Previewpdf
Previewpdf
Plant Morphology
Kaplan’s Principles of
Plant Morphology
Donald R. Kaplan
Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publi-
cation and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without
intent to infringe.
Preface................................................................................................................................................................................................... vii
Acknowledgments....................................................................................................................................................................................ix
Authors.....................................................................................................................................................................................................xi
6. Divergent Patterns of Seedling Development and Their Significance for the Interpretation
of Plant Ontogeny and Evolution............................................................................................................................................... 133
7. Phyllotaxis.................................................................................................................................................................................... 159
17. Longitudinal Symmetry and Zonation of Leaves Part II: Blade Dissection......................................................................... 433
v
vi Contents
References.......................................................................................................................................................................................... 1253
Index................................................................................................................................................................................................... 1281
Preface
Kaplan’s Principles of Plant Morphology defines the field of plant morphology are being brought into studies of crop develop-
plant morphology, providing resources, examples, and theoretical ment, biodiversity, and adaptive responses to climate change, and
constructs that illuminate the foundations of plant morphology increasingly researchers are turning to historic texts to uncover
and clearly outline the importance of integrating a fundamen- research, data, and interpretations concerning plant morphology
tal understanding of plant morphology into modern research and the evolution and diversification of plant form and function;
in plant genetics, development, and physiology. As research on there is great need for a modern reference and textbook that high-
developmental genetics and plant evolution emerges, an under- lights past studies and provides the synthesis of data necessary
standing of plant morphology is essential to interpret develop- to drive our future research in plant morphological and develop-
mental, anatomical, and morphological data. The principles of mental evolution.
vii
Acknowledgments
While I can here recognize the many people who have made book a much more refined product while staying true to Don’s
the final stages of publication of this book possible, this does vision and voice, and I thank all the reviewers who contributed
not fully acknowledge those who supported and influenced Don their time and energy to this project. Among these, I especially
Kaplan during the writing of these chapters. I do know that Don thank Jim Seago for advice, critical feedback, and encourage-
would have thanked his students; all of them. Especially the ment; and Dennis Wm. Stevenson for providing substantial
students who sat in his classroom and experienced his lectures amounts of time, effort, and knowledge of all things plant mor-
delivered with lantern slides and/or slide carousels that were phology. In addition, Dennis was essential in helping me track
occasionally (and famously) dropped and scattered right before down figures, references, and citations, especially the most eso-
class began, for these students were the inspiration for this book. teric ones.
The text and extensive figures of this book served as the pri- The editing, revision, and publication of this book would
mary reading material for C107, Kaplan’s Principles of Plant not have been possible without the herculean efforts of Charles
Morphology at UC Berkeley, typically printed out in five vol- R. Crumly: Chuck’s enthusiasm for this project as well as his
umes from Odin Readers. I believe Don would have thanked the patience, persistence, ingenuity, flexibility, and expertise were all
staff at Odin for printing out copies, year after year, with annual tested time and time again, and each time he rose over barriers to
additions and modifications that were always geared toward build the momentum necessary to drive this project to comple-
making the text more instructive and valuable for his students. tion. This book is in your hands today because of his unwaver-
Don also would have thanked his graduate students and col- ing faith in and commitment to the final product. In addition,
leagues who are cited throughout the text for providing exam- Dorothy Kaplan provided resources, encouragement, and posi-
ples and exemplars of morphological patterns and processes so tive reinforcement every step of the way: And while this publica-
critical to his interpretations of fundamental principles. I also tion has taken much longer than planned, she’s never given up
know he would have thanked his wife, Dorothy, for her unwav- hope that her grandchildren will get to experience their grandfa-
ering support and his two sons, Andrew and Tim, for enriching ther’s work. I thank Chuck and Dorothy for everything they’ve
his life within and beyond academia. Don’s family has contin- done to keep this production on track, for trusting me with their
ued to foster his legacy between the time of his passing and the visions for this book, and for making me feel like part of their
publication of this book, supporting the establishment of the families in the process.
Donald R. Kaplan Memorial Lecture in Plant Morphology and Finally, I thank Ioana Anghel and Maria Pinilla Vargas who
fully endowing the Kaplan Dissertation Award in Comparative both helped extensively with references, figure captions, and edit-
Morphology, a major source of funding for independent gradu- ing; and I thank the entire production team at Taylor & Francis,
ate student research administered through the Botanical Society especially Becky Hainz-Baxter and Elizabeth King, who worked
of America. tirelessly in processing words, figures, legends, and references
For my part, I sincerely thank Raymund Chan and Michael and were always patient yet exacting in assisting me in complet-
L. Christianson who, as students and colleagues of Don Kaplan, ing this project.
provided inspiration and moral support early on to continue this This book is dedicated to the memory of Donald R. Kaplan,
project and honor Don’s legacy. They as well as the other schol- and to his sons and grandchildren who know and understand the
ars who reviewed and commented on various chapters made this weight of his work.
ix
Authors
Donald Robert Kaplan, PhD, w as born in Chicago on January In addition to botany, Dr. Kaplan had many other interests,
17, 1938. He attended Northwestern University and graduated which he pursued with as much intensity and innovation as he
Phi Beta Kappa with a bachelor’s degree in biology in 1960. He did plant morphology. Among them were photography, railroads,
studied with Adriance Foster at UC Berkeley where he earned his classical music, and movies. He shared these passions with his
PhD in 1965. After completing a National Science Foundation- wife, Dorothy, and sons Andrew and Timothy.
sponsored postdoctoral fellowship at the Royal Botanic Gardens,
Kew, England, Dr. Kaplan became a founding member of the Chelsea Dvorak Specht, PhD, was born in Wilmington,
newly established University of California, Irvine campus as an Delaware on September 13, 1971. She attended the University
assistant professor of organismic biology in 1965. He returned to of Delaware earning a BA. in biology magna cum laude and
UC Berkeley in 1968 as an associate professor in the Department Phi Beta Kappa in 1993. Initially planning on pursuing medi-
of Botany. Dr. Kaplan was promoted to professor in 1978, and cine, her undergraduate mentor Kenneth A. Campbell provided
moved to the Department of Plant and Microbial Biology during her first taste in academic research, changing her life forever.
reorganization of the biological sciences. He retired in 2004. Dr. Specht earned her MS in 1997 and PhD in 2004 from New
As a plant morphologist, Dr. Kaplan had a unique, European York University, during which time she was a Fulbright Fellow
perspective on plant form. Using key concepts and first princi- and worked for 2 years as a Program Officer and Ecoregional
ples, he approached his research in a strictly analytical way. He Coordinator for the World Wildlife Fund in Bolivia. Dr. Specht
was most interested in fundamental structural and developmental was part of an NSF-funded joint program between NYU and the
commonalities that underpin plant form across different major New York Botanical Garden and studied extensively with plant
taxa. Dr. Kaplan’s publications spanned the algae, bryophytes, morphologist and renowned botanist and cladist Dennis Wm.
ferns, gymnosperms, and angiosperms. Dr. Kaplan’s research Stevenson as her major advisor.
and theories on the relationship of cell and organism in vascular It was during her graduate training that Dr. Specht developed
plants have had a major impact on studies linking plant morphol- an appreciation for the principles of plant morphology combined
ogy with molecular biology/genetics, setting the stage for modern with a developmental genetic and phylogenetic perspective to
investigations on plant form and function. Dr. Kaplan was also investigate the mechanisms underlying the evolution and diver-
interested in the history of plant morphology, especially in those sification of plant form and function. Following a postdoctoral
who established the basic principles and concepts of the field as fellowship at the Smithsonian Institution’s National Museum
he practiced it, e.g. Goethe, Hofmeister, Goebel, and Troll. of Natural History, Dr. Specht became an Assistant Professor
Dr. Kaplan’s research accomplishments were well recognized and Plant Organismal Biologist in the Department of Plant and
by his peers and resulted in many awards. Among these were Microbial Biology at UC Berkeley and curator of Monocots for
the Alexander von Humboldt Distinguished Senior U.S. Scientist the University and Jepson Herbaria in 2005. At UC Berkeley
Award (1988-89), a Guggenheim Fellowship (1987–88), fellow of she taught Kaplan’s Plant Morphology course and used this
the California Academy of Sciences (1982), the Botanical Society book for many years in the form of five massive readers for the
Merit Award (1984), the Botanical Society of America’s Jeanette class. In 2017, she moved to Cornell University as the Barbara
Siron Pelton Award (1989) and Centennial Award (2006), and McClintock Professor in Plant Biology and is currently also
a Miller Research Professorship (1975–76). He was also recog- Associate Dean for Diversity and Inclusion for the College of
nized for his excellence in teaching with a Sigma Xi National Agriculture and Life Sciences. Dr. Specht is married to ento-
Lecturer Award (1995–97), the UC Berkeley Distinguished mologist Patrick O’Grady and shares her love of plants with their
Teaching Award (1976) and the Botanical Society of America’s daughter, Paceyn Julia.
Charles Edwin Bessey Award for excellence in botanical teach-
ing (2005).
xi
1
Introduction to the Science of Plant Morphology:
Goals and Concepts
CONTENTS
Examples of Higher Plant Structural Diversity and Life Forms...............................................................................................................1
Basic Organization of the Higher Plant Body...........................................................................................................................................4
The Shoot System................................................................................................................................................................................4
The Root System..................................................................................................................................................................................5
The Concept of Homology........................................................................................................................................................................5
Homology Criteria...............................................................................................................................................................................6
The Concepts of Analogy versus Homology.....................................................................................................................................10
Have you ever wondered as you stroll through a forest how the the range of their morphological expression. Once you have
many varieties of plants are related to one another? How does a acquired the ability to analyze plant morphology, we will apply
herb differ from a tree or what gives a vine its distinctive climb- these principles to plants that grow in particular kinds of habitats
ing characteristics? Are they radically different kinds of plants to see how form relates to function.
or do they share some common features? Questions such as these Before we delve into the specifics of how plants are con-
are addressed by the science of plant morphology. structed, let’s look at some biologically interesting examples of
The science of plant morphology deals with the external form the kinds of plants we are going to learn to analyze. While at first
of plants. The word morphology comes from the Greek words glance these species may seem simply weird and unrelated to
morphos meaning shape and logos meaning discourse. Since your experience, by the time we come to consider them as indi-
plant morphology is concerned principally with the structure and vidual vegetation types, you will see how even the most extreme
variation of the major plant organs (leaf, stem, and root), another representatives are related structurally to more conventional
term for its study is organography. In terms of the equivalent plant species that you are familiar with.
level of study of animals, plant morphology is comparable to
animal anatomy, whereas plant anatomy, which is concerned
with the cell to tissue levels of organization, is equivalent to ani-
mal histology. In this book our emphasis will be on the mac- Examples of Higher Plant Structural
roscopic aspects of plant structure, or what we can see largely
Diversity and Life Forms
with the unaided eye. We will make occasional excursions into
the microscopic structure of plants, but only to analyze the ori- Among the most distinctive plant types are epiphytes, plants that
gin and development of organs and organ components and where grow on the surfaces of other plants (the term epiphyte comes from
histology can tell us something about the status and function of Greek root words epi meaning upon and phyte meaning plant).
a particular organ type. True epiphytes spend their entire lives up away from the earth’s
All vascular plants (also known as tracheophytes) appear to be surface typically on one of the aerial branches of a forest tree or
built on the same fundamental organizational theme or ground on the surfaces of some other elevated plant. In Figure 1.1, we see
plan. Thus the vast majority of structural variants that we find two epiphytic species which are members of the pineapple fam-
occupying the many different habitats on earth today are simply ily, Bromeliaceae. Interestingly, taxonomically, they are both in
variations on this basic theme. A fundamental goal of the sci- the genus Tillandsia L. Tillandsia fasciculata Sw. has an upright
ence of plant morphology is to deduce this basic organizational shoot system, whereas, T. usneoides L., the well-known Spanish
theme from broad, comparative studies and to determine how moss, has a highly branched shoot system that hangs down, form-
variants come about through differences in plant growth and ing an intertwining reticulum in the air. For both these epiphytes
development. the particular environment in which they grow is a harsh one com-
The principal goals of this text are: 1) to teach the reader how pared to life on the ground below. While they may be in an advan-
to analyze the basic structural features of plants that are altered tageous position with regard to incident light in the forest, such
to produce the major variations in plant form and 2) to determine an aerial growth site is very poor in water and minerals. Plants of
the significance of these morphological variants in the environ- this type must exhibit structural and physiological specializations
ments in which the plants grow. To these ends this book will first that permit them to scavenge the maximum available nutrients
acquaint you with the science of plant morphology and the basic and water. The shoot surfaces of these two Tillandsia species are
organ components of the plant body, how they originate during covered with specialized epidermal scales that take up water and
plant development, and what parameters are varied to produce minerals from the surrounding air (Benzing, 1970).
1
2 Kaplan’s Principles of Plant Morphology
leaves which grow erectly and are heavily ribbed for reinforce-
ment (ML, Figure 1.2). The mantle-type leaves catch water and
debris from the trees above. In essence, the plant forms its own
flowerpot, and its roots grow into the accumulated soil and water
which are sources of nutrients in this otherwise nutrient-poor
environment. We will see numerous other examples of particular
plant groups that exhibit distinctly different but equally effective
morphological solutions to similar environmental problems.
It is an easy step to go from plants that live on the surfaces
of other plants (epiphytes) but do not penetrate the tissues of
their support plant and are nutritionally self-sufficient, to plants
that actually penetrate the tissues of their host and are parasitic.
Figure 1.3 shows an example of a parasitic flowering plant grow-
ing on a branch of a spruce tree, Picea spp. The parasite is the
dwarf mistletoe Arceuthobium microcarpum (Engelm) Hawksw.
& Wiens. While the aerial flowering shoots arising from the host
surface may look conventional, in reality they are only the repro-
ductive phase of this species. The vegetative or feeding phase
consists of simplified strands that permeate the body of the host
and draw water and nutrients from it. At the time of reproduc-
tive dispersal from the old host to a new one, the Arceuthobium
initiates flowering shoots from the internal absorptive system.
These flowering shoots break through the bark of the host to
produce seeds, which are essential for dispersal of the parasite
(Figure 1.3). Given Arceuthobium’s nutritional dependence on
leaf, and taxis, meaning arrangement) and they influence the cortex before emerging to the exterior. The structure and meri-
overall appearance of the shoot of an individual plant. For exam- stem characteristics of the lateral roots are similar to those of the
ple, because the lateral branches of the shoots of most seed plants parent root.
(gymnosperms and angiosperms) are borne at the positions In the same way that there are distinctive geometric patterns
where leaves are inserted, i.e., the leaf axil (B, Figure 1.6A), the for the positioning of leaves in the shoot (the phyllotaxis), there
spatial distribution of branches will reflect the phyllotactic pat- are distinctive geometric patterns to the arrangement of lateral
tern of the shoot. Thus the phyllotaxis is a fundamental expres- roots on the parent root. One therefore can speak of rhizotaxis
sion of the symmetry and overall morphology of a shoot. (from the Greek words rhizo-, meaning root and taxis, meaning
Because leaves have a limited life span and usually abscise arrangement) and, like phyllotactic patterns, rhizotaxes can be
or fall from the shoot after they die, they leave the stem as a characterized in precise mathematical terms.
relatively naked axis and give the impression that the stem itself One of the most distinctive features of the root is the nature
is the basic component of a plant’s morphology and that the of its meristem. In contrast to that of the shoot, the root apex
leaves are only secondary as though they have been attached produces no lateral appendages from its periphery. In addition,
onto the stem as an afterthought. In fact, from a developmental- the root apex is covered by a cellular product of the meristem, the
morphological perspective, the converse is true. Leaves are the root cap (RC, Figure 1.6A). Cells of the cap are produced con-
primary structures laid down at the shoot apex. In seed plants, tinuously by the root apical meristem so that the youngest, most
at least, they dominate the growth and development of the shoot embryonic cap cells are those adjacent to the body of the root and
and significantly influence the differentiation patterns of tissues, the oldest, most mature cells are at the cap’s periphery. As cap
e.g., the vascular tissues (Esau, l965). If the internodes elongate, cells mature peripherally, they slough off and secrete mucilagi-
they do so after the leaves have been initiated and have influ- nous material. Thus the cap serves not only as a protective buffer
enced the fundamental transectional symmetry (Chapter 10) for the subjacent meristem as the root tip grows through the soil,
of the shoot. In some plants, in fact, the leaf bases extend with but also serves as a lubricant for root growth. Recent research has
the internodes so the stem really looks as though it is made shown that the root cap also is significant in regulating the geo-
up of the extended basal portion of the leaves (decurrent leaf tropic responses of roots or the direction of their growth relative
bases) rather than being an independent structure. The vagaries to the earth’s surface (Feldman, 1985).
of defining the boundaries between stem and leaf components Shoots and roots also differ from each other in the arrange-
of the shoot underscore the fundamental developmental unity of ment of their tissues. Figure 1.6D,E shows transections through
these two elements and the artificiality of attempting to draw a a representative root and stem of a higher plant. Just inside the
rigid boundary between them. peripheral band of cortical tissue of the stem is a cylinder of vas-
As we shall see when we examine in more detail the develop- cular bundles (Figure 1.6E). Of the two vascular tissue types
mental potentials and parameters of the shoot system, the indi- comprising each bundle—the xylem and phloem—the xylem is
vidual axillary buds along the length of a shoot axis can exhibit oriented toward the central pith region and the phloem toward
a range of developmental fates, producing, on the one hand, the outside of the stem or cortex, and both conducting tissues lie
branches that simply replicate the morphology of the parent axis on the same radius (Figure 1.6E). By contrast, in roots the xylem
from which they were derived, and on the other, lateral shoots and phloem are arranged on alternating radii (Figure 1.6D) and
specialized for a range of biological functions. In the shoots of there may or may not be a well-defined pith region. The presence
higher plants, it is the leaf and branch components that play spe- or absence of a pith in roots seems to depend on the diameter of
cial roles. the root’s primary body: Those roots with large diameters usu-
ally have some pith region in their centers whereas those with a
smaller diameter typically do not.
The Root System
Located at the opposite pole of the plant body, or 180 degrees
from the shoot, is the root system (Figure 1.6A). Like the
The Concept of Homology
shoot system, the root system consists of a main axis or pri-
mary root from which branches are produced laterally. Where Now that we have characterized the fundamental organization
a spatially separated root system is developed, this bipolarity of of higher plants, let’s see how it can vary in order to produce the
the plant body is forecast by the bipolarity of the plant embryo great diversity of plant form that we see on earth today.
