1
工程數學--微分方程
Differential Equations (DE)
授課者:丁建均
教學網頁:http://djj.ee.ntu.edu.tw/DE.htm
(請上課前來這個網站將講義印好)
歡迎大家來修課!
2
授課者:丁建均
Office: 明達館723室, TEL: 33669652
Office hour: 週一至週四的下午皆可來找我
個人網頁:http://disp.ee.ntu.edu.tw/
E-mail: jjding@ntu.edu.tw
上課時間: 星期三 第 3, 4 節 (AM 10:20~12:10)
上課地點: 明達205
課本: "Differential Equations-with Boundary-Value Problem,"
Dennis G. Zill and Michael R. Cullen, 9th edition, 2017.
(metric version, international version)
評分方式:四次作業 15%, 期中考 42.5%, 期末考 42.5%
教學網頁:http://djj.ee.ntu.edu.tw/DE.htm
共同教學網頁: http://cc.ee.ntu.edu.tw/~tomme/DE/DE.html
3
注意事項:
(1) 本課程採行雙軌制,同學們可以來現場上課,或是可觀看
NTUCool 的影片
(2)請上課前,來這個網頁,將上課資料印好。
http://djj.ee.ntu.edu.tw/DE.htm
(3) 請各位同學踴躍出席 。
(4) 作業不可以抄襲。作業若寫錯但有用心寫仍可以有
40%~90% 的分數,但抄襲或借人抄襲不給分。
(5) 每次作業有11題
(6) 我週一至週四下午都在辦公室,有什麼問題 ,歡迎同學們
來找我
上課日期 4
Week Number Date (Wednesday) Remark
1. 9/6
2. 9/13
3. 9/20
4. 9/27: HW1
5. 10/4
6. 10/11
7. 10/18: HW2
8. 10/25: Midterms 範圍: (Sections 2-2 ~ 4-5)
9. 11/1
10. 11/8
11. 11/15
12. 11/22: HW3
13. 11/29
14. 12/6
15. 12/13: HW4
16. 12/20: Finals 範圍: (Sections 4-6 ~ 12-4)
課程大綱 5
Introduction (Chap. 1)
解法 (Chap. 2)
First Order DE 應用 (Chap. 3)
矩陣解 (Chap. 8,範圍外)
解法 (Chap. 4)
Higher Order DE 應用 (Chap. 5,範圍外)
非線性 (Sections 4-10, 5-3, 工數特論)
多項式解法 (Chap. 6)
解法 (Sections 12-1, 12-4)
Partial DE
直角座標 (Chapter 12,工數特論)
圓座標 (Chapter 13,工數特論)
Laplace Transform (Chap. 7 ,範圍外)
Transforms Fourier Series (Chap. 11)
Fourier Transform (Chap. 14,工數特論)
6
授課範圍
期中考範圍 Sections 1-1, 1-2, 1-3
Sections 2-1, 2-2, 2-3, 2-4, 2-5, 2-6
Sections 3-1, 3-2
Sections 4-1, 4-2, 4-3, 4-4, 4-5
期末考範圍 Sections 4-6, 4-7
Sections 6-1, 6-2, 6-3
Sections 11-1, 11-2, 11-3
Sections 12-1, 12-4
blue colors: 要考的章節
7
Chapter 1 Introduction to Differential Equations
1.1 Definitions and Terminology (術語)
(1)Differential Equation (DE): any equation containing derivation
(text page 3, definition 1.1)
(2)
dy ( x) x: independent variable 自變數
1
dx y(x): dependent variable 應變數
x d 3 f ( x)
0 sin(t ) f ( x t )dt dx3 cos x
8
• Note: In the text book, f(x) is often simplified as f
• notations of differentiation
df d2 f d3 f d4 f
dx , dx 2 , dx 3 , dx 4 , ………. Leibniz notation
f , f , f , f ( 4) , ………. prime notation
f ,
f ,
f ,
f , ………. dot notation
fx , f xx , f xxx , f xxxx , ………. subscript notation
9
(3) Ordinary Differential Equation (ODE):
differentiation with respect to one independent variable
d 3u d 2u du dx dy dz
3
2 cos(6 x )u 0 2 xy z
dx dx dx dt dt dt
(4) Partial Differential Equation (PDE):
differentiation with respect to two or more independent variables
2u 2u x y
2 0
x 2
y t
10
(5) Order of a Differentiation Equation: the order of the highest
derivative in the equation
d 7u d 6u d 5u d 4u 7th order
7
2 6 2 5 4 4 0
dx dx dx dx
d2y dy 2nd order
4 5 y e x
dx 2 dx
11
(6) Linear Differentiation Equation:
dny d n1 y dy
an x n an1 x n1 a1 x a0 x y g x
dx dx dx
dy d n1 y d n y
(i) For y, only the terms y, dx , , n1 , n appear.
