. Most such systems have a high-
“temperature” disordered phase in which there is no long-range order and all correlations
decay exponentially over very short scales. Yet we are claiming that such a disordered
state maps onto a corresponding “quantum-disordered” state, which is characterized by
correlations that have an infinite correlation time (there is also a long length scale, the
distance excitations can travel in a time τϕ – for related remarks from experimental-
ists’ perspectives, the reader should see the articles by Mason et al. [320] and Aeppli
et al. [4]); for this reason we shall eschew the commonly used “quantum-disordered”
appellation and refer to this state, as noted earlier, as a quantum paramagnet. This pecu-
liarity is closely related to the ill-posed nature of the analytic continuation noted above.
Quantum systems at T = 0 really do have a genuinely different long-range phase corre-
lation in time that is almost completely hidden once the mapping to imaginary time and
the corresponding classical system has been performed. Only for T > 0 does the τϕ of
the quantum system become finite. An important purpose of this book is to show how to
introduce a characterization of quantum states that demonstrates the perfect coherence at
T = 0, to show how to compute τϕ for T > 0, and to highlight the crucial role played by
τϕ in the structure of the dynamic correlations. The manner in which τϕ → ∞ as T → 0
is an important diagnostic in characterizing the different T > 0 regions in the vicinity
of the quantum critical point. We shall find that, in all of the models we study, the time
L τ in (2.5) appears as a lower bound on the rate of divergence of τϕ as T → 0, that is,
τϕ ≥ C as T → 0, (2.13)
kB T
where C is a number of order unity. Our estimates of τeq in Section 1.2 are clearly con-
sistent with (2.13). In the quantum critical region of Fig. 1.3, the inequality in (2.13) is
saturated; this region will be of particular interest to us. Its dynamical properties have
not been studied until recently, and we will find that they have many remarkably uni-
versal characteristics even though their saturating the lower bound on τϕ implies that
their physics is maximally incoherent. Because of this shortest possible τϕ , the quantum
critical region realizes a “nearly perfect” fluid, as we will discuss briefly in Section 15.5.
Exploring the Variety of Random
Documents with Different Content
nuraghe per memoria e non mi dimenticare nei tuoi canti». Ha
veduto nella sua visione, sopra l'isola fiorita d'asfodeli e commossa
dall'ànsito dei giganti dormienti, l'altare ciclopico di macigni non
cementati se non dal tritume dei millennii.
Così vedrà nell'ombra della basilica romana il colosso di pietra «quasi
belva, quasi dio»; ed esprimerà al fratello perduto l'altro vóto, il
supremo. «Portagli una corona di cipresso in memoria di me, e
deponila su le grandi ginocchia ove sognando mettemmo il nostro
avvenire.»
Mirabile fato, quello del superstite domatore di fiumi! Per riuscire a
inventare la sua virtù, qual somma di forze ha dovuto egli raccogliere
e costringere! Non lo sostiene alcuna ebrezza, né il fascino del canto,
né la rivelazione dell'oltrepassato amore. Anche la sua volontà di
beneficio diviene inefficace. Egli conosce che ogni consolazione è
vana per la creatura che può soffrire sinché più non senta la sua
sofferenza. L'anima eroica respinge da sé ogni cosa lene come la
ruota che gira vertiginosamente. La compiuta virtù genera la
compiuta solitudine. E l'amico e la sorella partendosi da lui, gli
ripetono la medesima dura parola: «Dove io vo, tu non puoi
seguirmi». Egli è solo come nessun altro. L'acqua ha cessato di
sorridere nell'Universo. Ma il regolatore dell'Elemento inesauribile sa
dire a sé stesso: — «Taci, o profondo. Consólati d'aver tutto perduto,
se in te è rimasto quel senso nuovo che ti farà scoprire domani la
nuova sorgente».
Anche gli eroi della mia tragedia, travolti dalla sventura o sorpresi
dall'Ate carnale, si sforzano di obbedire a quel comando e cercano di
uccidere «la bestia inferma nel loro fango penoso». La mia
recentissima opera sviluppa in forma tragica taluno dei più attivi
fermenti ond'è fervido quel carme che il poeta considera come
ah di sì lieve
bellezza che parveci entrasse
in noi non pel varco dei sensi
ma com'entra un puro pensiero.