(Figure 1.6B,C). In order to conclude that the diversity of plant morphology
Roots differ from shoots in that roots lack lateral appendages, represents variations on a basic organizational theme, we must
or the equivalents of leaves. What may look like leaf structures assume that the structural specializations observed represent
emerging from roots (Figure 1.6A) are actually branch roots modifications of the same basic organ systems. This idea is
extending in a lateral orientation from the body of the parent expressed by the concept of homology.
root. In contrast to shoot branches, which originate exogenously We will use the term homology in a strictly comparative con-
from superficial (surface) tissues, root branches arise endog- text to mean morphological correspondence to one of the major
enously from within the body of the parent root and only sec- organ categories, i.e., leaf, stem, or root. You may have heard
ondarily grow out into the substratum (Chapter 24). Typically, the term homology defined as structural correspondence due
their point of origin is from the meristematic pericycle layer at to a commonality of evolutionary descent. However, where we
the periphery of the root’s vascular cylinder (Pe, Figure 1.6A). are concerned with the principles of structural change in plants,
Hence, branch roots must burrow through the surrounding root such phylogenetic definitions of homology are far too restrictive.
6 Kaplan’s Principles of Plant Morphology
In addition, if morphological data is to be used as evidence of have lateral appendages but roots do not, if you found nodes or
phylogenetic relationships, the question of structural equiva- leaf scars along its axis and its branches were not endogenous in
lence must first be determined independent of phylogenetic sta- origin, you would predict you had a modified stem. On the other
tus. Thus, we will determine homologies on the basis of their hand, if the structure had no signs of appendages but had a cap
structural equivalence using strictly morphological criteria. over its meristem with branches that were endogenous in origin,
Evolutionary biologists often develop hypotheses to test whether then most likely it would be a modified root.
such structural correspondences are a result of evolutionary Further discrimination could be provided by analyzing tissue
convergence (either parallel or convergent evolution) and there- arrangements. Since vascular tissues in stems tend to be aligned
fore represent what Lankester (1870) has called a homoplasy or on the same radii (Figure 1.6E), whereas those in roots are on
whether they reflect a commonality of ancestry or in Lankester’s alternate radii (Figure 1.6D), it is possible to determine whether
terminology, a homogeny (Lankester, 1870). Such phylogenetic an unknown axis is a root or a shoot. This is another example of
interpretation requires integration of our morphological data the application of the special quality criterion for determining
with information from all other aspects of the plant’s biology in organ homologies.
order to reach valid conclusions concerning evolutionary rela- The third criterion, the existence of intermediates between
tionships. Thus the determination of structural relationships on two seemingly different structures, is dependent on the first two
the basis of comparative morphology should not be viewed as an criteria but can nevertheless be a useful tool in determining mor-
end in itself, but merely the first step in a long and complicated phological relationships. Since plants are metameric organisms
process of systematic evaluation. whose bodies consist of repeating subunits (e.g., leaves, nodes,
How do we actually determine the homologies of a problem- and internodes in the shoot; Figure 1.6A) and the characteris-
atic plant organ with one of the fundamental units of the plant tics of those metamers can change gradually along the length
body? In other words, what criteria do we apply to determine of the plant, one can see transitions in structure along a shoot
whether a given plant structure is a modified leaf, stem or root? axis. Where intermediates exhibited by positionally homologous
organs occur along the length of a given plant axis, the phenom-
enon is termed serial homology.
Homology Criteria An example of serial homology can be observed in young
plants of the barberry, Berberis wilsonae (Figure 1.7). After
The German morphologist-systematist Remane (l952) has sug- the first leaves or cotyledons, the shoot produces a number of
gested three criteria that can be used to decide homologies of an broadly laminate, green foliage leaves. At the more distal nodes,
organ or organ system. These are: however, the shoot produces non-photosynthetic spine-like
leaves that consist of three to five spine branches. Instead of the
1. Equivalent positions within the general ground plan or main axis bearing the photosynthetic leaf surfaces, short shoots
organization (positional criterion). borne in the axils of the spines (those with little to no internodal
2. Equivalent special quality (quality criterion). elongation) bear the laminate green leaves. The spiniferous
3. Connection of differing structures by intermediates appendages borne on the main axis do not seem at first glance to
(transitions criterion). be homologues of leaves, much less structurally related to more
conventional foliar organs. Yet if we analyze the properties of
The positional criterion is certainly one of the most fundamen- these spines, particularly their structural relationships to other
tal and a feature that influences many of the properties of the leaves of that shoot, their morphological relationships become
organs of the plant body. For example, the leaf component of more apparent.
the shoot always occupies a set position as a lateral outgrowth The spiniferous organs occupy the same position in the shoot
from the stem (Figure 1.6A). In seed plants, this position tends as the earlier-formed leaves and, like these leaves, bear shoot
to be demarcated by the location of a lateral branch or branch branches in their axils (Figure 1.8A). Hence they are position-
primordium in the axil of the leaf. Thus, if you were to observe ally homologous with leaves. Furthermore, by their spiniferous
an axis bearing leaf-like appendages along its length, you could nature it is clear that, like other leaves, they are determinate
determine whether it was (a) homologous with an individual organs. But more significantly, at the nodes between those bear-
leaf whose blade was cut into subunits or leaflets or (b) a lat- ing the basal laminate appendages and those bearing the spines
eral branch bearing its own leaves by determining the location are leaves that are intermediate in morphology between green
of axillary buds. If it were an individual leaf whose blade was and spiniferous leaves and support the homology of spines with
cut into leaflets, there would be a bud in the axil of the entire leaves (Figure 1.8A,B).
structure and no buds in the axils of the leaflets (Figure 1.6A). The intermediate leaves have blades that are cleaved into lobes
If it was a branch bearing its own leaves, it would be subtended but the lobes end in distinct spines (P, Figure 1.8B, II,III).
by a leaf or a leaf scar and each of the leaves would have buds in There is a short step from these intermediates that are spinif-
their axils (Figure 1.6B). erous but still produce a broad, green, photosynthetic surface
The special quality criterion refers to characteristics of an to leaves where each blade segment or leaflet is entirely spine-
organ which are distinctive and whose expression is not neces- like (Tr, Figure 1.8A,B, II–IV). Thus by studying transitional
sarily dependent upon the position of the structure in the plant forms that combine the characteristics of the two extremes we
body. If you were given a plant axis separated from the rest of are able to see a structural relationship, or homology, between
the plant and were asked to decide whether it was a stem or a two structures which, if considered in isolation, would seem to
root, this criterion would be useful. For example, since shoots bear little to no relation to one another.
Introduction to the Science of Plant Morphology 7
Leaflets or pinnate
Stem
Compound leaf
Axillary bud
Petiole
Leaf base
Terminal bud
Axillary buds
FIGURE 1.9 Members of family Cactaceae illustrating progressive stages of leaf blade reduction in selected genera and species. A. Broadly laminate
foliage leaves in Pereskia aculeata. B. Reduced, cylindrical blades in Opuntia subulata. Note that a cushion-like leaf base has developed in this species. C.
Opuntia cylindrica; only the youngest leaves bear a lamina (L) and the blade abscises later leaving only the cushion like leaf base (LB) or podarium clothing
the stem. D. Shoot of Mammillaria elephantidens showing enlarged tuberculate leaf bases and no sign of a lamina evident. (A–C from Troll, 1939; D from
Goebel, 1932.)
shall see, the comparison of intermediate morphological forms is ways of determining which units can be compared in order to
a useful approach in deducing the structural relationships in what understand the patterns and processes of plant evolution. As we
may seem to be divergent structures. make homology statements, it is important to consider that the
It should be emphasized that these homology criteria should plants themselves do not know that they are being subdivided
not be viewed as rules that are applied rigidly and dogmatically into component parts any more than you think of yourself as
to the evaluation of the diversity of plant morphology. Depending being segmented into arms, legs, and head as you go about your
on the characteristics of the plant organ in question, certain cri- daily activities. We make these subdivisions so that we can com-
teria may be more useful than others. It is always important to pare plants and see how they vary from one another, not because
keep in mind that homology is a hypothesis, and the criteria are we think the subdivisions have any independent reality.
Introduction to the Science of Plant Morphology 9
FIGURE 1.10 Illustrations of spine root morphology and positions on the shoot system of the palm Crysophila guagara. A. Young plant. B. Crown spines
emerging from the tops of leaf sheaths. C. Detail of short trunk spines. D. Detail of prop roots at base of trunk. E. Morphology of individual root types.
1. Trunk roots and apical spine conversion. 2. Large prop roots with unmodified apices. 3. Crown root morphology. (From McArthur and Steeves, 1969.)
Let’s look at one more example of a problematic plant struc- homology to roots, but also provides an example of how devel-
ture, the spine-like outgrowths along the trunk of the Central opmental stages represent the application of the third criterion
American palm Crysophila guagara (Figure 1.10A–D) and (the transitions) to the elucidation of structural relationships.
apply the three criteria to elucidate its homology. McArthur and Figure 1.11 shows the developmental stages of root spine
Steeves (1969) have shown that the spines along the trunk of this formation in C. gaugara. In its early stages the spine has the
palm originate endogenously from stem tissue just like the prop- form of a typical root apex with a well-defined body and cap
type feeding roots at the base of its trunk that penetrate the soil (Figure 1.11A). During subsequent development, it progres-
(Figure 1.10D). Thus there is a serial homology and gradient sively loses the characteristics of a typical root meristem, by
of developmental expression of roots initiated along the length shedding its cap (Figure 1.11B,C) and its apex becomes scleri-
of the shoot with indeterminate, feeding roots initiated close to fied into a thorn (Figure 1.11D,E). The cell lineage patterns
the soil (Figure 1.10D) and determinate, spine-like roots initi- characteristic of root meristems are no longer evident. Thus
ated along the trunk (Figure 1.10B,C). These spine roots have while the root spine may look quite unlike a conventional root
lateral branches that, like lateral roots (Figure 1.10E, 1 and 2), at maturity, it does look like a root in its early development.
arise endogenously from the internal tissues of the parent root. The comparison of developmental stages of the root spine to
Because the tissue arrangement of the spines is characteristic of a conventional root has the same value in determining the
roots rather than shoots (Figure 1.11A–E), the special quality organ’s homology as does comparing morphological interme-
criterion also supports the root homology of these spines. diates using serial homology within an individual or transi-
Finally, the developmental stages of the transformation tions of organs between species.
of a root primordium into a spine reinforces not only their
10 Kaplan’s Principles of Plant Morphology
FIGURE 1.11 Median longitudinal sections of the lateral trunk roots of the palm Crysophila guagara showing the developmental transitions from a con-
ventional root apex to that of a spine root. A. Unmodified root apex. B. Later stage showing acropetal extension of elongation and differentiation resulting in
attenuation of the apex. C. Sloughing off of the root cap. D. Differentiation of elongated sclerenchyma cells in cortical and vascular regions. E. Mature spine
tip. All ×60. (From McArthur and Steeves, 1969.)
The Concepts of Analogy versus Homology shoot-borne roots. In all three we are characterizing structures
that have identical functions (grasping and twining) but are not
If the term homology deals with the structural relationships of homologous: they are analogous.
plant organs regardless of their particular functions, the term As we proceed through this text, we will see numerous exam-
analogy refers to different plant organs that perform the same ples of structural analogies, especially in plants that belong to
function. For example, tendrils are plant structures that exhibit different taxonomic or evolutionary groups but live in the same
a contact-induced growth response or thigmotropism. However, habitat. Behaviorally they all will be similar, but in many cases
tendrils can be modified shoots (branches), leaves, or roots. In will represent differing or analogous solutions to the same envi-
the grapevine relative Cissus spp., tendrils are modified shoots, ronmental stimuli. One of the principal goals of the practicing
equivalent morphologically to sterilized inflorescence branches plant morphologist is to be able to discriminate homologies from
that have acquired thigmotropic behavior associated with flo- analogies. This is accomplished by applying the homology crite-
ral reduction. By contrast, in the sweet pea, Lathyrus spp., ria that we have described in this chapter.
the tendrils are modified subunits of the leaf (leaflets or pin-
nae), whereas in the orchid Vanilla spp., tendrils are modified,
Divergent Patterns of Seedling Development and Their Significance for the Interpretation of Plant
Ontogeny and Evolution
Chandler, J. W. (2008). Cotyledon Organogenesis. Journal of Experimental Botany, 59 , 2917–2931.
Linkies, A , Graeber, K. , Knight, C. , & Leubner-Metzger, G. (2010). The evolution of seeds. The New Phytologist , 186 , 817–831.
Palser, B. F. (1975). The Bases of Angiosperm Phylogeny: Embryology. Annals Missouri Botanical Garden, 62 , 621–646.
Sussex, I. M. (1989). Developmental programming of the shoot meristem. Cell, 56 , 225–229.
Telewski, F. W. , & Zeevaart, J. A. D. (2002). The 120-yr period for Dr. Beal;'s seed viability experiment. American Journal of Botany, 89 ,
1285–1288.
Phyllotaxis
Bartlett, M.E. , Thompson, B. Meristem identity and phyllotaxis in inflorescence development. Frontiers in Plant Science 5, Article 508:
1–11 (October 2014, www.frontiersin.org).
Bernhard A. , Rutishauser R. Phyllotaxis. E-learning module [in English / German]. Copyright: University of Zurich (2004) [Ask A. Bernhard
abern@systbot.uzh.ch for a copy on CD].
Besnard, F. , Vernoux, T. (and another 22 coauthors). Cytokinin signaling inhibitory fields provide robustness to phyllotaxis. Nature 505:
417–421 (16 January 2014).
Cooke T. J. : Do Fibonacci numbers reveal the involvementof geometrical imperatives or biological interactions in phyllotaxis? Botanical
Journal of the Linnean Society 150: 3–24 (2006).
Kirchoff, B.K. , Rutishauser R. : The phyllotaxy of Costus (Costaceae). Botanical Gazette 151: 88–105 (1990).
Rutishauser R. : Plastochrone ratio and leaf arc as parameters of a quantitative phyllotaxis analysis in vascular plants. pp. 171–212 in R.V.
Jean and D. Barabé (eds., 1998): Symmetry in Plants. World Scientific Publ., Singapore (51+835 pages)
References
Aase, H. C. (1915). Vascular anatomy of the megasporophylls of conifers. Botanical Gazette, 60 (4), 277–313.
https://doi.org/10.1086/331646
Adams, R. M. , & Smith, G. W. (1977). An S.E.M. Survey of the Five Carnivorous Pitcher Plant Genera. American Journal of Botany, 64
(3), 265–272. https://doi.org/10.1002/j.1537-2197.1977.tb15726.x
Ahern, C. P. , & Staff, I. A. (1994). Symbiosis in cycads: The origin and development of coralloid roots in macrozamia communis
(Cycadaceae). American Journal of Botany, 81 (12), 1559–1570. https://doi.org/10.1002/j.1537-2197.1994.tb11467.x
Albaum, H. G. (1938). Inhibitions due to growth hormones in fern prothallia and sporophytes. American Journal of Botany, 25 (2), 124–133.
JSTOR. https://doi.org/10.2307/2436859
Alberch, P. , Gould, S. J. , Oster, G. F. , & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5 (3), 296–317.
JSTOR.
Alexopoulos, C. J. , Bold, H. C. , & Delevoryas, T. (1980). Morphology of plants and fungi. Harper & Row.
Allsopp, A. (1965). Heteroblastic development in cormophytes. In A. Lang (Ed.), Differenzierung und Entwicklung/Differentiation and
Development (pp. 1172–1221). Springer. https://doi.org/10.1007/978-3-642-50088-6_33
Amstutz, E. (1957). Stylites, a new genus of Isoetaceae. Annals of the Missouri Botanical Garden, 44 (1), 121–123. JSTOR.
https://doi.org/10.2307/2394680
Arber, A. (1918). The phyllode theory of the monocotyledonous leaf, with special reference to anatomical evidence. Annals of Botany, 32
(128), 465–501. JSTOR.
Arber, A. (1950). The natural philosophy of plant form (1st ed.). Cambridge University Press.
Arber, A. (1970). The natural philosophy of plant form. Cambridge University Press.
Arber, A. , & Oliver, F. W. (1920). The vegetative morphology of Pistia and the Lemnaceæ. Proceedings of the Royal Society of London.
Series B, Containing Papers of a Biological Character, 91 (636), 96–103. https://doi.org/10.1098/rspb.1920.0002
Arber, A. , & Oliver, F. W. (1922). On the development and morphology of the leaves of palms. Proceedings of the Royal Society of
London. Series B, Containing Papers of a Biological Character, 93 (652), 249–261. https://doi.org/10.1098/rspb.1922.0019
Arditti, J. (1977). Orchid biology, reviews and perspectives. Comstock Pub. Associates.
Arnoldi, W. (1900). Beitrage zur Morphologie der Gymnospermen. Flora oder Allgemeine Botanische Zeitung, 87 , 46–63.
Arnott, H. J. (1962). The seed, germination, and seedling of yucca. University of California Press.
Ashida, J. (1934). Studies on the leaf movement of Aldrovanda vesiculosa L. Botanical Institute, Science Dept., Kyoto Imperial University.
Audran, J.-C. (1981). Pollen and tapetum development in Ceratozamia mexicana (Cycadaceae): Sporal origin of the exinic sporopollenin in
cycads. Review of Palaeobotany and Palynology, 33 (2), 315–346. https://doi.org/10.1016/0034-6667(81)90091-9
Avery, G. S. (1930). Comparative anatomy and morphology of embryos and seedlings of maize, oats, and wheat. Botanical Gazette, 89
(1), 1–39.
Avery, G. S. (1933). Structure and development of the tobacco leaf. American Journal of Botany, 20 (9), 565–592. JSTOR.
https://doi.org/10.2307/2436259
Bailey, I. W. (1949). Origin of the angiosperms: Need for a broadened outlook. Journal of the Arnold Arboretum, 30 (1), 64–70. JSTOR.
Ball, E. (1941). The development of the shoot apex and of the primary thickening meristem in Phoenix canariensis Chaub., with
comparisons to Washingtonia filifera Wats. and Trachycarpus excelsa Wendl. American Journal of Botany, 28 (9), 820–832. JSTOR.
https://doi.org/10.2307/2436668
Banks, H. P. (1970). Major evolutionary events and the geological record of plants. Biological Reviews, 45 (3), 451–454.
https://doi.org/10.1111/j.1469-185X.1970.tb01650.x
Banks, J. A. (2009). Selaginella and 400 million years of separation. Annual Review of Plant Biology, 60 (1), 223–238.
https://doi.org/10.1146/annurev.arplant.59.032607.092851
Bartlett, M. E. , & Thompson, B. (2014). Meristem identity and phyllotaxis in inflorescence development. Frontiers in Plant Science, 5 .
https://doi.org/10.3389/fpls.2014.00508
Baude, E. (1956). Die embryoentwicklung von Stratiotes aloides L. Planta, 46 , 649–671.