dx dx
(ii) All of the coefficient terms am(x) m = 1, 2, …, n are independent of y.
Property of linear differentiation equations:
d n y1 d n1 y1 dy1
If an x n an1 x n1 a1 x a0 x y1 g1 x
dx dx dx
d n y2 d n1 y2 dy
an x n an1 x n1 a1 x 2 a0 x y2 g 2 x
dx dx dx
and y3 = by1 + cy2, then
d n y3 d n1 y3 dy
an x n an1 x n1 a1 x 3 a0 x y3 bg1 x cg 2 x
dx dx dx
(if y(x) is treated as the input and g(x) is the output)
12
(7) Non-Linear Differentiation Equation
d 2 y dy
( y 3) 2 2 y x
dx dx
d 2 y dy
y 2
e x
dx 2 dx
d 2 y dy
e y
e x
dx 2 dx
[Example 1.1.2] Linear and Nonlinear ODEs
(a) The equations
d3y dy
( y x ) dx 4 xd y 0, y " 2 y y 0, x 3
x 3
5 y ex
dx dx
are, in turn, linear first-, second-, and third-order ordinary
differential equations. We have just demonstrated that the first
equation is linear in the variable y by writing it in the alternative
form 4xy’ + y = x.
(b) The equations
nonlinear term: nonlinear term: nonlinear term:
coefficient depends on y nonlinear function of y power not 1
d2y d4y
(1 y ) y ' 2 y e ,
x
2
si n y 0, an d 4
y 2
0
dx dx
are examples of nonlinear first-, second-, and fourth-order ordinary
differential equations, respectively.
14
(8) Explicit Solution (text page 8)
The solution is expressed as y = (x)
(9) Implicit Solution (text page 8)
dy 2
Example: x ,
dx
Solution: 1 x2 y2 c (implicit solution)
2
y c x2 / 2
or (explicit solution)
y c x2 / 2
15
1.2 Initial Value Problem (IVP)
A differentiation equation always has more than one solution.
dy
for 1 ,
dx
y = x, y = x+1 , y = x+2 … are all the solutions of the above
differentiation equation.
General form of the solution: y = x+ c, where c is any constant.
The initial value (未必在 x = 0) is helpful for obtain the unique solution.
dy
1 and y(0) = 2 y = x+2
dx
dy
1 and y(2) =3.5 y = x+1.5
dx
16
The kth order linear differential equation usually requires k independent
initial conditions (or k independent boundary conditions) to obtain the
unique solution.
d2y
2
1
dx solution: y = x2/2 + bx + c,
b and c can be any constant
y(1) = 2 and y(2) = 3 (boundary conditions,在不同點)
y(0) = 1 and y'(0) =5 (initial conditions ,在相同點)
y(0) = 1 and y'(3) =2 (boundary conditions,在不同點)
For the kth order differential equation, the initial conditions can be 0th ~
(k–1)th derivatives at some points.
17
1.3 Differential Equations as Mathematical
Model
Physical meaning of differentiation:
the variation at certain time or certain place
dx t dv t d 2 x t
[Example 1]: v t , a t
dt dt dt 2
F v ma dx(t ) d 2 x(t )
F m
dt dt 2
x(t): location, v(t): velocity, a(t): acceleration
F: force, β: coefficient of friction, m: mass
18
[Example 2]: 人口隨著時間而增加的模型
dA t A: population
kA t
dt 人口增加量和人口呈正比
19
[Example 3]: 開水溫度隨著時間會變冷的模型
dT T: 熱開水溫度,
k (T Tm )
dt
Tm: 環境溫度
t: 時間
20
大一微積分所學的:
例如: 1 dt ln t c
f t dt 的解
t
dA t
f t A t f t dt c
dt
dA t 1
Example: A t ln t c
dt t
dA t 1 1
2 At 2 dt c ?
dt t 4 t 4
Problems
(1) 若等號兩邊都出現 dependent variable (如 pages 18, 19 的例子)
(2) 若 order of DE 大於 1 (如 page 17 的例子)
該如何解?