Tuttavia ella era ieri anche più bella, mentre la contemplavo stando
di là dalla folta selva di pini che mi nascondeva il mare. Non era ella
come il sogno ieri ma come la vita, ma come una vita che sorgendo
dalla più remota malinconia e melodia della Terra si palesasse a
sommo della rupe in quella guisa indicibile onde appare nello
sguardo dell'uomo il sùbito ardore dell'anima. La «materia
prometèa» sembrava a un tratto divenuta impaziente di attendere lo
scalpello e il martello del Titano, pronta a foggiarsi da sé medesima
secondo la sua aspirazione, pronta a dare da sé medesima alla sua
massa l'effigie del suo spirito, in quella guisa indicibile onde l'anima
dell'uomo sembra crear dall'interno l'ossatura che la significa. E non
mai la parola della sera aveva parlato nel mio cuore con una musica
tanto religiosa.
La distesa umile dei campi era oscurata, sotto quella grandezza in
punto di trasfigurare; e fumigava quasi cerulea di mirra senza odore.
Io stava ai piedi d'un alto pioppo, ch'era l'ultimo d'un lungo ordine
d'eguali; ed ecco, udii il fremito della cima, e alzai il capo a
guardare. E la tregua della contemplazione fu rotta, perché invidiai
l'albero; che è un uomo più saggio e più antico. Egli vedeva due
spettacoli con la sua cima fremente: vedeva l'Alpe e vedeva il Mare.
E io sentii con affanno, guardando il lucido moto delle frondi bicolori,
sentii che lo spettacolo a me nascosto dal folto della selva era il più
bello. «Che mai sarà la luce su la marina, se il suo riflesso è tanto
bello su la montagna?»
Allora, meditando per i sentieri silvani, scopersi il viso virgineo di una
semplice verità; il quale mi diede tanta gioia che mi compensò di
quell'affanno. E consacrai l'apparizione alla cima del pioppo candido,
e il pioppo al mio dèmone.
E Oggi, o amico, mentre ti offro questa mia opera e raduno le pagine
ancor calde di un'altra e mi preparo alla dipartita autunnale, io
rinnovo al dèmone il voto di ieri: «Concedimi che in questo luogo
dove tutto è alto e puro e degno di ripercuotere il grido fùnebre di
Niobe già qui dalla mia anima udito, concedimi che in questa
solitudine io termini di scolpire la mia propria statua secondo le leggi
che m'assegnasti tu solo».
La Versiliana, 30 novembre 1906.
PIÙ CHE L'AMORE.
LE PERSONE DELLA TRAGEDIA.
Maria e Virginio Vesta.
Corrado Brando.
Marco Dàlio.
Giovanni Conti.
Rudu.
Vespero, luce sui culmini sola, membra d'oro titaniche sparse nella
montuosa nube, o morte e bellezza diffuse per tutto lo spazio!
Ecco la mia agonia, ecco la mia agonia.
Fatto è il vespero su la nudità dei fiori primi, su la primavera impube
ancor nuda di foglie, che tocca a quando a quando le rinate creature
con le mille e mille dita leggère della sùbita pioggia. E ancóra la
pioggia intermessa arieggia nell'aria la sorella sua bianca.
Ecco la mia agonia.
Colui ch'è dato al sepolcro, o profonde radici, vuole interrogarvi.
Ditegli il segreto di sotterra, che vi nutre; ditegli la parola senza
voce, onde traete la duplice forza del discendere e del salire, l'amore
della terra e del cielo. Una cosa è, ch'ei non vede. Una cosa non
vede colui che osò mirar con occhi novelli un tempo novello.
Madre, perché mi fendesti pel mezzo la pàlpebra molle e v'includesti
la cecità dello sguardo carnale che si corrompe? Sol perché ne
sgorghi l'onda di quell'oceano amaro che da tutti i petti si leva fino in
sommo delle gote e trabocca. Ma non piangerò.
Corrado Brando.
La linea retta, quella che tu segni là con la tua riga d'acciaio: una
mèta certa; e sia pure una ruina certa, la caduta irreparabile, lo
stroncamento dei due gomiti e delle due ginocchia; ma un sì o un
no. Intendi? Questo volevo dalla vita.
Virginio lascia il tiralinee e la riga, alzando il
capo.