Bauer, U. , Clemente, C. J. , Renner, T. , & Federle, W. (2012). Form follows function: Morphological diversification and alternative
trapping strategies in carnivorous Nepenthes pitcher plants. Journal of Evolutionary Biology, 25 (1), 90–102. https://doi.org/10.1111/j.1420-
9101.2011.02406.x
Baum, H. , & Leinfellner, W. (1953). Bemerkungen zur morphologie des gynözeums der amentiferen in hinblick auf phyllo-und
stachyosporie. Österreichische botanische Zeitschrift, 100 (4), 276–291. https://doi.org/10.1007/BF01805771
Bäurle, I. , & Laux, T. (2003). Apical meristems: The plant's fountain of youth. BioEssays, 25 (10), 961–970.
https://doi.org/10.1002/bies.10341
Beck, C. B. , Schmid, R. , & Rothwell, G. W. (1982). Stelar morphology and the primary vascular system of seed plants. Botanical Review,
48 (4), 691–815. JSTOR.
Beitel, J. M. , Wagner, W. H. , & Walter, K. S. (1981). Unusual frond development in sensitive fern Onoclea sensibilis L. The American
Midland Naturalist, 105 (2), 396–400. JSTOR. https://doi.org/10.2307/2424762
Bell, A.D. (1991). Plant Form: An Illustrated Guide to Flowering Plant Morphology. Oxford University Press.
Bentham, G. (1839). XLIX.—Enumeration of plants collected by Mr. Schomburgk, British Guiana. Journal of Natural History, 2(12),
441–451.
Benzing, D. H. (1970). An investigation of two bromeliad myrmecophytes: Tillandsia butzii Mez, T. caput-medusae E. Morren, and their
ants. Bulletin of the Torrey Botanical Club, 97 (2), 109–115. JSTOR. https://doi.org/10.2307/2483400
Bergdolt, E. (1932). Morphologische und physiologische Untersuchungen über Viola: Zugleich ein Beitrag zur Lösung des Problems der
Kleistogamie. Fischer.
Berggren, G. (1963). Is the ovule type of importance for the water absorption of the ripe seed. Sven Bot Tidskr, 57 , 377–395.
Bernhard, A. , & Rutishauser, R. (2005). Phyllotaxis. E-Learning Verlag der Universität Zürich.
Bertrand, M. E. (1883). Note sur le genre vesquia, taxinée fossile du terrain aachénien de tournai. Bulletin de La Société Botanique de
France, 30 (8), 293–299.
Besnard, F. , Refahi, Y. , Morin, V. , Marteaux, B. , Brunoud, G. , Chambrier, P. , Rozier, F. , Mirabet, V. , Legrand, J. , & Lainé, S. (2014).
Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature, 505 (7483), 417–421.
Bhattacharya, D. , & Medlin, L. (1998). Algal phylogeny and the origin of land plants. Plant Physiology, 116 (1), 9–15.
https://doi.org/10.1104/pp.116.1.9
Bieniek, M. E. , & Millington, W. F. (1967). Differentiation of lateral shoots as thorns in Ulex europaeus . American Journal of Botany, 54
(1), 61–70. https://doi.org/10.1002/j.1537-2197.1967.tb06892.x
Bieniek, M. E. , & Millington, W. F. (1968). Thorn formation in Ulex europaeus in relation to environmental and endogenous factors.
Botanical Gazette, 129 (2), 145–150. https://doi.org/10.1086/336427
Bierhorst, D. W. (1954). The subterranean sporophytic axes of Psilotum nudum. American Journal of Botany, 732–739.
Bierhorst, D. W. (1956). Observations on the aerial appendages in the Psilotaceae. Phytomorphology, 6 , 176–184.
Bierhorst, D. W. (1968). On the Stromatopteridaceae (fam nov.) and the Psilotaceae. Phytomorphology, 18 , 232–268.
Bierhorst, D. W. (1969). Leaf development in Schizaea and Actinostachys. American Journal of Botany, 56 (8), 860–870.
Bierhorst, D. W. (1971). Morphology of vascular plants. Macmillan.
Bierhorst, D. W. (1977a). On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. American Journal of Botany, 64 (2),
125–152. https://doi.org/10.1002/j.1537-2197.1977.tb15712.x
Bierhorst, D. W. (1977b). The systematic position of Psilotum and Tmesipteris . Brittonia, 29 (1), 3. https://doi.org/10.2307/2805738
Bilderback, D. E. (1987). Association of mucilage with the ligule of several species of Selaginella . American Journal of Botany, 74 (7),
1116–1121. https://doi.org/10.1002/j.1537-2197.1987.tb08723.x
Bilhuber, E. (1933). Beiträge zur Kenntnis der Organstellungen im Pflanzenreich [PhD Dissertation]. München.
Bino, R. J. , Dafni, A. , & Meeuse, A. D. J. (1984). Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk. (=E. alte C.A. Mey.),
with some notes on E. campylopoda C.A. Mey. I: Aspects of the entomophilous syndrome. Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen, Ser C, 87 (1), 1–13.
Blaauw, A. H. (1912). Das Wachstum der Luftwurzeln einer Cissus-Art. Annals du Jardin Botanique de Buitenzorg, 26 , 266–293.
Blume, H. (1889). Palmae. In: A. Engler & K. Prantl, Die. Natürlichen Pflanzenfamilien 2(3). Wilhelm. Engelmann, Leipzig
Boesewinkel, F. D. , & Bouman, F. (1984). The seed: Structure. In B. M. Johri (Ed.), Embryology of angiosperms (pp. 567–610). Springer.
https://doi.org/10.1007/978-3-642-69302-1_12
Boke, N. H. (1940). Histogenesis and morphology of the phyllode in certain species of Acacia. American Journal of Botany, 73–90.
Boke, N. H. (1949). Development of the stamens and carpels in Vinca rosea L. American Journal of Botany, 36 (7), 535–547.
Boke, N. H. (1951). Histogenesis of the vegetative shoot in Echinocereus. American Journal of Botany, 23–38.
Boke, N. H. (1954). Organogenesis of the vegetative shoot in Pereskia . American Journal of Botany , 41(8), 619–637.
Boke, N. H. (1957). Structure and development of the shoot in Toumeya . American Journal of Botany , 44(10), 888–896.
Boke, N. H. (1964). The cactus gynoecium: A new interpretation. American Journal of Botany, 51 (6 Part1), 598–610.
https://doi.org/10.1002/j.1537-2197.1964.tb06677.x
Boke, N. H. (1966). Ontogeny and structure of the flower and fruit of Pereskia aculeata . American Journal of Botany 53 (6 part 1):
534–542.
Boke, N. H. (1976). Dichotomous branching in Mammillaria (Cactaceae). American Journal of Botany, 63 (10), 1380–1384.
https://doi.org/10.1002/j.1537-2197.1976.tb13223.x
Bold, H. C. , & Wynne, M. J. (1978). Introduction to the algae: Structure and reproduction. Prentice-Hall.
Bold, H. C. , & Wynne, M. J. (1985). Introduction to the algae (2nd ed.). Prentice Hall.
Bonnett Jr, H. T. , & Torrey, J. G. (1966). Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis
roots cultured in vitro. American Journal of Botany, 53 (5), 496–507.
Bopp, M. , & Weber, I. (1981). Hormonal regulation of the leaf blade movement of Drosera capensis. Physiologia Plantarum, 53(4),
491–496. https://doi.org/10.1111/j.1399-3054.1981.tb02738.x
Borchert, K. K. (1964). Morphologische studien an Isoëtes triquetra A. Braun und bemerkungen über das verhältnis der gattung Stylites E.
Amstutz zur gattung Isoëtes L. Berichte Der Deutschen Botanischen Gesellschaft, 77 , 227–234.
Borchert, R. (1965). Gibberellic acid and rejuvenation of apical meristems in Acacia melanoxylon . Naturwissenschaften, 52 , 65–66.
Borchert, R. (1969). Unusual shoot growth pattern in a tropical tree, Oreopanax (Araliaceae). American Journal of Botany, 56 (9),
1033–1041. https://doi.org/10.1002/j.1537-2197.1969.tb09756.x
Borchert, R. (1975). The concept of juvenility in woody plants. Symposium on Juvenility in Woody Perennials, 56 , 21–36.
Bork, J. (1990). Developmental cycles in shoot growth of male Cycas circinalis . American Journal of Botany, 77 (8), 981–985.
https://doi.org/10.1002/j.1537-2197.1990.tb13592.x
Bornman, C. H. (1978). Welwitschia: Paradox of a parched paradise = Welwitschia : Paradox eines Verdorrten Paradieses. C. Struik.
http://catalog.hathitrust.org/api/volumes/oclc/4566538.html
Borthwick, H. A. (1931). Development of the macrogametophyte and embryo of Daucus carota . Botanical Gazette, 92 (1), 23–44.
https://doi.org/10.1086/334175
Bouman, F. (1978). Integumentary studies in the Polycarpicae V. Nigella Damascena L. Acta Botanica Neerlandica, 27(3–4), 175–182.
Bouman, F. (1984). The ovule. In Embryology of angiosperms (pp. 123–157). Springer.
Bowe, L. M. , Coat, G. , & dePamphilis, C. W. (2000). Phylogeny of seed plants based on all three genomic compartments: Extant
gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, 97 (8),
4092–4097. https://doi.org/10.1073/pnas.97.8.4092
Bower, F. O. (1884a). XX. On the comparative morphology of the leaf the vascular cryptogams and gymnosperms. Philosophical
Transactions of the Royal Society of London, 175, 565–615.
Bower, F. O. (1885b). On the comparative morphology of the leaf in the vascular Cryptogams and Gymnosperms. Philosophical
Transactions of the Royal Society (London) 175: 565–615.
Bower, F. O. (1885a). XII. On the development and morphology of phylloglossum drummondii. Philosophical Transactions of the Royal
Society of London, 176, 665–678.
Bower, F. O. (1891). A course of practical instruction in botany. Macmillan.
Bower, F. O. (1894). Studies in the morphology of spore-producing members. - Equisetineæ and Lycopodineæ. Philosophical Transactions
of the Royal Society of London. (B.), 185 , 473–572. https://doi.org/10.1098/rstb.1894.0012
Bower, F. O. (1896). Studies in the morphology of spore-producing members. Part II. Ophioglossaceæ. Royal Society (59), 353–358.
https://doi.org/10.1098/rspl.1895.0065
Bower, F. O. (1903). Studies in the morphology of spore-producing members.—No. V. general comparisons, and conclusion. Proceedings
of the Royal Society of London, 71 (467–476), 258–264.
Bower, F. O. (1904). Ophioglossum simplex, Ridley. Annals of Botany, 18 (70), 205–216.
Bower, F. O. (1908). The origin of a land flora. A theory based upon the facts of alternation. Macmillan.
Bower, F. O. (1911). Plant-life on land, considered in some of its biological aspects. Cambridge University Press.
Bower, F. O. (1917). Studies in the Phylogeny of the Filicales. VI. Ferns showing the'Acrostichoid'Condition, with Special Reference to
Dipterid Derivatives. Annals of Botany, 31(121), 1–39.
Bower, F. O. (1923). The ferns (Filicales): Treated comparatively with a view to their natural classification (Vol. 1). Cambridge University
Press. https://doi.org/10.1017/CBO9780511708596
Bower, F.O. (1923). The Ferns (Filicales) Treated comparatively with a view to their natural classification. Volume 3: The leptosporangiate
ferns. Cambridge University Press.
Bower, F. O. (1926). The Ferns (Filicales), Vol. 2, The Eusporangiate and Other Relatively Primitive Ferns. London: Cambridge University
Press.
Bower, F. O. (1935). Primitive land plants, also known as the Archegoniatae. Macmillan.
Bower, F. O. (2010). The ferns (Filicales): Volume 1. Analytical examination of the criteria of comparison: Treated comparatively with a
view to their natural classification. Cambridge University Press.
Bowman, J. L. , Eshed, Y. , & Baum, S. F. (2002). Establishment of polarity in angiosperm lateral organs. Trends in Genetics, 18 (3),
134–141. https://doi.org/10.1016/S0168-9525(01)02601-4
Braun, A. (1872). Nachträgliche Mittheilungen über die Gattungen Marsilia und Pilularia. Buchdruckerei der Königl. Akademie der
Wissenschaften (G. Vogt.).
Braun, A. (1875). Die Frage nach der Gymnospermie der Cycadeen: Erläutert durch die Stellung dieser Familie im Stufengang des
Gewächsreichs. Buchdruckerei der Königl. Akademie der Wissenschaften (G. Vogt).
Braun, A. , & Engelmann, G. (1844). ART. XI.–A monography of the North American species of the genus Equisetum: EQUISETUM, Linn.
American Journal of Science and Arts (1820–1879); New Haven, 46 (1), 81.
Bravais, L. F. , Bravais, A. , Schimper, W. P. , & Braun, A. (1838). Mémoires sur la disposition géométrique des feuilles et des
inflorescences. Imprimé chez Paul Renouard.
Brennan, M. , & Doyle, J. (1956). The gametophytes and embryogeny of Athrotaxis . Scientific Proceedings of the Royal Dublin Society, 27
, 193–252.
Brenner, W. (1900). Untersuchungen an einigen Fettpflanzen. Druck von V. Höfling.
Briggs, B. , & Johnson, L. A. S. (1979). Evolution in the Myrtaceae. Evidence from inflorescence structure. Proceedings of the Linnean
Society of New South Wales, 102 , 157–256.
Briggs , W. R., & Steeves , T. A. (1958). Morphogenetic studies on Osmunda cinnamomea L. The expansion and maturation of vegetative
fronds. Phytomorphology, 8, 234–248.
Brink, R. A. , & Cooper, D. C. (1940). Double fertilization and development of the seed in angiosperms. Botanical Gazette, 102 (1), 1–25.
https://doi.org/10.1086/334932
Brink, R. A. , & Cooper, D. C. (1947). The endosperm in seed development (Concluded). Botanical Review, 13 (9), 479–541. JSTOR.
Briquet, J. (n.d.). Verbenaceae (1897) Die Natürlichen Pflanzenfamilien, 4 (3 A). W. Engelmann, Leipzig, 132–182.
Brooks, K. E. (1973). Reproductive biology of Selaginella: I. Determination of megasporangia by 2-chloroethylphosphonic acid, an
ethylene-releasing compound. Plant Physiology, 51 (4), 718–722. https://doi.org/10.1104/pp.51.4.718
Brough, P. , & Taylor, M. H. (1940). An investigation of the life cycle of Macrozamia spiralis Miq. Proceedings of the Linnean Society of
New South Wales, 65 , 494–524.
Bruchmann, H. (1874). Ueber Anlage und Wachsthum der Wurzeln von Lycopodium und Isoëtes. Mauke.
Bruchmann, H. (1910). Die Keimung der sporen und die entwicklung der prothallien von Lycopodium clavatum L., L. annotinum L. und L.
selago L. Flora Oder Allgemeine Botanische Zeitung, 101 (2), 220–267. https://doi.org/10.1016/S0367-1615(17)32307-8
Bruchmann, H. (1912). Zur embryologie der Selaginellaceen. Flora, 104, 180–224.
Bruck, D. K. , & Kaplan, D. R. (1980). Heterophyllic development in Muehlenbeckia (Polygonaceae). American Journal of Botany, 67 (3),
337–346. https://doi.org/10.1002/j.1537-2197.1980.tb07659.x
Brugger, J. , & Rutishauser, R. (1989). Architecture and development of non-aquatic species of Utricularia . Botanica Helvetica, 99 (2),
91–146.
Bruhn, W. (1910). Beiträge zur experimentellen morphologie, zur biologie und anatomie der luftwurzeln. Flora Oder Allgemeine Botanische
Zeitung, 101 (1), 98–166. https://doi.org/10.1016/S0367-1615(17)32298-X
Bryan, G. S. (1952). The cellular proembryo of Zamia and its cap cells. American Journal of Botany, 39 (7), 433–443. JSTOR.
https://doi.org/10.2307/2438326
Buchholz, J. T. (1929). The embryogeny of the conifers. Proc. Int. Congr. Plant Sci., 1 , 359–392.
Buchholz, J. T. (1931). The pine embryo and the embryos of related genera. Transactions of the Illinois State Academy of Science, 23,
117–125.
Buchholz, J. T. (1941). Embryogeny of the Podocarpaceae. Botanical Gazette, 103(1), 1–37.
Buchholz, John T. (1918). Suspensor and early embryo of Pinus . Botanical Gazette, 66 (3), 185–228. https://doi.org/10.1086/332331
Buchholz, John T. (1926). Origin of cleavage polyembryony in conifers. Botanical Gazette, 81 (1), 55–71. https://doi.org/10.1086/333566
Buchholz, John T. , & Blakeslee, A. F. (1929). Pollen-tube growth in crosses between balanced chromosomal types of Datura stramonium
. Genetics, 14 (6), 538–568.
Bugnon, F. (1961). Sur l’existence de thalles parenchymateux chez les Floridées. Bulletin de La Société Botanique de France, 108 (1–2),
24–31.
Bugnon, F. (1980). Quelques aspects fondamentaux de l’organogenese foliaire chez un palmier (Washingtonia filifera Wendl.) Revue de
cytologie et de biologie vegetales - le botaniste, 3 (2), 157–166.
Burrows, G. E. (1987). Leaf axil anatomy of the Araucariaceae. Australian Journal of Botany, 35 (6), 631–640.
Burtt, B. L. (1970). Studies in the Gesneriaceae of the Old World. XXXI. Some aspects of functional evolution. Edinb Roy Bot Gard Notes.
https://agris.fao.org/agris-search/search.do?recordID=US201301172729
Büsgen, M. (1890). Untersuchungen ueber normale und abnorme Marsilien-früchte. Flora Oder Allgemeine Botanische Zeitung, 73 ,
168–182.
Büsgen, M. (1901). Einiges über Gestalt und Wachstumsweise der Baumwurzeln 1 and 2. Allg. Forst. Jagdztg. 42, 278–373
Büsgen, M. (1905). Studien über die wurzelsysteme einiger dicotyler holzpflanzen. Flora Oder Allgemeine Botanische Zeitung, 95 , 58–94.
https://doi.org/10.1016/S0367-1615(17)31490-8
Buxbaum, F. (1950). Morphology of cacti ( E. B. Kurtz , Ed.; Vol. 1–3). Abbey Garden Press.
Caldwell, O. W. (1907). Microcycas calocoma . Botanical Gazette, 44 (2), 118–141. https://doi.org/10.1086/329295
Campbell, D. H. (1905). Studies on the Araceae, III. Annals of Botany, 19 (75), 329–349. JSTOR.
Campbell, D. H. (1907). Studies on the Ophioglossaceae. E. J. Brill.
Campbell, D. H. (1928). The embryo of Equisetum debile, Roxb. Annals of Botany, os-42(3), 717–728.
