0% found this document useful (0 votes)
59 views4 pages

Trig Cheat Sheet

This document is a comprehensive cheat sheet for trigonometric functions, including definitions, properties, identities, and formulas. It covers right triangle and unit circle definitions, as well as the domain and range of various trig functions. Additionally, it includes inverse trig functions, laws of sines, cosines, tangents, and various formulas for angle conversions and identities.

Uploaded by

Sayed Adel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views4 pages

Trig Cheat Sheet

This document is a comprehensive cheat sheet for trigonometric functions, including definitions, properties, identities, and formulas. It covers right triangle and unit circle definitions, as well as the domain and range of various trig functions. Additionally, it includes inverse trig functions, laws of sines, cosines, tangents, and various formulas for angle conversions and identities.

Uploaded by

Sayed Adel
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Trig Cheat Sheet

Definition of the Trig Functions


Right triangle definition
For this definition we assume that Unit circle definition
p For this definition q is any angle.
0 < q < or 0° < q < 90° .
2 y

( x, y )
hypotenuse 1
y q
opposite x
x
q
adjacent
opposite hypotenuse y 1
sin q = csc q = sin q = =y csc q =
hypotenuse opposite 1 y
adjacent hypotenuse x 1
cos q = sec q = cos q = = x sec q =
hypotenuse adjacent 1 x
opposite adjacent y x
tan q = cot q = tan q = cot q =
adjacent opposite x y

Facts and Properties


Domain
The domain is all the values of q that Period
can be plugged into the function. The period of a function is the number,
T, such that f (q + T ) = f (q ) . So, if w
sin q , q can be any angle is a fixed number and q is any angle we
cos q , q can be any angle have the following periods.
æ 1ö
tan q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K
è 2ø 2p
sin ( wq ) ® T=
csc q , q ¹ n p , n = 0, ± 1, ± 2,K w
æ 1ö 2p
sec q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K cos (wq ) ® T =
è 2ø w
cot q , q ¹ n p , n = 0, ± 1, ± 2,K p
tan (wq ) ® T =
w
Range 2p
csc (wq ) ® T =
The range is all possible values to get w
out of the function. 2p
-1 £ sin q £ 1 csc q ³ 1 and csc q £ -1 sec (wq ) ® T =
w
-1 £ cos q £ 1 sec q ³ 1 and sec q £ -1 p
-¥ < tan q < ¥ -¥ < cot q < ¥ cot (wq ) ® T =
w
Formulas and Identities
Tangent and Cotangent Identities Half Angle Formulas (alternate form)
sin q cos q q 1 - cos q 1
tan q = cot q = sin = ± sin 2 q = (1 - cos ( 2q ) )
cos q sin q 2 2 2
Reciprocal Identities
q 1 + cos q 1
csc q =
1
sin q =
1 cos
2

2
cos 2 q =
2
(1 + cos ( 2q ) )
sin q csc q
1 1 q 1 - cos q 1 - cos ( 2q )
sec q = cos q = tan = ± tan 2 q =
cos q sec q 2 1 + cos q 1 + cos ( 2q )
1 1 Sum and Difference Formulas
cot q = tan q =
tan q cot q sin (a ± b ) = sin a cos b ± cos a sin b
Pythagorean Identities cos (a ± b ) = cos a cos b m sin a sin b
sin 2 q + cos 2 q = 1
tan a ± tan b
tan 2 q + 1 = sec 2 q tan (a ± b ) =
1 m tan a tan b
1 + cot 2 q = csc 2 q Product to Sum Formulas
1
Even/Odd Formulas sin a sin b = éëcos (a - b ) - cos (a + b ) ùû
sin ( -q ) = - sin q csc ( -q ) = - csc q 2
1
cos ( -q ) = cos q sec ( -q ) = sec q cos a cos b = éë cos (a - b ) + cos (a + b ) ùû
2
tan ( -q ) = - tan q cot ( -q ) = - cot q 1
sin a cos b = éësin (a + b ) + sin (a - b ) ùû
Periodic Formulas 2
If n is an integer. 1
cos a sin b = éësin (a + b ) - sin (a - b ) ùû
sin (q + 2p n ) = sin q csc (q + 2p n ) = csc q 2
Sum to Product Formulas
cos (q + 2p n ) = cos q sec (q + 2p n ) = sec q
æa + b ö æa - b ö
tan (q + p n ) = tan q cot (q + p n ) = cot q sin a + sin b = 2sin ç ÷ cos ç ÷
è 2 ø è 2 ø
Double Angle Formulas
æa + b ö æa - b ö
sin a - sin b = 2 cos ç ÷ sin ç ÷
sin ( 2q ) = 2sin q cos q è 2 ø è 2 ø
cos ( 2q ) = cos 2 q - sin 2 q cos a + cos b = 2 cos ç
æa + b ö æa - b ö
÷ cos ç ÷
= 2 cos 2 q - 1 è 2 ø è 2 ø
æa + b ö æa - b ö
= 1 - 2sin 2 q cos a - cos b = -2sin ç ÷ sin ç ÷
è 2 ø è 2 ø
2 tan q
tan ( 2q ) = Cofunction Formulas
1 - tan 2 q
æp ö æp ö
Degrees to Radians Formulas sin ç - q ÷ = cos q cos ç - q ÷ = sin q
è2 ø è2 ø
If x is an angle in degrees and t is an
angle in radians then æp ö æp ö
csc ç - q ÷ = sec q sec ç - q ÷ = csc q
p t px 180t è2 ø è2 ø
= Þ t= and x = æp ö æp ö
180 x 180 p tan ç - q ÷ = cot q cot ç - q ÷ = tan q
è2 ø è2 ø
Unit Circle