Virginio Vesta.
E la vita non ti ha già risposto?
Corrado.
Come?
Virginio.
Sei ancora di qua dai trent'anni, e hai già potuto compiere una
grande azione.
Il rancore indurisce lo sguardo dell'inquieto e
gli contrae la bocca.
Corrado.
Senza gloria, a beneficio altrui.
Virginio.
Che importa? Sei tu di quelli che hanno bisogno della fanfara per
muovere all'assalto e della mercede per combattere?
Corrado, impetuosamente.
Sono di quelli che portano dentro di sé la bestia selvaggia e, lontani
dal deserto, nella ressa degli uomini, non hanno altra scelta se non
tra la cupidigia e la mortificazione, tra il crimine e l'ignavia.
Egli si sofferma davanti alla maschera che
l'attira.
Virginio.
Guardala bene, la maschera del sordo Beethoven. T'insegna il
coraggio e la solitudine, la pazienza e la lotta silenziosa. Più la vita è
constretta, più è alta; più s'inalza e più diventa dura.
Corrado.
Che m'insegna costui? M'insegna il furore e il turbine. Quando tua
sorella suona qualcuna di quelle musiche, la tempesta solleva tutte
le forze dell'anima e le aggira e poi le sbatte e schiaccia contro un
muro di granito; oppure, lo sai, un artiglio ostinato ti scava nel vivo
del cuore per ritrovarti e lacerarti le radici del sogno più nascoste. Tu
stesso allora diventi pallido.
Virginio.
Perché sento sorgere dentro di me la mia vera vita che non è quella
mediocre di tutti i giorni, in cui mi curvo e mi logoro.
Corrado.
Che chiami tu la tua vera vita?
Virginio.
Una potenza velata dalla sua stessa bellezza.
Corrado.
Una potenza senz'atti, senza regno?
Virginio.
Che trasfigura gli atti, che non ha limiti al suo regno; che di me,
umile ingegnere idraulico irto di moduli logaritmici di formule
trigonometriche e di equazioni generali, fa il regolatore dell'Elemento
inesauribile che circola in tutte le creature viventi dalla pianta
all'uomo, il signore dell'acqua mediatrice e macchinatrice, comune a
tutto ciò che vive, mista alla nostra carne e alla fibra dell'albero,
eguale nel nostro cuore e nell'acino d'uva, nella nuvola e nella
lacrima. E m'avviene di ripetere in me il cominciamento del Trattato
di Leonardo, come una preghiera della mia infanzia, perché l'acqua è
il sangue e la linfa del mondo. E, per più conoscerla, più l'amo,
obbedendo alla sentenza di quel primo maestro; e quanto più l'amo
tanto più so dominarla, perché l'amore mi trasmuta la mia scienza in
arte e l'arte mi trasfonde nella cosa amata, di modo che l'intuito
talvolta mi precorre il calcolo come se fosse nato in me un senso
nuovo e in tutti i miei spiriti fosse qualcosa di simile a quell'acume
che portano nell'udito i cercatori di sorgenti.
Corrado.
Così tu dici che la tua vita vera è la poesia.
Virginio.