Campbell, D. H. (1940). The evolution of the land plants (Embryophyta). Stanford University Press.
Carles, C. C. , & Fletcher, J. C. (2003). Shoot apical meristem maintenance: The art of a dynamic balance. Trends in Plant Science, 8 (8),
394–401. https://doi.org/10.1016/S1360-1385(03)00164-X
Carlquist, S. J. (1969). Toward acceptable evolutionary interpretations of floral anatomy. Phytomorphology, 19 (4), 332–362.
Carmichael, J. S. , & Friedman, W. E. (1996). Double fertilization in Gnetum gnemon (Gnetaceae): Its bearing on the evolution of sexual
reproduction within the Gnetales and the anthophyte clade. American Journal of Botany, 83 (6), 767–780. JSTOR.
https://doi.org/10.2307/2445854
Carr, S. G. , & Carr, D. J. (1961). The functional significance of syncarpy. Phytomorphology., 11 , 249–256.
Cass, D. D. (1972). Occurrence and development of a filiform apparatus in the egg of plumbago capensis. American Journal of Botany, 59
(3), 279–283. https://doi.org/10.1002/j.1537-2197.1972.tb10093.x
Čelakovský, L. J. (1884). Untersuchungen über die Homologien der generativen Produkte der Fruchtblätter bei den Phanerogamen und
Gefässkryptogamen. Jahrbücher für Wissenschaftliche Botanik.
Čelakovský, L. J. (1892). Theorie der Blüthenstände auf deductiver (vergleichend-phylogenetischer) Grundlage.
Chadefaud, M. (1960). Traité de botanique systématique. Masson.
Chamberlain, C. J. (1911). The adult cycad trunk. Botanical Gazette, 52 (2), 81–104. https://doi.org/10.1086/330587
Chamberlain, C. J. (1934). Gymnosperms. Structure and evolution. University of Chicago Press.
https://www.cabdirect.org/cabdirect/abstract/19361601477
Chamberlain, C. J. (1935). Gymnosperms. Structure and evolution. Nature, 136 , 278–279.
https://www.cabdirect.org/cabdirect/abstract/19361601477
Chamberlain, C. J. (1935). The gymnosperms. The Botanical Review, 1 (6), 183–209. https://doi.org/10.1007/BF02872502
Chandler, J. W. (2008). Cotyledon organogenesis. Journal of Experimental Botany, 59 (11), 2917–2931. https://doi.org/10.1093/jxb/ern167
Charlton, W. A. (1994). Elaboration of stipular structures in Azara serrata R. & P. (Flacourtiaceae). Acta Botanica Neerlandica, 43 (4),
373–382. https://doi.org/10.1111/j.1438-8677.1994.tb00758.x
Chaw, S. M. , Long, H. , Wang, B. S. , Zharkikh, A. , & Li, W. H. (1993). The phylogenetic position of Taxaceae based on 18S rRNA
sequences. Journal of Molecular Evolution, 37 (6), 624–630. https://doi.org/10.1007/BF00182748
Chaw, S. M. , Parkinson, C. L. , Cheng, Y. , Vincent, T. M. , & Palmer, J. D. (2000). Seed plant phylogeny inferred from all three plant
genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences, 97
(8), 4086–4091. https://doi.org/10.1073/pnas.97.8.4086
Chaw, S. M. , Sung, H. M. , Long, H. , Zharkikh, A. , & Li, W. H. (1995). The phylogenetic positions of the conifer genera Amentotaxus,
Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution, 41 , 224–230. https://agris.fao.org/agris-
search/search.do?recordID=US201301506657
Chaw, S. M. , Zharkikh, A. , Sung, H. M. , Lau, T. C. , & Li, W. H. (1997). Molecular phylogeny of extant gymnosperms and seed plant
evolution: Analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution, 14 (1), 56–68.
https://doi.org/10.1093/oxfordjournals.molbev.a025702
Chitwood, D. H. , Naylor, D. T. , Thammapichai, P. , Weeger, A. C. , Headland, L. R. , & Sinha, N. R. (2012). Conflict between intrinsic leaf
asymmetry and phyllotaxis in the resupinate leaves of Alstroemeria psittacina . Frontiers in Plant Science, 3, 182.
https://doi.org/10.3389/fpls.2012.00182
Chodat, R. , (1916). La vegetation du Paraguay, résultats scientifiques d'une mission botanique suisse au Paraguay (Vol. 1). Fasc. 1.
Bromeliaceae. Jent. Geneve
Chodat, R. , (1927). La vegetation du Paraguay 14. Amarantacees. Bull. Soc. Bot. Geneve 18:246–294.
Choi, J. , & Friedman, W. E. (1991). Development of the pollen tube of Zamia furfuracea (Zamiaceae) and its evolutionary implications.
American Journal of Botany, 78 (4), 544–560. https://doi.org/10.1002/j.1537-2197.1991.tb15221.x
Chormanski, T. A. , & Richards, J. H. (2012). An architectural model for the bladderwort Utricularia gibba (Lentibulariaceae)1. The Journal
of the Torrey Botanical Society, 139 (2), 137–148. https://doi.org/10.3159/TORREY-D-11-00088.1
Christenhusz, M. J. M. , Zhang, X. C. , & Schneider, H. (2011). A linear sequence of extant families and genera of lycophytes and ferns.
Phytotaxa, 19 (1), 7–54. https://doi.org/10.11646/phytotaxa.19.1.2
Chrysler, M. A. (1910). The nature of the fertile spike in the Ophioglossaceae. Annals of Botany, 24 (93), 1–18. JSTOR.
Chrysler, M. A. (1945). The shoot of Botrychium interpreted as a series of dichotomies. Bulletin of the Torrey Botanical Club, 72 (6),
491–505. JSTOR. https://doi.org/10.2307/2481320
Chua, N.-H. , Roberts, K. , & Hashimoto, T. (2002). Molecular genetic analysis of left–right handedness in plants. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 357 (1422), 799–808. https://doi.org/10.1098/rstb.2002.1088
Church, A. H. (1919). Thalassiophyta and the subaerial transmigration. H. Milford, Oxford University Press.
Church, A. H. (1920). The somatic organization of the Phaeophyceae. H. Milford, Oxford University Press.
Clark, F. E. (1972). Soil microorganisms. McGraw-Hill Yearbook of Science and Technology, 380–383.
Classen-Bockhoff, R. (1990). Pattern analysis in pseudanthia. Plant Systematics and Evolution, 171 (1), 57–88.
https://doi.org/10.1007/BF00940596
Clowes, F. A. L. (1961). Apical meristems. Blackwell Scientific.
Clowes, F. A. L. (2000). Pattern in root meristem development in angiosperms. New Phytologist, 146 (1), 83–94.
https://doi.org/10.1046/j.1469-8137.2000.00614.x
Cock, J. M. , Sterck, L. , Rouzé, P. , Scornet, D. , Allen, A. E. , Amoutzias, G. , Anthouard, V. , Artiguenave, F. , Aury, J.-M. , & Badger, J.
H. (2010). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465 (7298), 617–621.
Cohen, L. I. (1968). Development of the staminate flower in the dwarf mistletoe, Arceuthobium. American Journal of Botany, 55 (2),
187–193. https://doi.org/10.1002/j.1537-2197.1968.tb06960.x
Cohen, L. , & Arzee, T. (1980). Twofold pathways of apical determination in the thorn system of Carissa grandiflora . Botanical Gazette,
141 (3), 258–263. https://doi.org/10.1086/337153
Cole, D. T. (1988). Lithops: Flowering stones. Acorn Books in association with Russel Friedman Books.
Collett, H. , & Hemsley, W. B. (1890). On a collection of plants from Upper Burma and the Shan States. The Journal of the Linnean
Society, 28(128–191), 1–150.
Cooke, T. J. (2006). Do Fibonacci numbers reveal the involvement of geometrical imperatives or biological interactions in phyllotaxis?
Botanical Journal of the Linnean Society, 150 (1), 3–24. https://doi.org/10.1111/j.1095-8339.2006.00490.x
Cooney-Sovetts, C. , & Sattler, R. (1987). Phylloclade development in the Asparagaceae: An example of homoeosis. Botanical Journal of
the Linnean Society, 94 (3), 327–371. https://doi.org/10.1111/j.1095-8339.1986.tb01053.x
Corner, E. J. H. (1954). The evolution of tropical forest. In Evolution as a Process. Allen and Unwin.
Corner, E. J. H. (1964). The Life of Plants (1st ed.). Cleveland World Pub.
Corner, E. J. H. (1966). The natural history of Palms. Weidenfeld and Nicolson. https://www.cabdirect.org/cabdirect/abstract/19666605196
Corner, E. J. H. (1967). Ficus in the Solomon Islands and its bearing on the post-Jurassic history of Melanesia. Philosophical Transactions
of the Royal Society of London. Series B, Biological Sciences, 253 (783), 23–159. JSTOR.
Corner, E. J. H. (2002). The life of plants. University of Chicago Press.
Coulter, J. M. , & Chamberlain, C. J. (1917). Morphology of gymnosperms (2nd ed.). University of Chicago Press.
Coulter, J. M. , & Chrysler, M. A. (1904). Regeneration in Zamia. Botanical Gazette, 38 (6), 452–458. JSTOR.
Courtot, Y. (1966). Action de la lumière sur la croissance des tiges principales de l’Asparagus medeoloides. Photochemistry and
Photobiology, 5 (5–6), 377–381.
Critchfield, W. B. (1970). Shoot growth and heterophylly in Ginkgo biloba . Botanical Gazette, 131 (2), 150–162.
https://doi.org/10.1086/336526
Croxdale, J. G. (1976). Origin and early morphogenesis of lateral buds in the fern Davallia . American Journal of Botany, 63 (2), 226–238.
https://doi.org/10.1002/j.1537-2197.1976.tb11806.x
Croxdale, J. G. (1978). Salvinia leaves. I. Origin and early differentiation of floating and submerged leaves. Canadian Journal of Botany, 56
(16), 1982–1991. https://doi.org/10.1139/b78-237
Croxdale, J. G. (1981). Salvinia leaves. III. Morphogenesis of the submerged leaf. Canadian Journal of Botany, 59(11), 2065–2072.
Croxdale, J. G. (1983). Quantitative measurements of phosphofructokinase in the shoot apical meristem, leaf primordia, and leaf tissues of
dianthus chinensis L. Plant Physiology, 73 (1), 66–70. https://doi.org/10.1104/pp.73.1.66
Curtis, S. , & Hooker, W. J. (1831). (3083) Fritillaria leucantha. White-flowered Fritillary. Curtis's Botanical Magazine, 5.
Cusick, F. (1966). On phylogenetic and ontogenetic fusions. In E. G. Cutter (Ed.), Trends in plant morphogenesis. (pp. 170–183).
Longmans.
Cutter, E. G. (1966). Patterns of organogenesis in the shoot. In E. G. Cutter (Ed.), Trends in plant morphogenesis. Longmans.
Cutter, E. G. (1971). Plant anatomy: experiment and interpretation. Part 2. Organs. Edward Arnold. London
Cutter, E. G. (1972). Regulation of branching in decussate species with unequal lateral buds. Annals of Botany, 36 (1), 207–220.
Czaja, A. T. (1922). Die Fangvorrichtung der Utriculariablase. In Die Fangvorrichtung der Utriculariablase (Vol. 14, pp. 705–729). Z. Bot.
Dakin, W. J. (1918). The West Australian pitcher plant (Cephalotus follicularis) and its physiology . Fred. Wm. Simpson, Govt. pr.
Dangeard, P. A. (1890). Indications sur la récolte des algues inférieures: Modes de culture et technique. Notarisia, 5 (19).
Dangeard, P. A. (1891). Mémoire sur la morphologie et l’anatomie des Tmesipteris. Le Botaniste Series II, 2 (4), 163–222.
Darwin, C. (1875). The movements and habits of climbing plants. J. Murray.
Darwin, C. (1876). The movements and habits of climbing plants. J. Murray.
de Beer, G. (1958). Darwin's views on the relations between embryology and evolution. Botanical Journal of the Linnean Society, 56 (365),
15–23. https://doi.org/10.1111/j.1095-8339.1958.tb01704.x
De Candolle, A. P. 1813. Catalogus plantarum, horti botanaici monspeliensis. Montpellier, Paris, France.
DeCandolle, A. P. de. (1827). Organographie végétale ou description raisonnée des organes des plantes: Pour servir de suite et de
développement à la Théorie élémentaire de la botanique et d’introduction à la Physiologie végétale et à la Description des familles.
Deterville.
DeCandolle, A. P. de , & DeCandolle, A. de. (1844). Théorie élémentaire de la botanique, ou, Exposition des principes de la classification
naturelle et de l’art de décrire et d’étudier les végétaux. Roret.
de Candolle, C. (1890). Recherches sur les inflorescences épiphylles. Société de physique et d’histoire naturelle de Genève.
Decker-Eisel, C. , & Hagemann, W. (1978). Untersuchungen über den Ursprung der fertilen Fieder vonOphioglossum pedunculosum. Plant
Systematics and Evolution, 130 (1), 143–155. https://doi.org/10.1007/BF00983078
Deinega, V. (1898). Beiträge zur kenntniss der entwicklung des blattes und der anlage der gefässbündel. Flora, 85 , 439–498.
Del Tredici, P. (1991). Evolution and Natural History of Ginkgo biloba [PhD Dissertation]. Boston University.
Del Tredici, P. (1997). Lignotuber development in Ginkgo biloba . In T. Hori , R. W. Ridge , W. Tulecke , P. Del Tredici , J. Trémouillaux-
Guiller , & H. Tobe (Eds.), Ginkgo biloba a global treasure: From biology to medicine (pp. 119–126). Springer Japan.
https://doi.org/10.1007/978-4-431-68416-9_10
Del Tredici, P. (1998). Lignotubers in sequoia sempervirens: Development and ecological significance. Madroño, 45 (3), 255–260. JSTOR.
Del Tredici, P. (2000). The evolution, ecology, and cultivation of Ginkgo biloba. In T. A. vanBeek (Ed.), Ginkgo biloba (pp. 7–23).
Hardwood academic publishers.
Del Tredici, P. D. (1992). Natural regeneration of Ginkgo biloba from downward growing cotyledonary buds (basal chichi). American
Journal of Botany, 79 (5), 522–530. https://doi.org/10.1002/j.1537-2197.1992.tb14588.x
Del Tredici, P. D. , Ling, H. , & Yang, G. (1992). The Ginkgos of tian mu shan. Conservation Biology, 6 (2), 202–209.
https://doi.org/10.1046/j.1523-1739.1992.620202.x
Delevoryas, T. (1964). Two petrified angiosperms from the Upper Cretaceous of South Dakota. Journal of Paleontology, 584–586.
DeMason, D. A. (1979). Histochemistry of the primary thickening meristem in the vegetative stem of Allium cepa L. American Journal of
Botany, 66 (3), 347–350. https://doi.org/10.1002/j.1537-2197.1979.tb06234.x
DeMason, D. A. (1980). Localization of cell division activity in the primary thickening meristem in Allium cepa L. American Journal of
Botany, 67 (3), 393–399. https://doi.org/10.1002/j.1537-2197.1980.tb07664.x
DeMason, D. A. (1983). The primary thickening meristem: Definition and function in monocotyledons. American Journal of Botany, 70 (6),
955–962. https://doi.org/10.1002/j.1537-2197.1983.tb06436.x
DeMason, D. A. , Chetty, V. , Barkawi, L. S. , Liu, X. , & Cohen, J. D. (2013). Unifoliata-Afila interactions in pea leaf morphogenesis.
American Journal of Botany, 100 (3), 478–495. https://doi.org/10.3732/ajb.1200611
DeMason, D. A. , & Diggle, P. K. (1984). The relationship between the primary thickening meristem and the secondary thickening
meristem in Yucca whipplei torr. III. Observations from histochemistry and autoradiography. American Journal of Botany, 71 (9),
1260–1267. https://doi.org/10.1002/j.1537-2197.1984.tb11981.x
DeMason, D. A. , & Schmidt, R. J. (2001). Roles of the Uni gene in shoot and leaf development of pea (Pisum sativum): Phenotypic
characterization and leaf development in the Uni and Uni-tac mutants. International Journal of Plant Sciences, 162 (5), 1033–1051.
https://doi.org/10.1086/321924
DeMason, D. A. , & Tisserat, B. (1980). The occurrence and structure of apparently bisexual flowers in the date palm, Phoenix dactylifera
L. (Arecaceae). Botanical Journal of the Linnean Society, 81 (4), 283–292. https://doi.org/10.1111/j.1095-8339.1980.tb01679.x
Demeter, K. (1922). Vergleichende asclepiadeenstudien. Flora Oder Allgemeine Botanische Zeitung, 115 (2), 130–176.
https://doi.org/10.1016/S0367-1615(17)31263-6
Dengler, N. G. (1972). Ontogeny of the vegetative and floral apex of Calycanthus occidentalis . Canadian Journal of Botany, 50 (6),
1349–1356. https://doi.org/10.1139/b72-162
Dengler, N. G. (1983). The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. American
Journal of Botany, 70 (2), 181–192. https://doi.org/10.1002/j.1537-2197.1983.tb07857.x
Dengler, N. G. , Dengler, R. E. , & Kaplan, D. R. (1982). The mechanism of plication inception in palm leaves: Histogenetic observations
on the pinnate leaf of Chrysalidocarpus lutescens . Canadian Journal of Botany, 60 (12), 2976–2998. https://doi.org/10.1139/b82-356
Dengler, N. G. , & Sanchez-Burgos, A. A. (1988). Effect of light level on the expression of anisophylly in Paradrymonia ciliosa
(Gesneriaceae). Botanical Gazette, 149 (2), 158–165. https://doi.org/10.1086/337703
Dickinson, T. A. , & Sattler, R. (1974). Development of the epiphyllous inflorescence of Phyllonoma integerrima (Turcz.) Loes.: Implications
for comparative morphology. Botanical Journal of the Linnean Society, 69(1), 1–13.
Dickinson, T. A. , & Sattler, R. (1975). Development of the epiphyllous inflorescence of Helwingia japonica (Helwingiaceae). American
Journal of Botany, 62 (9), 962–973.
Diels, L. (1906). Droseraceae. Das Pflanzenreich IV, 136.
Diggle, P. K. , & DeMason, D. A. (1983a). The relationship between the primary thickening meristem and the secondary thickening
meristem in Yucca whipplei Torr. I. Histology of the mature vegetative stem. American Journal of Botany, 70(8), 1195–1204.
Diggle, P. K. , & DeMason, D. A. (1983b). The relationship between the primary thickening meristem and the secondary thickening
meristem in Yucca whipplei Torr. II. Ontogenetic relationship within the vegetative stem. American Journal of Botany, 70(8), 1205–1216.