y
( 0,1)
p æ1 3ö
æ 1 3ö çç 2 , 2 ÷÷
ç- , ÷ 2 è ø
è 2 2 ø p æ 2 2ö
2p 90° çç , ÷÷
æ 2 2ö 3 è 2 2 ø
ç- , ÷ 3
è 2 2 ø 120° p
3p 60° æ 3 1ö
4 çç 2 , 2 ÷÷
æ 3 1ö 4 45° p è ø
ç- , ÷ 135°
è 2 2ø 5p
6
6 30°
150°

( -1,0 ) p 180° 0° 0 (1,0 )


360° 2p x

210°
7p 330°
11p
6 225°
æ 3 1ö 6 æ 3 1ö
ç - ,- ÷ 5p 315° ç ,- ÷
è 2 2ø è 2 2ø
4 240° 300° 7p
æ 2ö 4p 270°
ç-
2
,- ÷ 5p 4 æ 2 2ö
è 2 2 ø 3 3p ç
2
,-
2
÷
3 è ø
æ 1 3ö 2 æ
ç - ,- ÷ 1 3ö
2 2 ç ,- ÷
è ø è2 2 ø
( 0,-1)

For any ordered pair on the unit circle ( x, y ) : cos q = x and sin q = y

Example
æ 5p ö 1 æ 5p ö 3
cos ç ÷= sin ç ÷=-
è 3 ø 2 è 3 ø 2
Inverse Trig Functions
Definition Inverse Properties
y = sin -1 x is equivalent to x = sin y cos ( cos -1 ( x ) ) = x cos -1 ( cos (q ) ) = q
y = cos -1 x is equivalent to x = cos y sin ( sin -1 ( x ) ) = x sin -1 ( sin (q ) ) = q
y = tan -1 x is equivalent to x = tan y
tan ( tan -1 ( x ) ) = x tan -1 ( tan (q ) ) = q
Domain and Range
Function Domain Range Alternate Notation
p p sin -1 x = arcsin x
y = sin -1 x -1 £ x £ 1 - £ y£
2 2 cos -1 x = arccos x
y = cos -1 x -1 £ x £ 1 0£ y £p tan -1 x = arctan x
p p
y = tan -1 x -¥ < x < ¥ - < y<
2 2

Law of Sines, Cosines and Tangents

c b a

a g

Law of Sines Law of Tangents


sin a sin b sin g
= = a - b tan 12 (a - b )
=
a b c a + b tan 12 (a + b )
Law of Cosines b - c tan 12 ( b - g )
=
a 2 = b2 + c 2 - 2bc cos a b + c tan 12 ( b + g )
b 2 = a 2 + c 2 - 2ac cos b a - c tan 12 (a - g )
=
c = a + b - 2ab cos g a + c tan 12 (a + g )
2 2 2

Mollweide’s Formula
a + b cos 12 (a - b )
=
c sin 12 g

You might also like