Ma la poesia è la realtà assoluta, è l'essenza stessa dell'Universo; e
la trovi qua in questa arida tabella di valori come là nelle linee
dell'Ilisso fidiaco. Ogni scienza, posta in condizioni vitali, diventa
un'arte. Per ciò io che tratto i fiumi con argini e burghe, con chiuse e
incili, ardisco tenere accanto all'archipenzolo il calco d'una statua
fluviale che ornava la fronte del Partenone. Quando io freno un
torrente con le mie briglie e le mie traverse, quando diramo per una
pianura i miei canali irrigatori, quando imprigiono la polla dei monti
nel mio tubo di ghisa e la conduco alla città distante, quando traggo
la massima forza dalla corrente e dalla cascata con la mia ruota e la
mia turbìna, io credo avere nel mio polso il battito dei ritmi fluidi; e
l'eterna pulsazione dell'Elemento accompagna e infervora i miei
calcoli esatti. E, se io determino l'angolo d'uno sbocco o una sezione
di minima resistenza, la pressione di una condotta o lo spessore d'un
serbatoio, la curva interna d'una paletta o la sua inclinazione sul
raggio, io sento rinascere in me quel sentimento primitivo delle
energie naturali che faceva religiosa l'anima dello statuario greco
intento a figurare il mito cosmico nella statua bella. Anzi quel
sentimento antichissimo diviene, in me moderno, ancor più profondo
e pio; perché la scienza rivelandomi le leggi della Natura mi ha ancor
più certamente mescolato al circolo delle forze inconsce. E, quando
io traccio la linea stabilita dal mio calcolo, non meno ardua e non
meno delicata di quella che circoscrive quel tòrso ammirabile, io
sento il mio istinto tendersi verso l'apparizione di una bellezza nuova,
perché la mia linea non trasmuta in effigie umana una energia
naturale ma a questa imprime il moto della mia volontà per condurla
a un'opera più varia e più vasta, destinata non alla contemplazione
ma all'azione, non all'ornamento del mondo ma alla conquista del
mondo. Ed ecco che la furia del torrente è constretta nell'alveo, ecco
che la terra irrigata moltiplica il pane, ecco che la città si disseta si
terge s'illumina si abbellisce si arma, beneficata dalla dispensatrice
che senza stanchezza propaga e trasforma di congegno in congegno
il suo potere. E, mentre io considero l'opera che non è fissa come
quella statua ma è mobile come il mio cuore, sento veramente con
l'Antico che «dall'acqua vien l'anima» e che quella è la stessa per cui
la mia sete comunica con la sete di tutti gli uomini, la stessa per cui
si compie il prodigio segreto nella macchina delle nostre ossa, la
compagna dello sforzo e dello strazio umano, acre nel nostro sudore,
amara nel nostro pianto.
Corrado.
Anche tu soffii nel tuo sogno il male della tua anima, per consolarti.
Virginio.
È
No. Il mio sogno è stabile e regge il mio peso. È il gradino su cui
salgo per avvicinarmi alle mie speranze.
Corrado.
Io non conosco se non quello che aderisce all'atto come il bagliore a
ciò che riluce. Il mio più gran sogno aderiva alla mia vita, una notte
di marzo, laggiù nel paese dei Galla, di contro alla montagna
coronata di fuochi, mentre giungeva di tratto in tratto al nostro
piccolo campo il grido di guerra rimbombante d'altura in altura giù
pel fiume sconosciuto; e io avevo gli occhi bene aperti nel buio, il
mio buon fucile tra le mani, fitta nel centro della mia volontà la mèta
come un cùneo, tutta vivente intorno a me l'immensità del
Continente nero, nelle narici quell'odore d'Africa che non abbandona
mai più il cervello di chi l'ha fiutato una volta. Coricato sentivo la mia
anca imprimersi nella terra molle con un cavo che poteva anche
essere il principio della mia fossa; e allora tutte le tombe italiane
sparse nelle vie tenebrose mi risplendevano innanzi all'anima più che
i fuochi dei Galla sul monte, mentre udivo nelle tregue del clamore
nemico il respiro dei miei Sudanesi e dei miei Somàli accosciati tra le
euforbie. Mi ricordo: era il 21 di marzo, l'equinozio di primavera.
L'altrieri cadde il secondo anniversario.
Virginio.
Devi averlo santificato.
Corrado.
Sì, passando la notte in una bisca, tentando per l'ultima volta la
fortuna ignobile con qualche biglietto untuoso.
Virginio.
Perché cerchi di offendere e di scacciare così crudamente l'eroe che
è dentro di te?
Corrado.
È dentro di me? Dunque è prigioniero. E ogni prigioniero si fa astuto
e malvagio; o diventa folle, ritrova la sua libertà nella follia. L'aria
vivida, il pericolo prossimo, il cuore pieno d'allegra temerità: ecco
quel che gli converrebbe.
Virginio.
E non sai dunque aspettare?
Corrado.
Aspettare che cosa? Quando l'albero è divenuto grande, che cosa
aspetta? La folgore? Ma anche la folgore tarda, o non vien mai.
Virginio.
Aspettare il tuo giorno, disciplinando la tua forza.
Corrado.