Dixon, P. S. (1973). Biology of the Rhodophyta. Oliver & Boyd.
Dluhosch, H. (1937). Entwicklungsgeschichtliche Untersuchungen über die Mikrosporophyllgestaltung der Coniferen. In M. Hirmer , Die
Blüten der Coniferen (Vol. 3, p. 114). Bibl. Bot.
Doak, C. C. (1935). Evolution of foliar types, dwarf shoots, and cone scales of Pinus; with remarks concerning similar structures in related
forms. Illinois Biological Monographs; 13 (3). https://doi.org/10.5962/bhl.title.50524
Docters van Leeuwen, W. M. (1929). Mierenepiphyten. De Tropische Natuur, 18(8), 131–139.
Dodsworth, S. (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Developmental
Biology, 336 (1), 1–9. https://doi.org/10.1016/j.ydbio.2009.09.031
Doorenbos, J. (1965). Juvenile and adult phases in woody plants. In Differenzierung und Entwicklung/Differentiation and Development (pp.
1222–1235). Springer.
Dorety, H. A. (1908). The seedling of Ceratozamia . Botanical Gazette, 46 (3), 203–220.
Dormer, K. J. (1972). The measurement of growth. In K. J. Dormer (Ed.), Shoot organization in vascular plants (pp. 22–53). Chapman and
Hall.
Downie, D. G. (1928). Male gametophyte of Microcycas calocoma . Botanical Gazette, 85 (4), 437–450.
Doyle, J. (1935a). Pollination in Saxegothaea . Scientific Proceedings of the Royal Dublin Societ y, 21 , 175–179.
Doyle, J. (1935b). Pollination in Tsuga, Cedrus, Pseudotsuga, and Larix . Scientific Proceedings of the Royal Dublin Society, 21 , 191–204.
Doyle, J. (1943). Pollination in Tsuga pattoniana and in species of Abies and Picea . Scientific Proceedings of the Royal Dublin Society, 23
, 57–70.
Doyle, J. (1945). Developmental lines in pollination mechanisms in the Coniferales. Scientific Proceedings of the Royal Dublin Society, 24 ,
43–62.
Doyle, J. (1954). Development in Podocarpus nivalis in relation to other podocarps. III. General conclusions. Scientific Proceedings of the
Royal Dublin Society, 26 (21), 347–377.
Doyle, J. (1957). Aspects and problems of conifer embryology. Advan, Sci., 14(54), 120–130.
Doyle, J. (1961). Proembryogeny in Pinus in relation to that in other conifers: A survey. Proceedings of the Royal Irish Academy. Section
B: Biological, Geological, and Chemical Science, 181–216.
Doyle, J. (1963). Proembryogeny in Pinus in relation to that in other conifers: A survey. Proceedings of the Royal Irish Academy. Section
B: Biological, Geological, and Chemical Science, 181–216.
Doyle, J. A. (1996). Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Sciences, 157 (S6), S3–S39.
https://doi.org/10.1086/297401
Doyle, J. , & Brennan, M. (1957). Aspects and Problems of Conifer Embryology, 14 , 120–130.
Doyle, J. , & Brennan, M. (1971). Cleavage polyembryony in conifers and taxads—A survey. 1. Podocarps, taxads and taxodioids. Royal
Dublin Society Scientific Proceedings Series A, 4 (6), 57–88.
Doyle, J. , & Brennan, M. (1972). Cleavage polyembryony in conifers and taxads—A survey. II. Cupressaceae, Pinaceae and conclusions.
Royal Dublin Society Scientific Proceedings Series A, 4 (10), 137–158.
Doyle, J. , & Kane, A. (1943). Pollination in Tsuga pattoniana and in species of Abies and Picea. Sci. Proc. Roy. Dublin Soc., 23 , 57–70.
Doyle, J. , & O'Leary, M. (1934). Abnormal cones of Fitzroya and their bearing on the nature of the conifer strobilus. Sci. Proc. Roy. Dublin
Soc, 21 , 23–35.
Doyle, J. , & O'Leary, M. (1935). Pollination in Tsuga, Cedrus, Pseudotsuga, and Larix. Sci. Proc. Roy. Dublin Soc., 21 , 191–204.
Doyle, W. T. (1964). Nonseed plants: Form and function. Macmillan International Higher Education.
Doyle, W. T. (1970). The Biology of higher cryptogams. Macmillan
Driss-Ecole, D. , Lefranc, A. , & Perbal, G. (2003). A polarized cell: The root statocyte. Physiologia Plantarum, 118 (3), 305–312.
https://doi.org/10.1034/j.1399-3054.2003.00121.x
Dubuc-Lebreux, M. A. , & Sattler, R. (1980). Développement des organes foliacés chez Nicotiana tabacum et le problème des méristèmes
marginaux. Phytomorphology, 30 , 17–32.
Duerden, H. (1929). Variations in megaspore number in Selaginella . Annals of Botany, 43 (171), 451–457.
Duke, J. A. (1965). Keys for the identification of seedlings of some prominent woody species in eight forest types in Puerto Rico. Annals of
the Missouri Botanical Garden, 52 (3), 314–350.
Dulieu, H. (1968). Emploi des chimères chlorophylliennes pour l’étude de l’ontogénie foliaire. Bulletin Scientifique Bourgogne, 25 , 1–60.
Eames, A. J. (1931). The vascular anatomy of the flower with refutation of the theory of carpel polymorphism. American Journal of Botany,
18 (3), 147–188. JSTOR. https://doi.org/10.2307/2435823
Eames, A. J. (1936). Morphology of vascular plants. McGraw-Hill. https://agris.fao.org/agris-search/search.do?recordID=US201300445055
Eames, A. J. (1952). Relationships of the Ephedrales. Phytomorphology, 2 , 79–100.
Eames, A. J. (1953). Neglected morphology of the palm leaf. Phytomorphology, 3 , 172–189.
Eames, A. J. (1961). Morphology of the angiosperms. McGraw-Hill.
Eckardt, T. (1941). Kritische Untersuchungen über das primäre dickenwachstum bei monokotylen, mit ausblick auf dessen verhältnis zur
sekundären verdickung. Botanical Archives, 42 , 289–334.
Eckenwalder, J. E. (1976). Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madroño, 23 (5), 237–256. JSTOR.
Edmund, M. M. (1915). Beiträge zur kenntnis der utricularien und genliseen. Flora Oder Allgemeine Botanische Zeitung, 108 (1), 127–200.
https://doi.org/10.1016/S0367-1615(17)31720-2
Egler, F. E. (1948). The dispersal and establishment of red mangrove Rhizophora in Florida. Caribbean Forester, 9 (4), 299–320.
Eichler, A. W. (1861). Zur Entwickelungsgeschichte des Blattes mit besonderer Berücksichtigung der Nebenblatt-Bildungen. Elwert’sche
Universitäts-Buchhandlung.
Eichler, A. W. (1876). Syllabus der Vorlesungen über Phanerogamenkunde: Zum Gebrauch der Studirenden. Schwers’sche Buchh.
Eichler, A. W. (1881). Über die weiblichen Blüthen der Coniferen. Buchdruckerei der Königl. Akademie der Wissenschaften.
Eichler, A. W. (1885). Zur Entwickelungsgechichte der Palmenblätter. Buchdruckerei der Königl. Akademie der Wissenschaften.
Emery, J. F. , Floyd, S. K. , Alvarez, J. , Eshed, Y. , Hawker, N. P. , Izhaki, A. , Baum, S. F. , & Bowman, J. L. (2003). Radial patterning of
Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology, 13 (20), 1768–1774.
Endress, P. K. (1994). Floral structure and evolution of primitive angiosperms: Recent advances. Plant Systematics and Evolution, 192 (1),
79–97. https://doi.org/10.1007/BF00985910
Endress, P. K. (1996). Structure and function of female and bisexual organ complexes in Gnetales. International Journal of Plant Sciences,
157 (S6), S113–S125. https://doi.org/10.1086/297407
Endress, P. K. (1999). Symmetry in flowers: Diversity and evolution. International Journal of Plant Sciences, 160 (S6), S3–S23.
https://doi.org/10.1086/314211
Endress, P. K. (2001). The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant
Sciences, 162 (5), 1111–1140. https://doi.org/10.1086/321919
Endress, P. K. (2010). Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial
obdiplostemony. Annals of Botany, 106 (5), 687–695. https://doi.org/10.1093/aob/mcq171
Erbar, C. (1991). Sympetaly - A systematic character? Botanische Jahrbücher fur Systematik, 112 , 417–451.
Erbar, C. (1998). Coenokarpie ohne und mit Compitum: Ein Vergleich der Gynoeceen von Nigella (Ranunculaceae) und Geranium
(Geraniaceae). Beitrage Zur Biologie Der Pflanzen, 71(1), 13–40.
Erbar, C. (1999). Coenokarpie ohne und mit compitum: Ein vergleich der gynoeceen von Nigella (Ranunculaceae) und Geranium
(Geraniaceae). Beitrage Zur Biologie Der Pflanzen, 71 (1), 13–40.
Erickson, R. O. , & Michelini, F. J. (1957). The plastochron index. American Journal of Botany, 44 , 297–305.
Erickson, R. O. , & Sax, K. B. (1956). Rates of cell division and cell elongation in the growth of the primary root of Zea mays. Proceedings
of the American Philosophical Society, 100 (5), 499–514. JSTOR.
Esau, C. (1977). Anatomy of Seed Plants (2nd ed.). John Wiley & Sons.
Esau, K. (1942). Vascular differentiation in the vegetative shoot of Linum. I. The procambium. American Journal of Botany, 29 (9),
738–747. JSTOR. https://doi.org/10.2307/2437727
Esau, K. (1943). Vascular differentiation in the vegetative shoot of Linum. II. The first phloem and xylem. American Journal of Botany,
248–255.
Esau, K. (1953). Plant Anatomy. Soil Science, 75(5), 407.
Esau, K. (1960). Anatomy of seed plants. Wiley.
Esau, K. (1965). Vascular differentiation in plants. Holt, Rinehart and Winston.
Esau, K. (2006). Anatomy of seed plants. ( 2nd ed.) Wiley India.
Ewers, F. W. (1983). The determinate and indeterminate dwarf shoots of Pinus longaeva (bristlecone pine). Canadian Journal of Botany,
61 (9), 2280–2290. https://doi.org/10.1139/b83-250
Fahn, A. (1974). Plant anatomy (2nd ed.). Pergamon Press.
Falk , R. H., Gifford , E. M., & Cutter , E. G. (1970). Scanning electron microscopy of developing plant organs. Science, 168(3938),
1471–1472.
Farmer, J. B. , & Freeman, W. G. (1899). On the structure and affinities of Helminthostachys zeylanica . Annals of Botany, 13 (51),
421–445. JSTOR.
Favre-Duchartre, M. (1956). Contribution à l’étude de la reproduction chez le Ginkgo biloba . Revue de cytologie et de biologie vegetales,
17 , 1–218.
Favre-Duchartre, M. (1958). Ginkgo, an oviparous plant. Phytomorphology, 8 , 377–390.
Fawcett, P. K. S. , & Norstog, K. J. (1993). Zamia pumila in South Florida: A preliminary report on its pollinators R. slossoni, a snout weevil
and P. zamiae, a clavicorn beetle. The Biology, Structure, and Systematics of the Cycadales. Proceedings of CYCAD, 90 , 109–120.
Fawcett, P. K. , Norstog, K. , & Vovides, A. P. (1995). Pollination of two species of Zamia in south Florida and its implications for the
evolution of cycad strobili. Birbal Sahni Centenary, 1993 , 111–121.
Fee, A. L. A. (1845). Genera Filicum (Memoire sur la famille des Fougeres). Paris & Strasbourg
Feist, P. M. J. A. (1887). Über die Schutzeinrichtungen der Laubknospen dicotyler Laubbäume während ihrer Entwicklung. Engelmann.
Feldman, L. J. (1985). Root gravitropism. Physiologia Plantarum, 65 (3), 341–344. https://doi.org/10.1111/j.1399-3054.1985.tb02405.x
Field, A. R. , Testo, W. , Bostock, P. D. , Holtum, J. A. M. , & Waycott, M. (2016). Molecular phylogenetics and the morphology of the
Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus, and Phylloglossum . Molecular Phylogenetics
and Evolution, 94 , 635–657. https://doi.org/10.1016/j.ympev.2015.09.024
Fisher, J. B. (1970a). Control of the internodal intercalary meristem of Cyperus alternifolius . American Journal of Botany, 57 (9),
1017–1026. https://doi.org/10.1002/j.1537-2197.1970.tb09903.x
Fisher, J. B. (1970b). Development of the intercalary meristem of Cyperus alternifolius . American Journal of Botany, 57 (6Part1),
691–703. https://doi.org/10.1002/j.1537-2197.1970.tb09866.x
Fisher, J. B. (1973). Unusual branch development in the palm, Chrysalidocarpus . Botanical Journal of the Linnean Society, 66 (1), 83–95.
https://doi.org/10.1111/j.1095-8339.1973.tb02162.x
Fisher, J. B. (1974). Axillary and dichotomous branching in the palm Chamaedorea . American Journal of Botany, 61 (10), 1046–1056.
https://doi.org/10.1002/j.1537-2197.1974.tb12322.x
Fisher, J. B. (1980). Morphogenetic effects of gibberellins and other growth regulators on palms. Petaloid Monocotyledons. Linnean
Society Symposium Series , 8 , 21–32.
Fisher, J. B. , & French, J. C. (1976). The occurrence of intercalary and uninterrupted meristems in the internodes of tropical
monocotyledons. American Journal of Botany, 63 (5), 510–525. https://doi.org/10.1002/j.1537-2197.1976.tb11840.x
Fisher, J. B. , & French, J. C. (1978). Internodal meristems of monocotyledons: Further studies and a general taxonomic summary. Annals
of Botany, 42 (1), 41–50. https://doi.org/10.1093/oxfordjournals.aob.a085450
Fisher, J. B. , & Rutishauser, R. (1990). Leaves and epiphyllous shoots in Chisocheton (Meliaceae): A continuum of woody leaf and stem
axes. Canadian Journal of Botany, 68 (11), 2316–2328. https://doi.org/10.1139/b90-296
Florin, R. (1951). Evolution of cordaites and conifers. Acta Horticulturae Berginal, 17 , 259–388.
Fornfeist, J. (1984). Development of whole marginal leaf organs in dicotyledons [Diplom-Arbeit]. Universität Heidelberg.
Foster, A. S. (1928). Salient features of the problem of bud-scale morphology. Biological Reviews, 3 (2), 123–164.
https://doi.org/10.1111/j.1469-185X.1928.tb00853.x
Foster, A. S. (1929). Investigations on the morphology and comparative history of development of foliar organs I. The foliage leaves and
cataphyllary structures in the horsechestnut (Aesculus hippocastanum l.). first part. American Journal of Botany, 16 (6), 441–474. JSTOR.
https://doi.org/10.2307/2435891
Foster, A. S. (1931). Phylogenetic and ontogenetic interpretations of the cataphyll. American Journal of Botany, 18 (4), 243–249. JSTOR.
https://doi.org/10.2307/2435900
Foster, A. S. (1932). Investigations on the morphology and comparative history of development of foliar organs III. Cataphyll and foliage-
leaf ontogeny in the black hickory (Carya buckleyi var. arkansana). American Journal of Botany, 19 (1), 75–99. JSTOR.
https://doi.org/10.2307/2435821
Foster, A. S. (1934). Foliar determination in angiosperms. Science, 79 (2054), 429–430. https://doi.org/10.1126/science.79.2054.429
Foster, A. S. (1935). Comparative histogenesis of foliar transition forms in Carya. University of California Press.
Foster, A. S. (1936). Leaf differentiation in angiosperms. The Botanical Review, 2 (7), 349–372.
Foster, A. S. (1938). Structure and growth of the shoot apex in Ginkgo biloba. Bulletin of the Torrey Botanical Club, 531–556.
Foster, A. S. (1939). Structure and growth of the shoot apex of Cycas revoluta . American Journal of Botany, 26 (6), 372–385. JSTOR.
https://doi.org/10.2307/2436837
Foster, A. S. (1940). Further studies ox zonal structure and growth of the shoot apex of Cycas revoluta Thunb. American Journal of
Botany, 27 (7), 487–501. https://doi.org/10.1002/j.1537-2197.1940.tb14710.x
Foster, A. S. (1941). Comparative studies on the structure of the shoot apex in seed plants. Bulletin of the Torrey Botanical Club, 68 (6),
339–350. JSTOR. https://doi.org/10.2307/2481642
Foster, A. S. (1943). Zonal structure and growth of the shoot apex in Microcycas calocoma (Miq.) A. DC. American Journal of Botany, 30
(1), 56–73. JSTOR. https://doi.org/10.2307/2437394
Foster, A. S. (1972). Venation patterns in the leaves of Ephedra . Journal of the Arnold Arboretum, 53 (3), 364–385. JSTOR.
Foster, A. S. , & Gifford, E. M. (1959). Comparative morphology of vascular plants. Comparative Morphology of Vascular Plants.
https://www.cabdirect.org/cabdirect/abstract/19591603308
Foster, A. S. , & Gifford, E. M. (1974). Comparative morphology of vascular plants (2nd ed.). WH Freeman.
https://www.cabdirect.org/cabdirect/abstract/19591603308
Frame-Purguy, D. (1996). Carpel development in Tasmannia insipida (Winteraceae). International Journal of Plant Sciences, 157 (6),
698–702. https://doi.org/10.1086/297391
Franck, D. H. (1975). Early histogenesis of the adult leaves of Darlingtonia californica (Sarraceniaceae) and its bearing on the nature of
epiascidiate foliar appendages. American Journal of Botany, 62 (2), 116–132. https://doi.org/10.1002/j.1537-2197.1975.tb14044.x
Franck, D. H. (1976). Comparative morphology and early leaf histogenesis of adult and juvenile leaves of Darlingtonia californica and their
bearing on the concept of heterophylly. Botanical Gazette, 137 (1), 20–34. https://doi.org/10.1086/336837
Francke, H.-L. (1934). Beiträge zur Kenntnis der Mykorrhiza von Monotropa hypopitys L.: Analyse und Synthese der Symbiose. Flora Oder
Allgemeine Botanische Zeitung, 129(1), 1–52.
French, J. C. (1977). Growth relationships of leaves and internodes in viny angiosperms with different modes of attachment. American
Journal of Botany, 64 (3), 292–304. https://doi.org/10.1002/j.1537-2197.1977.tb15730.x
Freytag, H. (1931). Untersuchungen über die plagiotropie der blätter von tropaeolum maius. Zeitschrift Für Wissenschaftliche Biologie.
Abteilung E. Planta, 12 (2), 267–292. JSTOR.
