0% found this document useful (0 votes)
58 views32 pages

Differential Equations (DE)

The document outlines a course on Differential Equations taught by 丁建均, including details on class schedule, grading, and office hours. It provides information on the textbook, course structure, and important dates for assignments and exams. Additionally, it covers fundamental concepts of differential equations, including definitions, types, and initial value problems.

Uploaded by

b11901146
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
58 views32 pages

Differential Equations (DE)

The document outlines a course on Differential Equations taught by 丁建均, including details on class schedule, grading, and office hours. It provides information on the textbook, course structure, and important dates for assignments and exams. Additionally, it covers fundamental concepts of differential equations, including definitions, types, and initial value problems.

Uploaded by

b11901146
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 32

1

工程數學--微分方程
Differential Equations (DE)
授課者:丁建均
教學網頁:http://djj.ee.ntu.edu.tw/DE.htm
(請上課前來這個網站將講義印好)

歡迎大家來修課!
2
授課者:丁建均
Office: 明達館723室, TEL: 33669652
Office hour: 週一至週四的下午皆可來找我
個人網頁:http://disp.ee.ntu.edu.tw/
E-mail: jjding@ntu.edu.tw

上課時間: 星期三 第 3, 4 節 (AM 10:20~12:10)


上課地點: 明達205
課本: "Differential Equations-with Boundary-Value Problem,"
Dennis G. Zill and Michael R. Cullen, 9th edition, 2017.
(metric version, international version)
評分方式:四次作業 15%, 期中考 42.5%, 期末考 42.5%
教學網頁:http://djj.ee.ntu.edu.tw/DE.htm
共同教學網頁: http://cc.ee.ntu.edu.tw/~tomme/DE/DE.html
3
注意事項:

(1) 本課程採行雙軌制,同學們可以來現場上課,或是可觀看
NTUCool 的影片

(2)請上課前,來這個網頁,將上課資料印好。

http://djj.ee.ntu.edu.tw/DE.htm

(3) 請各位同學踴躍出席 。

(4) 作業不可以抄襲。作業若寫錯但有用心寫仍可以有
40%~90% 的分數,但抄襲或借人抄襲不給分。

(5) 每次作業有11題

(6) 我週一至週四下午都在辦公室,有什麼問題 ,歡迎同學們


來找我
上課日期 4
Week Number Date (Wednesday) Remark
1. 9/6
2. 9/13
3. 9/20
4. 9/27: HW1
5. 10/4
6. 10/11
7. 10/18: HW2
8. 10/25: Midterms 範圍: (Sections 2-2 ~ 4-5)
9. 11/1
10. 11/8
11. 11/15
12. 11/22: HW3
13. 11/29
14. 12/6
15. 12/13: HW4
16. 12/20: Finals 範圍: (Sections 4-6 ~ 12-4)
課程大綱 5

Introduction (Chap. 1)
解法 (Chap. 2)
First Order DE 應用 (Chap. 3)
矩陣解 (Chap. 8,範圍外)
解法 (Chap. 4)
Higher Order DE 應用 (Chap. 5,範圍外)
非線性 (Sections 4-10, 5-3, 工數特論)
多項式解法 (Chap. 6)
解法 (Sections 12-1, 12-4)
Partial DE
直角座標 (Chapter 12,工數特論)
圓座標 (Chapter 13,工數特論)

Laplace Transform (Chap. 7 ,範圍外)


Transforms Fourier Series (Chap. 11)
Fourier Transform (Chap. 14,工數特論)
6
授課範圍

期中考範圍 Sections 1-1, 1-2, 1-3


Sections 2-1, 2-2, 2-3, 2-4, 2-5, 2-6
Sections 3-1, 3-2
Sections 4-1, 4-2, 4-3, 4-4, 4-5

期末考範圍 Sections 4-6, 4-7


Sections 6-1, 6-2, 6-3
Sections 11-1, 11-2, 11-3
Sections 12-1, 12-4

blue colors: 要考的章節


7
Chapter 1 Introduction to Differential Equations
1.1 Definitions and Terminology (術語)
(1)Differential Equation (DE): any equation containing derivation
(text page 3, definition 1.1)

(2)
dy ( x) x: independent variable 自變數
1
dx y(x): dependent variable 應變數

x d 3 f ( x)
0 sin(t ) f ( x  t )dt  dx3  cos  x 
8

• Note: In the text book, f(x) is often simplified as f

• notations of differentiation
df d2 f d3 f d4 f
dx , dx 2 , dx 3 , dx 4 , ………. Leibniz notation
f , f  , f  , f ( 4) , ………. prime notation
f , 
f , 
f , 
f , ………. dot notation
fx , f xx , f xxx , f xxxx , ………. subscript notation
9
(3) Ordinary Differential Equation (ODE):
differentiation with respect to one independent variable

d 3u d 2u du dx dy dz
3
 2  cos(6 x )u  0    2 xy  z
dx dx dx dt dt dt

(4) Partial Differential Equation (PDE):


differentiation with respect to two or more independent variables
 2u  2u x y
 2 0 
x 2
y  t 
10