Ah, la forza immobile nell'attesa dell'esplosione! Conosco questa
attitudine. È ben quella di molti tra i nostri coetanei, oggi. Hanno
sempre in mano la miccia accesa, e la guardano mentre si consuma,
finché non si sentano bruciare le dita. I più accorti, invece della
miccia, accendono un fuoco di bengala coi colori nazionali. E gridano
di tratto in tratto: «È tempo. I tempi sono prossimi». Tempo di che?
Virginio.
Quando tutta una generazione aspira verso un nuovo Ideale è segno
che i grandi esemplari stanno per riapparire dalla profondità della
stirpe.
Corrado.
O Virginio, l'Ideale posto fuori della vita è una specchiera publica per
vanesii e poltroni. L'Ideale d'un popolo magnanimo non precede i
suoi fatti ma è l'irradiazione emanata dai suoi fatti nella lontananza
del tempo. Com'è d'un popolo, così è d'un uomo. E io mi vergogno
d'esser divenuto il comediante del mio Ideale, segnato a dito su i
marciapiedi urbani. «L'uomo dalle spalle quadre» dicono «è Corrado
Brando, quello del Giuba. Il capo della spedizione l'ha molto lodato
per la sua abilità nel cucinare la carne d'ippopotamo e nel cucire le
ferite ai negri con lo spago. Ora vuol tornare in Africa, a ogni costo.
Bella passione! Intanto si esercita su per le scale dei Ministeri e della
Società geografica, in questue; e passa le notti nelle bische per
veder di vincere, o di barare, alcune di quelle migliaia di lire che
l'ingrata patria gli nega e che pur gli bisognano al fornimento. Ma
come mai non porta a guinzaglio un paio di leoncini?»
Nel riso acre sembrano stridergli i denti.
Virginio.
No, non ridere di quel riso cattivo. Tu affermi che la contraddizione e
la guerra sono per la tua natura gli stimoli più efficaci a vivere e ad
amare la vita. Ed ecco, l'impedimento ti esaspera e ti disgusta! Ma
non v'è eroismo senza impedimento: l'una cosa e l'altra sono
indissolubili, come la natività e il dolore.
Corrado.
L'impedimento formidabile da abbattere o da sormontare; non
l'inciampo, l'impaccio, l'intrigo.
Virginio.
La povertà, le miserie domestiche, i fastidii cotidiani, le bisogne
umilianti ed estenuanti, la malattia, l'ingiustizia, l'ingratitudine, il
dileggio: non sono queste le ombre di tante vite illustri a cui
domandiamo ogni giorno il segno di luce per andar più oltre?
Corrado.
Pronto io sono, per la mia mèta, a prendere su me quel che v'ha di
peggio in terra, risoluto anche ai sacrifizii umani. Tu mandami là
dove io ho lasciato la mia virtù, e poi dammi da compiere quel che è
più difficile e più atroce: io lo compirò senza mai volgermi indietro né
mai mettermi a giacere. Quel che non mi fa morire mi rende più
forte. Ma pur mandami e dimmi che io vado a morire, che avrò il mio
tumulo in una regione non mai calpesta da uomo bianco. Andrò
senza esitare, cantando. La sera che giunse a Roma la notizia della
morte di Eugenio Ruspoli, il sentimento dell'invidia soverchiò ogni
altro e mi divorò il cuore. A Burgi, su la via del Daua che primo
aveva percorso, egli ha per monumento un ramo secco fitto in un
mucchio di terra, agguagliato nel sepolcro ai capi della gente Amarr.
Per quella via io voglio ritrovare le sue tracce, ma andar più oltre,
assai più oltre, risalire il Daua, cercar di sciogliere l'enigma del fiume
Omo... E poi... Ho il mio pensiero, anzi ho il mio impero, una parola
romana da rendere italica: Teneo te, Africa. Ah, se tu potessi
comprendere! Ah, se tu avessi provato una volta quel che io provai
quando di là da Imi entrammo nella regione ignota, quando
stampammo nel suolo vergine l'orma latina! Ancora vedo i branchi
d'avoltoi e di cicogne levarsi sul Uebi, odo il fischio dell'aquila
pescatrice...
Virginio.
Ti comprendo. Comprendo la tua passione e la tua nostalgia; e, non
so perché, m'aiuta un ricordo della nostra adolescenza, il ricordo di
quella sera su la via Cassia quando ci smarrimmo e a notte ci
ritrovammo su l'Arrone e tu volesti salire la rupe vulcanica per
entrare nelle rovine di Galera e tutta notte errasti aprendoti la via tra
i pruni fitti, e all'alba eri stillante di sangue e di rugiada quando ti
addormentasti sul tufo... Ti rammenti?