Friedman, W. E. (1987a). Growth and development of the male gametophyte of Ginkgo biloba within the ovule (in vivo). American Journal
of Botany, 74 (12), 1797–1815. https://doi.org/10.1002/j.1537-2197.1987.tb08783.x
Friedman, W. E. (1987b). Morphogenesis and experimental aspects of growth and development of the male gametophyte of Ginkgo biloba
in vitro. American Journal of Botany, 74 (12), 1816–1830. https://doi.org/10.1002/j.1537-2197.1987.tb08784.x
Friedman, W. E. (1990). Double fertilization in Ephedra, a nonflowering seed plant: Its bearing on the origin of angiosperms. Science, 247
(4945), 951–954. https://doi.org/10.1126/science.247.4945.951
Friedman, W. E. (1992). Double fertilization in nonflowering seed plants and its relevance to the origin of flowering plants. International
Review of Cytology, 140, 319–355.
Friedman, W. E. (1994). The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm.
American Journal of Botany, 81 (11), 1468–1486.
Friedman, W. E. (1998). The evolution of double fertilization and endosperm: An” historical” perspective. Sexual Plant Reproduction, 11
(1), 6–16. https://doi.org/10.1007/s004970050114
Friedman, W. E. , & Gifford, E. M. (1988). Division of the generative cell and late development in the male gametophyte of Ginkgo biloba .
American Journal of Botany, 75 (9), 1434–1442. https://doi.org/10.1002/j.1537-2197.1988.tb14203.x
Friedman, W. E. , & Gifford, E. M. (1997). Development of the male gametophyte of Ginkgo biloba: A window into the reproductive biology
of early seed plants. In T. Hori , R. W. Ridge , W. Tulecke , P. Del Tredici , J. Trémouillaux-Guiller , & H. Tobe (Eds.), Ginkgo biloba a
global treasure: From biology to medicine (pp. 29–49). Springer Japan. https://doi.org/10.1007/978-4-431-68416-9_3
Fritsch, F. E. (1935). The structure and reproduction of the algae. University Press.
Froebe, H. A. , & Baur, N. (1988). Morphogenesis of the pitcher leaves of Cephalotus follicularis Labill . Akademie der Wissenschaften und
der Literatur. https://agris.fao.org/agris-search/search.do?recordID=US201300726340
Froebe, H. A. , & Classen, R. (1987). Kritische evaluation zur deutung der spreublattkomplexe von Carlina L. Flora, 179 (6), 445–452.
https://doi.org/10.1016/S0367-2530(17)30278-5
Froebe, H. A. , & Classen-Bockhoff, R. (1994). Das trialektische Typuskonzept der botanischen Morphologie. Senckenberg-Buch, 70,
143–167.
Frydman, V. M. , & Wareing, P. F. (1973). Phase change in Hedera helix L: I. gibberellin-like substances in the two growth phases. Journal
of Experimental Botany, 24 (6), 1131–1138.
Fuchs, C. (1968). On the different views hitherto proposed regarding the morphology of the flowers of Ginkgo biloba L. Comptes Rendus
Hebdomadaires Des Séances de l’Académie Des Sciences, 267 , 722–725.
Fuchs, C. (1975). Ontogenèse foliare et acquisition de la forme chez le Tropaeolum peregrinum L. I. Les premiers stades de l’ontogenèse
du lobe médian. Ann Sci Nat Bot Biol Veg. 321–389.
Fuchs-Eckert, H. P. (1982). Zur heutigen kenntnis von Vorkommen und Verbreitung der sudamerikanischen Isoetes-Arten. Proceedings of
the Koninklijke Nederlandse Akademie van Wetenschappen, 85 , 205–260.
Fujii, K. (1896). On the different views hitherto proposed regarding the morphology of the flowers of Ginkgo biloba L. Shokubutsugaku
Zasshi, 10 (118), 104–110.
Fukushima, K. , & Hasebe, M. (2014). Adaxial–abaxial polarity: The developmental basis of leaf shape diversity. Genesis, 52 (1), 1–18.
https://doi.org/10.1002/dvg.22728
Gabilo, E. M. , & Mogensen, H. L. (1973). Foliar initiation and the fate of the dwarf-shoot apex in Pinus monophylla . American Journal of
Botany, 60 (7), 671–677. https://doi.org/10.1002/j.1537-2197.1973.tb05972.x
Garrison, R. (1973). The growth and development of internodes in Helianthus . Botanical Gazette, 134 (4), 246–255.
https://doi.org/10.1086/336711
Gensel, P. G. (1977). Morphologic and taxonomic relationships of the Psilotaceae relative to evolutionary lines in early land vascular
plants. Brittonia, 29 (1), 14. https://doi.org/10.2307/2805739
Gerrath, J. M. , Côté, R. , & Farquhar, M. (1999). Pea (Pisum sativum L.) tendril-surface changes are correlated with changes in functional
development. International Journal of Plant Sciences, 160 (2), 261–274. https://doi.org/10.1086/314121
Gersterberger, P. , & Leins, P. (1978). Rasterelektronenmikroskopische untersuchungen an blütenknospen von Physalis philadelphica
(Solanaceae) anwendung einer neuen präparationsmethode. Berichte Der Deutschen Botanischen Gesellschaft, 91 (1), 381–387.
Giesenhagen, K. (1925). Die gestaltung des wedels von pteris ensiformis burm. Flora Oder Allgemeine Botanische Zeitung, 118–119 ,
127–149. https://doi.org/10.1016/S0367-1615(17)32885-9
Gifford, E. M. , & Corson, G. E. (1971). The shoot apex in seed plants. The Botanical Review, 37 (2), 143–229.
Gifford, E. M. , & Foster, A. S. (1989). Morphology and evolution of vascular plants. WH Freeman.
Gifford, E. M. , & Mirov, N. T. (1960). Initiation and ontogeny of the ovulate strobilus in Ponderosa Pine. Forest Science, 6(1), 19–25.
Gilman, A. V. , & Testo, W. L. (2015). Use of gemma characters to identify north American Huperzia (Lycopodiaceae). American Fern
Journal, 105 (3), 145–161. https://doi.org/10.1640/0002-8444-105.3.145
Givnish, T. J. (1989). The ecology and evolution of carnivorous plants. Plant-Animal Interactions, ed ( W.G. Abrahamson ). McGraw Hill.
pp 243–290
Glück, H. (1905). Biologische und morphologische untersuchungen über wasser-: und sumpfgewächse (Vol. 1). G. Fischer.
Glück, H. (1911). Die Uferflora. Verlag von Gustav Fischer.
Glück, H. (1919). Blatt-und blütenmorphologische Studien: eine morphologische Untersuchung über die Stipulargebilde, über die
Intravaginalpapillen, über die Blattscheide und über die Bewertung der Blütenblattgebilde. G. Fischer.
Godfrey, R. K. (1981). Aquatic and wetland plants of Southeastern United States: Dicotyledons. University of Georgia Press.
Godfrey, R. K. , & Wooten, J. W. (1981). Dicotyledons. Aquatic and wetland plants of southeastern United States. University of Georgia
Press, Athens, GA, USA.
Goebel, K. (1879). Über sprossbildung auf isoëtesblättern. Botanische Zeitung, 37 , 1–6.
Goebel, K. (1881). Beiträge zur vergleichenden Entwicklungsgeschichte der Sporangien (Vol. 2). Botanishe Zeitung.
Goebel, K. (1884). Vergleichende Entwicklungsgeschichte der Pflanzenorgane. R. Friedländer.
Goebel, K. (1889). Pflanzenbiologische Schilderungen. N. G. Elwert.
Goebel, K. (1895). On metamorphosis in plants. Science Progress, 3: 114–126.
Goebel, K. (1896). Die abhängigkeit der blattform von campanula rotundifolia von der lichtintensität, und bemerkungen über die
abhängigkeit der heterophyllie anderer pflanzen von äußeren faktoren. Flora (Jena), 82 , 1–13.
Goebel, K. (1898). Organographie der Pflanzen: Insbesondere der Archegoniaten und Samenpflanzen (Vol. 3). G. Fischer.
Goebel, K. (1900). Organography of plants. Part I. 1st ed. (English translation). London, Oxford.
Goebel, K. (1901). Organographie der Pflanzen insbesondere der Archegoniaten und Samenpflanzen: Vol. 2 Heft: Pteridophyten und
Samenpflanzen. Gustav Fischer.
Goebel, K. (1924). Organographie der pflanzen insbesondere der archegoniaten und samenpflanzen. [1.] Ergänzungsband. die
entfaltungsbewegungen der pflanzen und deren teleologische deutung.
Goebel, K. (1926). Die gestaltsverhältnisse der palmenblätter. Annales Jardin Botanique Buitenzorg, 36 , 161–185.
Goebel, K. (1928). Organographie der Pflanzen insbesondere der Archegoniaten und Samenpflanzen. Ed. 3. Tome 1. 1-642. Gustav
Fischer, Jena.
Goebel, K. (1930). Organographie der Pflanzen insbesondere der Archegoniaten und Samenpflanzen: T. Allgemeine organographie ( E.
Bergdolt , Ed.; 3rd ed., Vol. 2, pp. 643–1378). Gustav Fischer, Jena.
Goebel, K. (1931). Blütenbildung und sprossgestaltung (anthokladien und infloreszenzen). Gustav Fischer.
Goebel, K. (1933). Organographie der Pflanzen, insbesondere der Archegoniaten und Samenpflanzen (2nd ed.). Gustav Fischer.
Goebel, K. E. , & Bergdolt, E. (1928). Organographie der pflanzen insbesondere der archegoniaten und samenpflanzen: T. Allgemeine
organographie. Gustav Fischer.
Goethe, J. W. von. (1790). Versuch die Metamorphose der Pflanzen zu erklären. Carl Wilhelm Ettinger. Gustav Fischer.
Golub, S. J. , & Wetmore, R. H. (1948). Studies of development in the vegetative shoot of Equisetum arvense l. I. The shoot apex.
American Journal of Botany, 35 (10), 755–767. JSTOR. https://doi.org/10.2307/2438157
Gomez P, L. D. (1980). Vegetative reproduction in a Central American Isoetes (Isoetaceae). Its morphological, systematic and taxonomical
significance. Brenesia. 1–13.ill. https://agris.fao.org/agris-search/search.do?recordID=US201302173720
Goremykin, V. , Bobrova, V. , Pahnke, J. , Troitsky, A. , Antonov, A. , & Martin, W. (1996). Noncoding sequences from the slowly evolving
chloroplast inverted repeat in addition to rbcL data do not support Gnetalean affinities of angiosperms. Molecular Biology and Evolution, 13
(2), 383–396. https://doi.org/10.1093/oxfordjournals.molbev.a025597
Gould, S. J. (1977). Ontogeny and phylogeny. Harvard University Press.
Graham, L. E. (1985). The origin of the life cycle of land plants: A simple modification in the life cycle of an extinct green alga is the likely
origin of the first land plants. American Scientist, 73 (2), 178–186. JSTOR.
Grant, S. (1984). Beauty and the beast: The coevolution of plants and animals. Scribner.
Greathouse, D. C. , Laetsch, W. M. , & Phinney, B. O. (1971). The shoot-growth rhythm of a tropical tree, Theobroma cacao . American
Journal of Botany , 58 (4), 281–286. https://doi.org/10.1002/j.1537-2197.1971.tb09974.x
Gregoire, V. (1938). La morphogenese et l’autonomie morphologique de l’appareil floral. I. Le Carpelle. La Cellule, 47, 287–452.
Greilhuber, J. , Borsch, T. , Müller, K. , Worberg, A. , Porembski, S. , & Barthlott, W. (2006). Smallest angiosperm genomes found in
Lentibulariaceae, with chromosomes of bacterial size. Plant Biology, 8 (6), 770–777. https://doi.org/10.1055/s-2006-924101
Greyson, R. I. , & Sawhney, V. K. (1972). Initiation and early growth of flower organs of Nigella and Lycopersicon: Insights from allometry.
Botanical Gazette, 133 (2), 184–190. https://doi.org/10.1086/336632
Grigoire, V. (1938). La morphogenese et l’autonomie morphologique de l’appareil floral. I. Le Carpelle. La Cellule, 47 , 287–452.
Grisebach, A. (1843). Spicelegium florae rumelicae et bithynicae: Exhibens synopsin plantarum quas aest. 1839 legit. Prostat Apud
Fridericum Vieweg et Filium.
Groff, P. A. , & Kaplan, D. R. (1988). The relation of root systems to shoot systems in vascular plants. The Botanical Review, 54 (4),
387–422.
Guédès, M. (1972). Contribution à la morphologie du phyllome. Mem. Mus. Natn. Hist. Nat. Paris Ser. B., 21, 1–179.
Guerrant, E. O. (1982). Neotenic evolution of Delphinium nudicaule (Ranunculaceae): A hummingbird-pollinated larkspur. Evolution, 36
(4), 699–712. JSTOR. https://doi.org/10.2307/2407883
Guignard, J. L. (1961). Embryogénie des graminées. développement de l’embryon chez le Setaria verticillata Beauv. Bulletin de La Société
Botanique de France, 108 (5–6), 212–217. https://doi.org/10.1080/00378941.1961.10838015
Gunckel, J. E. , Thimann, K. V. , & Wetmore, R. H. (1949). Studies of development in long shoots and short shoots of Ginkgo biloba L. IV.
Growth habit, shoot expression and the mechanism of its control. American Journal of Botany, 36 (3), 309–316. JSTOR.
https://doi.org/10.2307/2437889
Guttenberg, H. v. , & Steinweg, K. (1956). Die anisophyllie in abhängigkeit vom wirkstoffgehalt der pflanze, untersucht ancentradenia
floribunda undcentradenia grandiflora. Protoplasma, 46 (1), 284–300. https://doi.org/10.1007/BF01248884
Haber, A. H. (1962). Nonessentiality of concurrent cell divisions for degree of polarization of leaf growth. I. Studies with radiation-induced
mitotic inhibition. American Journal of Botany, 49 (6) 937–944.
Haber, A. H. , Carrier, W. L. , & Foard, D. E. (1961). Metabolic Studies of gamma-irradiated wheat growing without cell division. American
Journal of Botany, 48 (6), 431–438.
Haberlandt, G. (1914). Physiological plant anatomy. Macmillan.
Haccius, B. (1952). Die Embryoentwicklung bei Ottelia alismoides und das Problem des terminalen Monokotylen-Keimblatts. Planta, 40(6),
443–460.
Haccius, B. (1953). Histogenetische untersuchungen an wurzelhaube und kotyledonarscheide geophiler keimpflanzen (Podophyllum und
Eranthis). Planta, 41 (5), 439–458.
Haccius, B. (1954). Embryologische und histogenetische studien an “monokotylen dikotylen”. I. Claytonia virginica L. Österreichische
Botanische Zeitschrift, 101 (3), 285–303.
Haccius, B. (1959). Morphoregulatorische beeinflussung pflanzlicher embryonen durch phenylborsäure. Naturwissenschaften , 46 (4),
153–153.
Haccius, B. (1960). Experimentell induzierte Einkeimblättrigkeit bei Eranthis hiemalis. Planta, 54(5), 482–497.
https://doi.org/10.1007/BF01990005
Haccius, B. , & Fischer, E. (1959). Embryologische und histogenetische Studien an “ monokotylen Dikotylen” III.Anemone apennina L.
Österreichische botanische Zeitschrift, 106(5), 373–389. https://doi.org/10.1007/BF01289319
Haccius, B. , & Hartl-Baude, E. (1957). Embryologische und histogenetische Studien an monokotylen Dikotylen “II. Pinguicula vulgaris L.
und Pinguicula alpina L. Österreichische Botanische Zeitschrift, 103 (5), 567–587.
Haccius, B. , & Trompeter, G. (1960). Experimentell induzierte einkeimblättrigkeit bei Eranthis hiemalis: I. Synkotylie durch 2, 4-
Dichlorphenoxyessigsäure. Planta, 54 (5. H), 466–481.
Hackney, F. (1950). A review of and contribution to knowledge of Phylloglossum drummondii Kunze. Proceedings of the Linnean Society
of New South Wales, 75 , 133–152.
Hadley, G. (1982). Orchid mycorrhiza. In J. Arditti (Ed.), Orchid biology, reviews and perspectives. (Vol. II, pp. 83–118). Cornell University
Press.
Hagemann, W. (1959). Vergleichende morphologische, anatomische und entwicklungsgeschichtliche Studien an Cyclamen persicum Mill.
Sowie einigen weiteren Cyclamen-Arten. Bot. Studien, 9(1), 1–88.
Hagemann, W. (1960). Kritische untersuchungen über die organisation des sproßscheitels dikotyler pflanzen. Österreichische Botanische
Zeitschrift, 107 (3/4), 366–402. JSTOR.
Hagemann, W. (1964). Vergleichende Untersuchungen zur Entwicklungsgeschichte des Farnsprosses. II. Die Blattentwicklung in der
Gattung Adiantum. L. Beiträge zur Biologie der Pflanzen, 41 , 405–468.
Hagemann, W. (1967). Die Gestaltung als determinierendes Prinzip bei der Entwicklung des Pflanzenkörpers. Math. Naturwiss. Unterr.,
20, 289–297.
Hagemann, W. (1969). Zur morphologie der knolle von Polypodium bifrons Hook. und P. brunei Werckle. Bulletin de La Société Botanique
de France, 116 (supl1), 17–27.
Hagemann, W. (1970). Studien zur Entwicklungsgeschichte der Angiospermenblatter, Ein Beitrag zur Klarung ihres Gestaltungsprinzips.
Botanische Jahrbücher fur Systematik. https://agris.fao.org/agris-search/search.do?recordID=US201302362004
Hagemann, W. (1978). Zur phylogenese der terminalen sproßmeristeme. Berichte Der Deutschen Botanischen Gesellschaft, 91 (1),
699–716.
Hagemann, W. (1980). Über den verzweigungs vorgang bei Psilotum und Selaginella mit anmerkungen zum begriff der dichotomie. Plant
Systematics and Evolution, 133 (3), 181–197. https://doi.org/10.1007/BF00984379
Hagemann, W. (1984). Morphological aspects of leaf development in ferns and angiosperms. Contemporary Problems in Plant Anatomy,
301–349.
Hagemann, W. (1988). Microgonium tahitense (Nadeaud) Tindale (Hymenophyllaceae), ein Farn mit peltaten Blattern. Beitrage zur
Biologie der Pflanzen. https://agris.fao.org/agris-search/search.do?recordID=US201302031574
Hagemann, W. (1989). Acrogenous branching in pteridophytes. Proceedings of the International Symposium on Systematic Pteridology,
245–258
Hagemann, W. (n.d.). Acrogenous branching in pteridophytes. Proceedings of the International Symposium on Systematic Pteridology,
245–258.