(5) Order of a Differentiation Equation: the order of the highest


derivative in the equation
d 7u d 6u d 5u d 4u 7th order
7
2 6 2 5 4 4 0
dx dx dx dx

d2y dy 2nd order


 4  5 y  e x

dx 2 dx
11
(6) Linear Differentiation Equation:
dny d n1 y dy
an  x  n  an1  x  n1    a1  x   a0  x  y  g  x 
dx dx dx
dy d n1 y d n y
(i) For y, only the terms y, dx ,  , n1 , n appear.
dx dx
(ii) All of the coefficient terms am(x) m = 1, 2, …, n are independent of y.
Property of linear differentiation equations:
d n y1 d n1 y1 dy1
If an  x  n  an1  x  n1    a1  x   a0  x  y1  g1  x 
dx dx dx
d n y2 d n1 y2 dy
an  x  n  an1  x  n1    a1  x  2  a0  x  y2  g 2  x 
dx dx dx
and y3 = by1 + cy2, then
d n y3 d n1 y3 dy
an  x  n  an1  x  n1    a1  x  3  a0  x  y3  bg1  x   cg 2  x 
dx dx dx
(if y(x) is treated as the input and g(x) is the output)
12
(7) Non-Linear Differentiation Equation

d 2 y dy
( y  3) 2   2 y  x
dx dx
d 2 y dy
  y 2
 e x

dx 2 dx

d 2 y dy
  e y
 e x

dx 2 dx
[Example 1.1.2] Linear and Nonlinear ODEs
(a) The equations

d3y dy
( y  x ) dx  4 xd y  0, y "  2 y  y  0, x 3
 x 3
 5 y  ex
dx dx

are, in turn, linear first-, second-, and third-order ordinary


differential equations. We have just demonstrated that the first
equation is linear in the variable y by writing it in the alternative
form 4xy’ + y = x.
(b) The equations
nonlinear term: nonlinear term: nonlinear term:
coefficient depends on y nonlinear function of y power not 1
d2y d4y
(1  y ) y ' 2 y  e ,
x
2
 si n y  0, an d 4
 y 2
0
dx dx
are examples of nonlinear first-, second-, and fourth-order ordinary
differential equations, respectively.
14
(8) Explicit Solution (text page 8)
The solution is expressed as y = (x)
(9) Implicit Solution (text page 8)

dy 2
Example:  x ,
dx

Solution: 1 x2  y2  c (implicit solution)


2

y  c  x2 / 2
or (explicit solution)
y   c  x2 / 2
15

1.2 Initial Value Problem (IVP)


A differentiation equation always has more than one solution.
dy
for 1 ,
dx
y = x, y = x+1 , y = x+2 … are all the solutions of the above
differentiation equation.
General form of the solution: y = x+ c, where c is any constant.

The initial value (未必在 x = 0) is helpful for obtain the unique solution.
dy
 1 and y(0) = 2 y = x+2
dx
dy
 1 and y(2) =3.5 y = x+1.5
dx
16

The kth order linear differential equation usually requires k independent


initial conditions (or k independent boundary conditions) to obtain the
unique solution.
d2y
2
1
dx solution: y = x2/2 + bx + c,
b and c can be any constant
y(1) = 2 and y(2) = 3 (boundary conditions,在不同點)
y(0) = 1 and y'(0) =5 (initial conditions ,在相同點)
y(0) = 1 and y'(3) =2 (boundary conditions,在不同點)

For the kth order differential equation, the initial conditions can be 0th ~
(k–1)th derivatives at some points.
17
1.3 Differential Equations as Mathematical
Model
Physical meaning of differentiation:
the variation at certain time or certain place

dx  t  dv  t  d 2 x  t 
[Example 1]: v t   , a t   
dt dt dt 2

F   v  ma dx(t ) d 2 x(t )
F  m
dt dt 2

x(t): location, v(t): velocity, a(t): acceleration


F: force, β: coefficient of friction, m: mass
18
[Example 2]: 人口隨著時間而增加的模型

dA  t  A: population
 kA  t 
dt 人口增加量和人口呈正比
19
[Example 3]: 開水溫度隨著時間會變冷的模型
dT T: 熱開水溫度,
 k (T  Tm )
dt
Tm: 環境溫度
t: 時間
20
大一微積分所學的:

例如:  1 dt  ln t  c
 f  t  dt 的解
t
dA  t 
 f  t   A  t    f  t  dt  c
dt
dA  t  1
Example:  A  t   ln t  c
dt t
dA  t  1 1
 2  At    2 dt  c  ?
dt t 4 t 4
Problems
(1) 若等號兩邊都出現 dependent variable (如 pages 18, 19 的例子)

(2) 若 order of DE 大於 1 (如 page 17 的例子)

該如何解?
21

Review
• dependent variable and independent variable
• DE
• PDE and ODE
• Order of DE
• linear DE and nonlinear DE
• explicit solution and implicit solution
• initial value; boundary value
• IVP
22

Chapter 2 First Order Differential Equation

2-1 Solution Curves without a Solution


Instead of using analytic methods, the DE can be solved by graphs (圖解)

dy
slopes and the field directions:  f  x, y 
dx
y-axis
the slope is f(x0, y0)
(x0, y0)

x-axis
23
Example 1 dy/dx = 0.2xy

From: Fig. 2-1-3(a) in “Differential Equations-with Boundary-Value


Problem”, 9th ed., Dennis G. Zill and Michael R. Cullen.
24
Example 2 dy/dx = sin(y), y(0) = –3/2

From: Fig. 2-1-4 in “Differential Equations-with Boundary-Value Problem”,


9th ed., Dennis G. Zill and Michael R. Cullen.

With initial conditions, one curve can be obtained


25
Advantage:
It can solve some 1st order DEs that cannot be solved by
mathematics.

Disadvantage:
It can only be used for the case of the 1st order DE.
It requires a lot of time
26
Section 2-6 A Numerical Method

• Another way to solve the DE without analytic methods

sampling(取樣)
• independent variable x x0, x1, x2, …………

dy ( x)
• Find the solution of  f  x, y 
dx
Since dy  x   f  x, y  approximation y  xn1   y  xn 
 f  xn , y ( xn ) 
dx xn1  xn

y  xn1   y  xn   f  xn , y ( xn )  xn1  xn 

前一點的值 取樣間格
dy  x  27
 f  x, y  y  xn1   y  xn   f  xn , y ( xn )  xn1  xn 
dx

If 𝑦 𝑥 is known
y  x1   y  x0   f  x0 , y ( x0 )  x1  x0 

y  x2   y  x1   f  x1 , y ( x1 )  x2  x1 

y  x3   y  x2   f  x2 , y ( x2 )   x3  x2 

:
:
:
:
dy  x  28
 f  x, y  y  xn1   y  xn   f  xn , y ( xn )  xn1  xn 
dx

Example:

• dy(x)/dx = 0.2xy y(xn+1) = y(xn) + 0.2xn y(xn )*(xn+1 –xn).

• dy/dx = sin(x) y(xn+1) = y(xn) + sin(xn)*(xn+1 –xn).

後頁為 dy/dx = sin(x), y(0) = –1,


(a) xn+1 –xn = 0.01, (b) xn+1 –xn = 0.1,
(c) xn+1 –xn = 1, (d) xn+1 –xn = 0.1, dy/dx = 10sin(10x) 的例子

Constraint for obtaining accurate results:


(1) small sampling interval (2) small variation of f(x, y)
29
(a) 1 (b) 1
0.5 0.5

0 0

-0.5 -0.5

-1 -1

-1.5 -1.5
0 5 10 0 5 10

(c) (d)
1 1

0.5 0.5

0 0

-0.5 -0.5

-1 -1

-1.5 -1.5
0 5 10 0 5 10
30

Advantages
-- It can solve some 1st order DEs that cannot be solved by mathematics.
-- can be used for solving a complicated DE (not constrained for the 1st
order case)
-- suitable for computer simulation

Disadvantages
-- numerical error (數值方法的課程對此有詳細探討)
附錄一 Table of Integration 31

1/x ln|x| + c
cos(x) sin(x) + c
sin(x) –cos(x) + c
tan(x) –ln|cos(x)| + c
cot(x) ln|sin(x)| + c
ax ax/ln(a) + c
1 1 1 x
x2  a2 tan c
a a

1/ a  x2 2 sin 1 ( x / a )  c

1 / a  x 2 2 cos 1 ( x / a )  c
e ax  1
x eax  x  c
a  a
e ax  2 2 x 2 
x2 eax x   2 c
a  a a 
32

Exercises for Practicing


(not homework, but are encouraged to practice)
1-1: 1, 13, 19, 23, 37
1-2: 3, 13, 21, 33
1-3: 2, 7, 28
2-1: 1, 13, 25, 33
2-6: 1, 3

You might also like