Corrado.
Mi rammento. Presi la febbre. Allora il fiumicello Arrone bastava alla
mia sete... Dianzi tu mi parlavi dell'acqua: tu la dòmini e la governi e
nondimeno l'ami, la tratti come una schiava divina... Ma ci sono
ancóra fiumi nel nostro paese? Non sono tutti disseccati? Ah, sì, c'è
là il Tevere, carico di belletta e di storia; e tu sei uno di quelli che lo
serrano tra due muraglioni lisci e diritti. Se fosse un poco più piccolo
potrebbe forse anche entrare in un museo...
Beffardo ride; poi s'illumina di veggenza.
Corrado.
L'altra notte, la notte dell'anniversario, sul tappeto verde c'era
denaro bastevole per arruolare armare ed equipaggiare una scorta di
duecento àscari con muli asini cammelli vettovaglie e mercanzie di
scambio. Mentre la sorte nemica di colpo in colpo mi riduceva
inesorabilmente al muro, io seguivo nella mia imaginazione tutta
l'opera dell'allestimento; e vedevo sul tristo sabbione della costa le
mie balle, le mie casse, le mie tende e i miei uomini e le mie bestie
da soma e da macello, e l'ombra mostruosa delle gigantesche
ceppaie senza foglie su la duna oceanica. Gli orecchi mi rombavano
come se avessi preso dieci grammi di chinino, e sentivo intorno alla
mia persona non so che aura isolante. Di tratto in tratto la mia
visione s'interrompeva, e intorno m'apparivano i miei compagni di
giuoco ridicoli e miserevoli come nell'incoerenza d'un sogno, anemici
o apoplettici, giallognoli o scarlatti, alcuni rasi e flosci come istrioni,
altri imbellettati e tinti come meretrici; e il lezzo nauseante delle
pomate e dei fiati guasti si mescolava in me all'odore imaginario
della mia carovana e al soffio dell'Oceano Indico. Ma l'uomo che
teneva il banco era spaventoso: il suo cranio calvo, con in mezzo un
solo ciuffetto crespo, mi ricordava un cammelliere tunno, e il suo
grosso labbro pendente mi ricordava una vecchia arpia venditrice di
burro che avevo veduta al mercato di Bèrbera. Il denaro
s'accumulava dinanzi a lui; ed egli lo radunava senza fretta,
separando la carta dall'oro, con una mano di quadrùmane mezzo
nascosta dal polsino inamidato. Poco rimaneva agli altri; a me un
gruzzolo d'oro, quanto n'entra nel pugno. E ciascuno sentiva che su
la tavola il vortice silenzioso continuava a volgersi per il verso di
quell'uomo, e che era impossibile salvare quei resti. Rividi uno dei
miei Sudanesi, un colosso, piombato dall'alto in un gorgo del Uelmàl,
aggirato come un guscio di banana, inghiottito in un attimo. Pareva
che mi risalisse al cervello l'idromele dei Galla, o che mi tornasse
improvviso un accesso del mukunguru, della febbre d'Africa. Avevo
un dolore sordo tra le spalle, il battito alle tempie, lampi
d'allucinazione negli occhi. Raccogliendo quel poco d'oro per
puntare, mi venne in mente — non so perché — il modo che tennero
i Somàli nell'uccidere Pietro Sacconi mentre parlamentavano: uno gli
gettò in viso una manata di sabbia, un altro gli diede un colpo di
lancia nel costato. L'imagine interna fu così forte che mi comunicò ai
muscoli uno di quei due moti; la riscossa della volontà riescì a
trattenere il braccio che era per scagliare la manata di metallo sul
viso dell'uomo calvo, ma non così che il mio gesto nel porre la posta
non apparisse scorretto. Colui levò gli occhi bianchicci, e io vidi sul
suo grosso labbro una parola acre spuntare e rientrare. Egli aveva
incontrato il mio sguardo e non aveva osato. Non so quale fosse
l'attitudine dei presenti in quel punto, perché da una banda e
dall'altra vedevo buio come nella notte di due anni innanzi tra le
euforbie abbattute dal passaggio degli elefanti. E qualche cosa di
opaco, di carnale m'ingombrava dentro. Sentivo in quell'uomo la
paura fisica di me, e in me la facilità di annientarlo. Sapevo che avrei
potuto prenderlo per la collottola e ch'egli si sarebbe lasciato
scuotere senza rivoltarsi, come quei cani che s'abbiosciano sotto il
castigo e nel pugno del padrone diventano tutta pelle mencia. Lo
avrei scosso dicendogli: «Lascia là il bottino che non è tuo, bestia
immonda; serve a me, alla mia idea, alla mia passione; mi serve a
morire come mi piace in qualche parte che non sia quella che tu
appesti». Ma allora anche l'ultima posta fu perduta. E allora giocai su
la parola, vertiginosamente. A un certo punto udii la mia voce dire
nel silenzio, chiara e ferma: «Voglio pagare il mio debito con una
moneta che porti la mia effigie». Sussultai con un po' di freddo nella
radice dei capelli; e, ridivenuto lucido, guardai intorno alla tavola.