Hagemann, W. O. (1982). Vergleichende morphologie und anatomie—Organismus und zelle, ist eine synthese möglich? Berichte Der
Deutschen Botanischen Gesellschaft, 95 (1), 45–56. https://doi.org/10.1111/j.1438-8677.1982.tb02852.x
Hagemann, W. , & Gleissberg, S. (1996). Organogenetic capacity of leaves: The significance of marginal blastozones in angiosperms.
Plant Systematics and Evolution, 199 (3), 121–152. https://doi.org/10.1007/BF00984901
Hagemann, W. , & Schultz, U. (1978). Wedelanlegung und Rhizomverzweigung bei einigen Gleicheniaceen. Botanische Jahrbucher fur
Systematik, 99 , 380–399.
Hallé, F. , & Oldeman, R. (1970). Essai sur l’architecture et la dynamique de croissance des arbres tropicaux (Centre IRD de Bondy; p.
192 p.). Masson. http://www.documentation.ird.fr/hor/fdi:04497
Hallé, F. , Oldeman, R. A. A. , & Tomlinson, P. B. (1978). Tropical trees and forests: An architectural analysis. New York , Springer-Verlag.
Halle, F. , Oldeman, R. A. A. , & Tomlinson, P. B. (2012). Tropical trees and forests: An architectural analysis. Springer Science &
Business Media.
Handa, M. , Iizuka, Y. , & Fujiwara, N. (1997). Ginkgo landscapes. In Ginkgo Biloba A Global Treasure (pp. 259–283). Springer
Hansen, A. (1999). Gnetum and the angiosperms: Molecular evidence that their shared morphological characters are convergent, rather
than homologous. Molecular Biology and Evolution, 16 , 1006–1009.
Hanstein, J. (1865). Die Befruchtung und Entwicklung del'Gattung.
Hara, N. (1980). Morphological study on early ontogeny of the Ginkgo leaf. The Botanical Magazine = Shokubutsu-Gaku-Zasshi, 93 (1),
1–12. https://doi.org/10.1007/BF02489482
Hara, N. (1984). Early ontogeny and malformation of Ginkgo leaves. Journal of Japanese Bot any, 59 (11), 337–343.
Hara, N. (1997). Morphology and anatomy of vegetative organs in Ginkgo biloba. In Ginkgo Biloba A Global Treasure (pp. 3–15). Springer.
Harris, T. M. (1976). The Mesozoic gymnosperms. Review of Palaeobotany and Palynology, 21 (1), 119–134.
https://doi.org/10.1016/0034-6667(76)90025-7
Hartl, D. (1956). Morphologische studien am pistill der scrophulariaceen. Österreichische Botanische Zeitschrift, 103 (2/3), 185–242.
JSTOR.
Hashimoto T. (2002). Molecular genetic analysis of left-right handedness in plants. Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, 357(1422), 799–808. https://doi.org/10.1098/rstb.2002.1088
Hauke, R. (1963). A taxonomical monograph of the genus Equisetum subgenus Hippochaete . Beheifte Zur Nova Hedwigia, 8 , 1–123.
Hauke, R. L. (1970). Terminology of the sporangial structures of Equisetum. American Fern Journal. https://agris.fao.org/agris-
search/search.do?recordID=US201301155750
Hauke, R. L. (1985). The transition from vegetative to reproductive growth of shoot apices of holoheterophyadic species of Equisetum:
Phenology, morphology, and anatomy. Canadian Journal of Botany, 63 (12), 2430–2438. https://doi.org/10.1139/b85-347
Haukioja, E. , Ruohomäki, K. , Senn, J. , Suomela, J. , & Walls, M. (1990). Consequences of herbivory in the mountain birch (Betula
pubescens ssp tortuosa): Importance of the functional organization of the tree. Oecologia, 82 (2), 238–247.
https://doi.org/10.1007/BF00323540
Hawksworth, F. G. , & Wiens, D. (1972). Biology and classification of dwarf mistletoes (Arceuthobium). U.S. Forest Service.
Hayward, H. E. (1938). The structure of economic plants. Macmillan.
Hébant-Mauri, R. (1977). Segmentation apicale et initiation foliaire chez Ceratopteris thalictroides (Fougère leptosporangiée). Canadian
Journal of Botany, 55 (13), 1820–1828. https://doi.org/10.1139/b77-208
Hébant-Mauri, R. (1984). Branching patterns in Trichomanes and Cardiomanes (Hymenophyllaceous ferns). Canadian Journal of Botany,
62 (7), 1336–1343. https://doi.org/10.1139/b84-181
Hébant-Mauri, R. , & Veillon, J. M. (1989). Branching and leaf initiation in the erect aerial system of Stromatopteris moniliformis
(Gleicheniaceae). Canadian Journal of Botany, 67 (2), 407–414. https://doi.org/10.1139/b89-056
Hegelmaier, F. (1874). Zur kenntniss einiger Lycopodinen. http://catalog.hathitrust.org/api/volumes/oclc/78817805.html
Heide, F. (1910). Observations on the corrugated rim of Nepenthes . Botanisk Tidsskrift, 30 , 133–147.
Heimsch, C. , & Seago, J. L. (2008). Organization of the root apical meristem in angiosperms. American Journal of Botany, 95 (1), 1–21.
https://doi.org/10.3732/ajb.95.1.1
Helm, J. (1936). Das erstarkungswachstum der palmen und einiger anderer monokotylen, zugleich ein beitrag zur frage des
erstarkungswachstums der monokotylen überhaupt. Planta, 26 (2), 319–364. JSTOR.
Henslow, G. (1911). The origin of monocotyledons from dicotyledons, through self-adaptation to a moist or aquatic habit. Annals of Botany,
25 (99), 717–744. JSTOR.
Herzfeld, S. (1914). Die weibliche koniferenblüte. Österreichische botanische Zeitschrift, 64 (8), 321–358.
https://doi.org/10.1007/BF01647708
Heslop-Harrison, J. (1976). Adaptive significance of the exine. Linnean Society Symposium Series.
Heslop-Harrison, Y. , & Knox, R. B. (1971). A cytochemical study of the leaf-gland enzymes of insectivorous plants of the genus Pinguicula
. Planta, 96 (3), 183–211. https://doi.org/10.1007/BF00387439
Heywood, V. H. , Moore, D. M. , Richardson, I. B. K. , & Stearn, W. T. (1978). Flowering plants of the world (Vol. 336). Oxford University
Press.
Hickey, L. J. (1973). Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 60 (1), 17–33.
https://doi.org/10.1002/j.1537-2197.1973.tb10192.x
Hickey, R. J. (1986). Isoëtes megaspore surface morphology: Nomenclature, variation, and systematic importance. American Fern
Journal, 76 (1), 1–16. JSTOR. https://doi.org/10.2307/1547394
Hill, J. P. , & Lord, E. M. (1986). Dynamics of pollen tube growth in the wild radish, Raphanus raphanistrum (Brassicaceae). I. Order of
fertilization. Evolution, 40 (6), 1328–1333.
Hill, R. J. , & Wagner Jr, W. H. (1974). Seasonality and spore type of the pteridophytes of Michigan. The Michigan Botanist, 131 , 40–44.
Hillard, O. M. , & Burtt, B. L. (1971). Streptocarpus, an African plant study. University of Natal Press. https://agris.fao.org/agris-
search/search.do?recordID=US201300478040
Hinchee, M. A. (1981). Morphogenesis of aerial and subterranean roots of Monstera deliciosa . Botanical Gazette, 142 (3), 347–359.
https://doi.org/10.1086/337234
Hirmer, M. (1919). Beiträge zur morphologie und entwicklungsgeschichte der blätter einiger palmen und cyclanthaceen. Flora Oder
Allgemeine Botanische Zeitung, 113 (1), 178–189. https://doi.org/10.1016/S0367-1615(17)32423-0
Hirmer, M. (1936). Die bluten der coniferen. I. Entwick-lungsgeschichte und vergleichende morphologie des weiblichen blutenzapfens der
coniferen. Bibliotheque Botanica, 114 , 1–100.
Hirsch, A. M. (1977). A developmental study of the phylloclades of Ruscus aculeatus L. Botanical Journal of the Linnean Society, 74 (4),
355–365. https://doi.org/10.1111/j.1095-8339.1977.tb01187.x
Hirsch, A. M. , & Kaplan, D. R. (1974). Organography, branching, and the problem of leaf versus bud differentiation in the vining epiphytic
fern genus Microgramma. American Journal of Botany, 61(3), 217–229.
Hodge, A. , Berta, G. , Doussan, C. , Merchan, F. , & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321
(1), 153–187. https://doi.org/10.1007/s11104-009-9929-9
Hofer, J. , Turner, L. , Moreau, C. , Ambrose, M. , Isaac, P. , Butcher, S. , Weller, J. , Dupin, A. , Dalmais, M. , Signor, C. L. , Bendahmane,
A. , & Ellis, N. (2009). Tendril-less regulates tendril formation in pea leaves. The Plant Cell, 21 (2), 420–428.
https://doi.org/10.1105/tpc.108.064071
Hofmeister, W. (1851). Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen: (Moose, Farrn,
Equisetaceen, Rhizocarpeen und Lycopodiaceen) und der Samenbildung der Coniferen. F. Hofmeister.
Hofmeister, W. (1867). Die Lehre von der Pflanzenzelle. Engelmann.
Hofmeister, W. (1868). Allgemeine morphologie der gewächse. In A. de Bary , T. H. Irmish , & J. Sachs (Eds.), Handbuch der
physiologischen botanik (pp. 405–664). Engelmann.
Hofreiter, A. , & Lyshede, O. B. (2006). Functional leaf anatomy of Bomarea Mirb. (Alstroemeriaceae). Botanical Journal of the Linnean
Society, 152 (1), 73–90. https://doi.org/10.1111/j.1095-8339.2006.00540.x
Holle, G. von. (1875). Über Bau und Entwicklung der Vegetationsorgane der Ophioglosseen. Bot. Zeitung (33): 241–254, 265–276,
297–302, 313–322.
Holloway, J. E. (1921). Further studies on the prothallus, embryo, and young sporophyte of Tmesipteris. Transactions of the New Zealand
Institute, 53(386–422).
Holloway, J. E. (1939). The gametophyte, embryo, and young rhizome of Psilotum triquetrum Swartz. Annals of Botany, 3(2), 313–336.
Hooker, J. D. (1847). Florae Tasmania Spicilegium. Hooker's Journal of Botany and Kew Garden Miscellany 6, 467–472.
Hooker, J. D. (1863). I. On Welwitschia, a new Genus of Gnetaceæ. Transactions of the Linnean Society of London, 24(1), 1–48.
Horner, H. T. , & Arnott, H. J. (1963). Sporangial arrangement in North American species of Selaginella . Botanical Gazette, 124 (5),
371–383. https://doi.org/10.1086/336222
Horner Jr, H. T. , & Arnott, H. J. (1966). A histochemical and ultrastructural study of pre- and post-germinated Yucca seeds. Botanical
Gazette, 127 (1), 48–64.
Horner, H. T. , & Beltz, C. K. (1970). Cellular differentiation of heterospory in Selaginella. https://agris.fao.org/agris-
search/search.do?recordID=US201302355670
Hufford, L. (1996). The morphology and evolution of male reproductive structures of Gnetales. International Journal of Plant Sciences, 157
(S6), S95–S112. https://doi.org/10.1086/297406
Husbands, A. Y. , Chitwood, D. H. , Plavskin, Y. , & Timmermans, M. C. P. (2009). Signals and prepatterns: New insights into organ
polarity in plants. Genes & Development, 23 (17), 1986–1997. https://doi.org/10.1101/gad.1819909
Huxley, J. (1927). Further work on heterogonic growth. Publisher not identified.
Huxley, J. (1932). Problems of relative growth. MacVeagh, The Dial Press.
https://hdl.handle.net/2027/uc1.31822012790606?urlappend=%3Bsignon=swle:https://shibidp.cit.cornell.edu/idp/shibboleth
Ibarra-Laclette, E. , Albert, V. A. , Pérez-Torres, C. A. , Zamudio-Hernández, F. , Ortega-Estrada, M. de J. , Herrera-Estrella, A. , &
Herrera-Estrella, L. (2011). Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant
with a minimal genome. BMC Plant Biology, 11 (1), 101. https://doi.org/10.1186/1471-2229-11-101
Imaichi, R. (1982). Developmental study on Hypolepis punctata (Thunb.) Mett. The Botanical Magazine = Shokubutsu-Gaku-Zasshi, 95
(4), 435–453. https://doi.org/10.1007/BF02489479
Imaichi, R. (1984). Developmental anatomy of the shoot apex of leptosporangiate ferns. I. Leaf ontogeny and branching of Dennstaedtia
scabra. Journal of Japanese Botany, 59, 367–375.
Imaichi, R. , & Kato, M. (1989). Developmental anatomy of the shoot apical cell, rhizophore and root of Selaginella uncinata . The
Botanical Magazine = Shokubutsu-Gaku-Zasshi, 102 (3), 369–380. https://doi.org/10.1007/BF02488120
Imaichi, R. , & Kato, M. (1991). Developmental study of branched rhizophores in three Selaginella species. American Journal of Botany, 78
(12), 1694–1703. https://doi.org/10.1002/j.1537-2197.1991.tb14533.x
Imaichi, R. , & Nishida, M. (1986). Developmental anatomy of the three-dimensional leaf of Botrychium ternatum (Thunb.) Sw. The
Botanical Magazine = Shokubutsu-Gaku-Zasshi, 99 (1), 85–106. https://doi.org/10.1007/BF02488625
Imamura, S. I. (1928). Über Cladopus japonicus n. sp., eine Podostemonaceceen in Japan. Shokubutsugaku Zasshi, 42(500), 379–387
Ingold, C. T. (1965). Spore liberation. Clarendon Press.
Ishihara, M. I. (2013). Role of axis reversal from the short-shoot to long-shoot habit for crown maintenance in slow-growing Betula
maximowicziana trees. American Journal of Botany, 100 (2), 346–356. https://doi.org/10.3732/ajb.1200443
Jackson, B. D. (1928). A glossary of botanic terms with their derivation and accent. Duckworth; J. B. Lippincott.
Jackson, R. C. (1960). A Revision of the Genus Iva L. University of Kansas Publications
Jackson, W. P. U. , MacW, J. , & Moll, E. J. (1987). Origins and meanings of names of South African plant genera: Part 1, Pteridophytes,
gymnosperms and monocotyledonous angiosperms. University of Cape Town, Ecolab.
Jacobsen, J. V. (1984). The seed: Germination. In Embryology of angiosperms (pp. 611–646). Springer.
Jaffe, M. J. , & Galston, A. W. (1966). Physiological studies on pea tendrils. I. Growth and coiling following mechanical stimulation. Plant
Physiology, 41 (6), 1014–1025. https://doi.org/10.1104/pp.41.6.1014
Jaffe, M. J. , & Galston, A. W. (1968). The physiology of tendrils. Annual Review of Plant Physiology, 19 (1), 417–434.
James, S. (1984). Lignotubers and burls—Their structure, function and ecological significance in Mediterranean ecosystems. The
Botanical Review, 50 (3), 225–266. https://doi.org/10.1007/BF02862633
Janchen, E. (1937). Entwicklungsgeschichtliche untersuchungen über die mikrosporophyllgestaltung der coniferen. Über die fossilen reste
der männlichen coniferen-blüten. Bibliotheca Botanica, 114 (3), 1–24.
Janczewski, E. (1874). Recherches sur l’accroissement terminal des racines, dansles Phanerogames. Annales des Sciences Naturelles;
Botanique, 20 , 162–201.
Janczewski, E. (1877). Notes sur le développement du cystocarpe dans les floridées. Imp. Bedelfontaine et Syffert.
Janse, J. M. (1897). Les endophytes radicaux de quelques plantes javanaises. Ann Jardin Bot Buitenzorg, 14 , 53–201.
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in central America. Evolution, 20 (3), 249–275. JSTOR.
https://doi.org/10.2307/2406628
Janzen, D. H. (1967). Interaction of the bull's-horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferrugineus F.
Smith) in eastern Mexico. Kansas University Science Bulletin, 47 , 315–558.
Jeffrey, E. C. (1917). The anatomy of woody plants. University of Chicago Press.
Jeffrey, E. C. , & Torrey, R. E. (1916). Ginkgo and the microsporangial mechanisms of the seed plants. Botanical Gazette, 62 (4),
281–292. https://doi.org/10.1086/331924
Jensen, W. A. (1972). The embryo sac and fertilization in angiosperm. Harold L. Lyon Arboretum Lecture (Univ. Hawaii).
Jensen, W. A. (1973). Fertilization in flowering plants. BioScience, 23 (1), 21–27. JSTOR. https://doi.org/10.2307/1296363
Jernstedt, J. A. , Cutter, E. G. , Gifford, E. M. , & Lu, P. (1992). Angle meristem origin and development in Selaginella martensii . Annals of
Botany, 69 (4), 351–363. https://doi.org/10.1093/oxfordjournals.aob.a088352
Jernstedt, J. A. , Cutter, E. G. , & Lu, P. (1994). Independence of organogenesis and cell pattern in developing angle shoots of Selaginella
martensii . Annals of Botany, 74 (4), 343–355. https://doi.org/10.1006/anbo.1994.1127
Jernstedt, J. A. , & Mansfield, M. A. (1985). Two-dimensional gel electrophoresis of polypeptides from stems, roots, leaves, and
rhizophores of Selaginella kraussiana . Botanical Gazette, 146 (4), 460–465. https://doi.org/10.1086/337547
Jeune, B. (1984). Position et orientation des mitoses dans la zone organogène de jeunes feuilles de Fraxinus excelsior, Glechoma
hederacea et Lycopus europaeus . Canadian Journal of Botany, 62 (12), 2861–2864. https://doi.org/10.1139/b84-381
Johansen, D. A. (1950). Plant embryology: Embryogeny of the spermatophyta. Chronica Botanica.
Johnson, D. S. (1898a). On the leaf and sporocarp of Pilularia . Botanical Gazette, 26 (1), 1–24. JSTOR.
Johnson, D. S. (1898b). On the development of the leaf and sporocarp in Marsilia quadrifolia, L. Annals of Botany , os- 12 (2), 119–145.
https://doi.org/10.1093/oxfordjournals.aob.a088686
Johnson, D. S. (1933). The curvature, symmetry and homologies of the sporocarps of Marsilea and Pilularia . Bulletin of the Torrey
Botanical Club, 60 (8), 555–564. JSTOR. https://doi.org/10.2307/2480534
Johnson, D. S. , & Chrysler, M. A. (1938). Structure and development of Regnellidium diphyllum . American Journal of Botany, 25 (3),
141–156. JSTOR. https://doi.org/10.2307/2436584
Johnson, M. A. (1943). Foliar development in Zamia . American Journal of Botany, 30 (5), 366–378. JSTOR.
https://doi.org/10.2307/2437523
Jones, D. L. (1993). A new species of Marsilea L. (Marsileaceae) from Australia. Muelleria, 8 (1), 65–67.