21
Review
• dependent variable and independent variable
• DE
• PDE and ODE
• Order of DE
• linear DE and nonlinear DE
• explicit solution and implicit solution
• initial value; boundary value
• IVP
22
Chapter 2 First Order Differential Equation
2-1 Solution Curves without a Solution
Instead of using analytic methods, the DE can be solved by graphs (圖解)
dy
slopes and the field directions: f x, y
dx
y-axis
the slope is f(x0, y0)
(x0, y0)
x-axis
23
Example 1 dy/dx = 0.2xy
From: Fig. 2-1-3(a) in “Differential Equations-with Boundary-Value
Problem”, 9th ed., Dennis G. Zill and Michael R. Cullen.
24
Example 2 dy/dx = sin(y), y(0) = –3/2
From: Fig. 2-1-4 in “Differential Equations-with Boundary-Value Problem”,
9th ed., Dennis G. Zill and Michael R. Cullen.
With initial conditions, one curve can be obtained
25
Advantage:
It can solve some 1st order DEs that cannot be solved by
mathematics.
Disadvantage:
It can only be used for the case of the 1st order DE.
It requires a lot of time
26
Section 2-6 A Numerical Method
• Another way to solve the DE without analytic methods
sampling(取樣)
• independent variable x x0, x1, x2, …………
dy ( x)
• Find the solution of f x, y
dx
Since dy x f x, y approximation y xn1 y xn
f xn , y ( xn )
dx xn1 xn
y xn1 y xn f xn , y ( xn ) xn1 xn
前一點的值 取樣間格
dy x 27
f x, y y xn1 y xn f xn , y ( xn ) xn1 xn
dx
If 𝑦 𝑥 is known
y x1 y x0 f x0 , y ( x0 ) x1 x0
y x2 y x1 f x1 , y ( x1 ) x2 x1
y x3 y x2 f x2 , y ( x2 ) x3 x2
:
:
:
:
dy x 28
f x, y y xn1 y xn f xn , y ( xn ) xn1 xn
dx
Example:
• dy(x)/dx = 0.2xy y(xn+1) = y(xn) + 0.2xn y(xn )*(xn+1 –xn).
• dy/dx = sin(x) y(xn+1) = y(xn) + sin(xn)*(xn+1 –xn).
後頁為 dy/dx = sin(x), y(0) = –1,
(a) xn+1 –xn = 0.01, (b) xn+1 –xn = 0.1,
(c) xn+1 –xn = 1, (d) xn+1 –xn = 0.1, dy/dx = 10sin(10x) 的例子
Constraint for obtaining accurate results:
(1) small sampling interval (2) small variation of f(x, y)
29
(a) 1 (b) 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1.5 -1.5
0 5 10 0 5 10
(c) (d)
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1.5 -1.5
0 5 10 0 5 10
30
Advantages
-- It can solve some 1st order DEs that cannot be solved by mathematics.
-- can be used for solving a complicated DE (not constrained for the 1st
order case)
-- suitable for computer simulation
Disadvantages
-- numerical error (數值方法的課程對此有詳細探討)
附錄一 Table of Integration 31
1/x ln|x| + c
cos(x) sin(x) + c
sin(x) –cos(x) + c
tan(x) –ln|cos(x)| + c
cot(x) ln|sin(x)| + c
ax ax/ln(a) + c
1 1 1 x
x2 a2 tan c
a a
1/ a x2 2 sin 1 ( x / a ) c
1 / a x 2 2 cos 1 ( x / a ) c
e ax 1
x eax x c
a a
e ax 2 2 x 2
x2 eax x 2 c
a a a
32
Exercises for Practicing
(not homework, but are encouraged to practice)
1-1: 1, 13, 19, 23, 37
1-2: 3, 13, 21, 33
1-3: 2, 7, 28
2-1: 1, 13, 25, 33
2-6: 1, 3