Tutti erano fissi nel fascino della sorte: nessuno aveva udito. La mia
voce era rimasta in me.
A poco a poco, nel racconto egli s'è lasciato
trascinare dall'istinto micidiale ed ha rivissuto
con straordinaria potenza nell'orrore di quella
tentazione notturna. Ora si arresta, preso da
un fugace smarrimento. Ma sùbito riacquista
il dominio di sé; e riafferra l'ironia contro
l'amico sconvolto.
Virginio.
Corrado!
Corrado.
Che hai? Sei commosso.
Virginio.
Sì. Mi fai pena.
Corrado.
Mi hai visto pronto alla rapina? Che pensiero t'è passato per la
mente? Ti aspetti ora una confessione terribile?
Il riso gli riluce sui denti.
Virginio.
Tu mi sembri malato.
Corrado.
Perché t'ho raccontato un sogno d'infermo?
Virginio.
C'è qualche cosa d'estraneo in te.
Corrado.
Che cosa?
Virginio.
Non so. Ma tu parli, parli; e sento che le parole girano sempre
intorno a un pensiero che resta celato.
Corrado.
Altro è il pensiero, altro è l'atto, altro è l'imagine dell'atto. Intorno a
quale di queste tre cose io giro?
Virginio.
Corrado, ti prego: non tener lontano da te con questa ironia
convulsa il tuo amico che sente in fondo a te l'angoscia chiusa e
vorrebbe avvicinarsi al tuo cuore.
Corrado.
Confessa: tu m'hai in sospetto.
Virginio.
In sospetto di che?
Corrado.
D'aver santificato l'anniversario al modo dei Somàli.
Virginio.
Ma che dici? Ma perché seguiti a nasconderti dietro quel falso riso?
Tu soffri.
Corrado.
Vedi che non puoi dissimulare la tua commozione.
Virginio.
Sono il tuo amico, il tuo fratello, da anni e anni; so quel che vale la
tua speranza; e ti sento in pericolo.
Corrado.
In pericolo di che?
Virginio.
Penso a quel che dicevi, dianzi, del prigioniero; che incattivisce o
ritrova la libertà nella follia.
Corrado.
Cerco, infatti, la mia libertà. Ho abolito il mio passato dietro di me,
ho schiacciata la vecchia maschera brutalmente, come col calcio del
fucile si fa del ceffo d'uno schiavo una cosa informe. La mia ultima
solitudine incomincia. Io non posso più essere il tuo amico.
Virginio.
E perché mi rinneghi?
Corrado.
Perché, se tu vuoi avere un amico, bisogna che tu voglia anche fare
la guerra per lui.
Virginio.
Quando io lotto contro di te, allora sono più vicino al tuo cuore.
Corrado.
Tu lotti contro la mia ragione di vivere. Per te la vita è un dovere?
Per altri è una fatalità, per altri un inganno; per me è un mezzo di
esperimento e di conoscimento, una vicenda di rischi e di vittorie.
Quel che tu chiami la mia speranza esige un'anima guerriera, la più
dura scorza, la ricerca di ciò che non fu osato, la capacità di fare
Welcome to our website – the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
ebooknice.com