Jones, David L. , & Forster, P. I. (1994). Seven new species of Macrozamia section Parazamia (Miq.) Miq. (Zamiaceae section Parazamia)
from Queensland. Austrobaileya, 4 (2), 269–288. JSTOR.
Jong, K. (1978). Phyllomorphic organisation in rosulate Streptocarpus [ornamental plants]. Notes from the Royal Botanic Garden
Edinburgh. https://agris.fao.org/agris-search/search.do?recordID=GB19790399480
Jong, K. , & Burtt, B. L. (1975). The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New
Phytologist, 75 (2), 297–311. https://doi.org/10.1111/j.1469-8137.1975.tb01400.x
Juncosa, A. M. (1982). Developmental morphology of the embryo and seedling of Rhizophora mangle L. (rhizophoraceae). American
Journal of Botany, 69 (10), 1599–1611. https://doi.org/10.1002/j.1537-2197.1982.tb13413.x
Juniper, B. E. , Robins, R. J. , & Joel, D. M. (1988). The carnivorous plants. Academic Press.
Juniper, B. E. , Robins, R. J. , Joel, D. M. (1989). The carnivorous plants. London: Academic Press.
Jurányi, L. (1871). Az Oedogonium Didlandrum termékenyített petesejtjéről (Issue 2. 12). Eggenberger.
Kamieński, F. (1877). Vergleichende untersuchungen über die entwickelungsgeschichte der utricularien. Botanische Zeitung, 35 ,
761–775.
Kanga, P. M. , & Dastur, R. H. (1927). Physiological anatomy of the irritable organs of some climbing plants. Annals of Botany, 41 (164),
671–675. JSTOR.
Kaplan, D. R. (1967). Floral morphology, organogenesis and interpretation of the inferior ovary in Downingia bacigalupii . American Journal
of Botany, 54 (10), 1274–1290. https://doi.org/10.1002/j.1537-2197.1967.tb10765.x
Kaplan, D.R. (1968a). Structure and development of the perianth in Downingia Bacigalupii. American Journal of Botany , 55(4), 406–420.
Kaplan, D. R. (1968b). Histogenesis of the androecium and gynoecium in Downingia bacigalupii . American Journal of Botany, 55 (8),
933–950. https://doi.org/10.1002/j.1537-2197.1968.tb07453.x
Kaplan, D. R. (1969). Seed development in Downingia . Phytomorphology, 19 , 253–278.
Kaplan, D. R. (1970). Comparative foliar histogenesis in Acorus calamus and its bearing on the phyllode theory of monocotyledonous
leaves. American Journal of Botany, 57 (3), 331–361. https://doi.org/10.1002/j.1537-2197.1970.tb09824.x
Kaplan, D. R. (1971). On the value of comparative development in phylogenetic studies. A Rejoinder. Phytomorphology, 21 , 134–139.
Kaplan, D. R. (1973a). Comparative developmental analysis of the heteroblastic leaf series of axillary shoots of Acorus calamus L.
(Araceae) . Universitaire de Belgique, Louvain.
Kaplan, D. R. (1973b). The problem of leaf morphology and evolution in the monocotyledons. The Quarterly Review of Biology, 48 (3),
437–457. https://doi.org/10.1086/407703
Kaplan, D. R. (1975). Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. pp. 105.
Kaplan, D. R. (1977). Morphological status of the shoot systems of Psilotaceae. Brittonia, 29 (1), 30–53. https://doi.org/10.2307/2805740
Kaplan, D. R. (1980). Heteroblastic leaf development in Acacia: Morphological and morphogenetic implications. Cellule 73: 135–203.
Kaplan, D. R. (1983). The development of palm leaves. Scientific American, 249 (1), 98–105. JSTOR.
Kaplan, D. R. (1984). Alternative modes of organogenesis in higher plants. In R. White & W. C. Dickinson (Eds.), Contemporary Problems
in Plant Anatomy (pp. 261–300).
Kaplan, D. R. (1992). The relationship of cells to organisms in plants: Problem and implications of an organismal perspective. International
Journal of Plant Sciences, 153 (3, Part 2), S28–S37. https://doi.org/10.1086/297061
Kaplan, D. R. (2001). The science of plant morphology: Definition, history, and role in modern biology. American Journal of Botany, 88
(10), 1711–1741. https://doi.org/10.2307/3558347
Kaplan, D. R. , & Cooke, T. J. (1997). Fundamental concepts in the embryogenesis of dicotyledons: A Morphological interpretation of
embryo mutants. The Plant Cell, 9 (11), 1903–1919. https://doi.org/10.1105/tpc.9.11.1903
Kaplan, D. R. , Dengler, N. G. , & Dengler, R. E. (1982). The mechanism of plication inception in palm leaves: Problem and developmental
morphology. Canadian Journal of Botany, 60 (12), 2939–2975. https://doi.org/10.1139/b82-355
Kaplan, D. R. , & Groff, P. A. (1995). Developmental themes in vascular plants: Functional and evolutionary significance. Experimental and
Molecular Approaches to Plant Biosystematics, 111 , 145.
Kaplan, D. R. , & Hagemann, W. (1991). The relationship of cell and organism in vascular plants. Bioscience, 41 (10), 693–703.
Kaplan, D. R. , & Hagemann, W. (1992). The organism and plant cells in light of Goethe's comparative morphological method. In G. Mann ,
D. Mollenhauer , & S. Peters (Eds.), der Mitte Zwischen Natur und Subjekt. Johann Wolfgang Goethes Versuch, die Metamorphosen der
Plafzen zu erklären, 1790–1990: Sachverhalte, Gedanken, Wirkungen (pp. 93–117). na.
Karrfalt, E. E. (1977). Substrate penetration by the corm of Isoëtes. American Fern Journal, 67 (1), 1–4. JSTOR.
https://doi.org/10.2307/1546193
Karrfalt, E. E. (1981). The comparative and developmental morphology of the root system of Selaginella selaginoides (L.) Link. American
Journal of Botany, 68 (2), 244–253. https://doi.org/10.1002/j.1537-2197.1981.tb12384.x
Karrfalt, E. E. , & Eggert, D. A. (1977). The comparative morphology and development of Isoetes L. I. lobe and furrow development in I.
tuckermanii A. Br. Botanical Gazette, 138 (2), 236–247. https://doi.org/10.1086/336919
Karrfalt, E. E., & Eggert, D. A. (1978). The comparative morphology and development of isoetes L. III. The sequence of root initiation in
three-and four-lobed plants of I. tuckermanii A. Br. And I. nuttallii A. Br. Botanical Gazette, 139 (2), 271–283.
Karrfalt, E. E. , & Hunter, D. M. (1980). Notes on the natural history of Stylites gemmifera . American Fern Journal, 70 (2), 69–72. JSTOR.
https://doi.org/10.2307/1546220
Karsten, G. (1895). Morphologische und biologische Untersuchungen fiber einige Epiphytenformen der Molukken. Annales du Jardin
Botanique de Buitenzorg, 12, 117–195.
Kato, M. , Inoue, T. , & Nagamitsu, T. (1995). Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak.
American Journal of Botany, 82 (7), 862–868. https://doi.org/10.1002/j.1537-2197.1995.tb15702.x
Kaul, R. B. (1982). Floral and fruit morphology of Nepenthes lowii and N. villosa, montane carnivores of Borneo. American Journal of
Botany, 69 (5), 793–803. https://doi.org/10.1002/j.1537-2197.1982.tb13320.x
Kaussmann, B. (1955). Histogenetic investigations into the phylloclade problem. Botanical Review, 37 (2), 143–229.
https://www.cabdirect.org/cabdirect/abstract/19561604042
Kaussmann, B. (1963). Pflanzenanatomie, unter besonderer Berücksichtigung der Kultur- und Nutzpflanzen. G. Fischer.
Keeley, J. E. (1981). Diurnal acid metabolism in vernal pool Isoetes (Isoetaceae). Madroño, 28 (3), 167–171. JSTOR.
Keeley, J. E. (1982). Distribution of diurnal acid metabolism in the genus Isoetes . American Journal of Botany, 69 (2), 254–257.
https://doi.org/10.1002/j.1537-2197.1982.tb13255.x
Keeley, J. E. (1983). Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii . Oecologia, 58 , 57–62.
Keeley, J. E. (1996). Aquatic CAM photosynthesis. In K. Winter & J. A. C. Smith (Eds.), Crassulacean acid metabolism: biochemistry,
ecophysiology and evolution (pp. 281–295). Springer. https://doi.org/10.1007/978-3-642-79060-7_19
Keeley, J. E. (1998). CAM photosynthesis in submerged aquatic plants. The Botanical Review, 64 (2), 121–175.
Keeley, J. E. , DeMason, D. A. , Gonzalez, R. , & Markham, K. R. (1994). Sediment-based carbon nutrition in tropical alpine Isoetes. In P.
W. Rundel , A. P. Smith , & F. C. Meinzer (Eds.), Tropical alpine environments: Plant form and function (pp. 167–194). Cambridge
University Press.
Keeley, J. E. , Osmond, C. B. , & Raven, J. A. (1984). Stylites, a vascular land plant without stomata absorbs CO 2 via its roots. Nature,
310 (5979), 694–695. https://doi.org/10.1038/310694a0
Keng, H. (1978). The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum, 59 (3), 249–273. JSTOR.
Kenrick, P. (2013). The origin of roots. In A. Eshel & T. Beeckman (Eds.), Plant roots, the hidden half (4th ed., pp. 1–13). Taylor and
Francis.
Kenrick, P. , & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389 (6646), 33–39.
Kerner, A. , & Oliver, F. W. (1894). The natural history of plants. Blackie and Son.
Kerstetter, R. A. , Bollman, K. , Taylor, R. A. , Bomblies, K. , & Poethig, R. S. (2001). Kanadi regulates organ polarity in Arabidopsis.
Nature, 411 (6838), 706–709.
Kirchoff, B. K. , & Rutishauser, R. (1990). The phyllotaxy of Costus (Costaceae). Botanical Gazette, 151 (1), 88–105.
Klebs, G. (1885). Beiträge zur morphologie und biologie der keimung. Untersuchungen Aus Dem Botanischen Institut Zu Tübingen, 1 ,
536–635.
Knie, N. , Fischer, S. , Grewe, F. , Polsakiewicz, M. , & Knoop, V. (2015). Horsetails are the sister group to all other monilophytes and
Marattiales are sister to leptosporangiate ferns. Molecular Phylogenetics and Evolution, 90 , 140–149.
Knuth, R. , Diels, L. , Engler, A. , & Stubbe, H. (1912). Geraniaceae. Engelmann.
Kny, L. (1875). Die Entwickelung der Parkeriaceen dergesteltt an Ceratopteris thalietroides Brongn. Nova Acta K. Leop.-Carol. Deut. Akad.
Naturf. 37:1–66.
Koch, L. (1874). Untersuchungen uber die Entwickelung der Cuscuteen. Hanstein's Botanische Abhandlungen. Bd. 11, Heft 3.
Kohlenbach, H. W. , & Geier, T. (1970). Untersuchungen an Selaginella kraussiana (Kunze) A. Br. Zur funktion der ligula. Beitrage Zur
Biologie Der Pflanzen.
Koller, A. L. , & Scheckler, S. E. (1986). Variations in microsporangia and microspore dispersal in Selaginella . American Journal of
Botany, 73 (9), 1274–1288.
Kölreuter, J. G. (1777). Das entdeckte geheimniß der cryptogamie… durckts u. verlegts Michael Maklot.
Koriba, K. (1958). On the periodicity of the tree-growth in the tropics, with reference to the mode of branching, the leaf-fall, and the
formation of the resting bud. The Gardens’ Bulletin, Singapore, 17 , 11–81.
Kornmann, P. (1938). Zur entwicklungsgeschichte von derbesia und halicystis. Planta, 28 (3), 464–470.
https://doi.org/10.1007/BF01909423
Krulik, G. A. (1980). Light transmission in window-leaved plants. Canadian Journal of Botany, 58 (14), 1591–1600.
Kubitzki K. R. Borchert 1964. Morphologische Studien an Isoëtes triquetra A. Braun und Bemerkungen über das Verhältnis der Gattung
Stylites E. Amstutz zur Gattung Isoëtes L. Berichte der deutschen botanischen Gesellschaft 77: 227– 234.
Kugler, H. (1928). Über invers-dorsiventrale Blätter. Zeitschrift Fur Wissenschaftliche Biologie. Abteilung E: Planta, 89–134.
Kumazawa, M. (1937). Comparative studies on the vernation in the Ranunculaceae and Berberidaceae. Journal of Japanese Botany, 13 ,
573–586, 659–669, 713–726.
Kumazawa, M. (1967). Analytical studies on anodic and cathodic positions of prophylls in some dicotyledonous plants. 4. Impatiens
balsamina and Kochia scoparia. Botanical Magazine-Tokyo, 80 (952), 404.
Kunze, H. (1978). Typologie und Morphogenese des Angiospermen-Staubblattes. Beitrage zur Biologie der Pflanzen, 54 (2), 239–304.
Kunze, H. (1986). Inflorescence and flower morphology of Orchidantha maxillarioides Ridl. K. Shum. Lowiaceae. Beitraege Zur Biologie
Der Pflanzen, 61 , 221–234.
Kunze, H. (1989). Probleme der infloreszenztypologie von W. Troll. Plant Systematics and Evolution, 163 (3–4), 187–199.
Kupper, W. (1906). Über knospenbildung an farnblättern. Flora Oder Allgemeine Botanische Zeitung, 96 (2), 337–408.
Kylin, H. (1956). Die gattungen der Rhodophyceen. Cwk Gleerup.
Lachmann, P. (1906). Origin et developpement des racines et des radicel les du Ceratopteris. Ann. Univ. Grenoble 18:273–307. 1906.
Lacroix, C. R. , & Sattler, R. (1994). Expression of shoot features in early leaf development of Murraya paniculata (Rutaceae). Canadian
Journal of Botany, 72 (5), 678–687. https://doi.org/10.1139/b94-088
Lam, H. J. (1948). Classification and the new morphology. Acta Biotheoretica, 8 (4), 107–154. https://doi.org/10.1007/BF01845744
Lamotte, R. S. (1935). An upper oligocene florule from Vancouver Island. Carnegie Institute of Washington Pub., 455, 45–56.
Lankester, E. R. (1870). II.—On the use of the term homology in modern zoology, and the distinction between homogenetic and
homoplastic agreements. Annals and Magazine of Natural History, 6 (31), 34–43. https://doi.org/10.1080/00222937008696201
Larsén, E. , & Rydin, C. (2016). Disentangling the phylogeny of Isoetes (Isoetales), using nuclear and plastid data. International Journal of
Plant Sciences, 177 (2), 157–174. https://doi.org/10.1086/684179
Launert, E. (1968). A monographic survey of the genus Marsilea Linnaeus. 1, 1 . Senckenbergische Naturforschende Gesellschaft.
Lawrence, T. (1955). The production of mutations by the irradiation of Montcalm barley. Canadian Journal of Botany, 33(6), 515–530.
Lawson, A. A. (1926). VI.—A contribution to the life-history of Bowenia . Earth and Environmental Science Transactions of The Royal
Society of Edinburgh, 54 (2), 357–394. https://doi.org/10.1017/S0080456800027630
Lazniewski, W. V. (1896). Beiträge zur Biologie der Alpenpflanzen. Flora Oder Allgemeine Botanische Zeitung, 82, 224–267.
Lee, C. L. (1952). The anatomy and ontogeny of the leaf of Dacrydium taxoides . American Journal of Botany, 39 (6), 393–398. JSTOR.
https://doi.org/10.2307/2438782
Lehmann-Baerts, M. (1967). Études sur les Gnétales: Ovule, gamétophyte femelle et embryogenèse chez Ephedra distachya L. Libraire C.
Uystpruyst.
Leigh, A. , Zwieniecki, M. A. , Rockwell, F. E. , Boyce, C. K. , Nicotra, A. B. , & Holbrook, N. M. (2011). Structural and hydraulic correlates
of heterophylly in Ginkgo biloba . New Phytologist, 189 (2), 459–470.
Leinfellner, W. (1950). Der bauplan des synkarpen Gynözeums. Österreichische Botanische Zeitschrift, 97 (3/4), 403–436. JSTOR.
Leins, P. , & Boecker, K. (1981). Entwickeln sich Staubgefasse wie Schildblatter? Beitrage zur Biologie der Pflanzen, 56(2–3), 317–327.
https://agris.fao.org/agris-search/search.do?recordID=US201302155088
Leins, P. , & Erbar, C. (2000). Blüte und Frucht: Aspekte der Morphologie, Entwicklungsgeschichte, Phylogenie, Funktion und Ökologie.
Leins, P. , & Metzenauer, G. (1979). Entwicklungsgeschichtliche Untersuchungen an Capparis-Blüten. Botanische Jahrbücher fur
Systematik, 100, 542–554.
Leins, P. , & Winhard, W. (1973). Entwicklungsgeschichtliche Studien an Loasaceen-Blüten. Österreichische botanische Zeitschrift, 122(3),
145–165. https://doi.org/10.1007/BF01624799
Leliaert, F. , Smith, D. R. , Moreau, H. , Herron, M. D. , Verbruggen, H. , Delwiche, C. F. , & Clerck, O. D. (2012). Phylogeny and molecular
evolution of the green algae. Critical Reviews in Plant Sciences, 31 (1), 1–46. https://doi.org/10.1080/07352689.2011.615705
Lemoigne, Y. (1968). Les genres Rhynia Kidston et Lang du dévonien et Psilotum Seward actuel appartiennent-ils au même phylum?
Bulletin de La Société Botanique de France, 115 (5–6), 425–440.
Lemon, G. D. , & Posluszny, U. (1997). Shoot morphology and organogenesis of the aquatic floating fern Salvinia molesta DS Mitchell,
examined with the aid of laser scanning confocal microscopy. International Journal of Plant Sciences, 158 (6), 693–703.
Lersten, N. R. (2004). Flowering plant embryology: With emphasis on economic species. Blackwell.
Lihnell, D. (1939). Untersüchungen über die Mykorrhizen und die Wurzelpilze von Juniperus communis. Symbolae Bot. Upsaliensis 3(3):
1–141.
Lindman, C. A. M. (1900). Beiträge zur Gramineenflora Südamerikas (Vol. 34, Issue 6). PA Norstedt.
Lindroth, R. L. (1988). Adaptations of mammalian herbivores to plant chemical defenses. In K. Spencer (Ed.), Chemical mediation of
coevolution (pp. 415–445). Elsevier.
Linkies, A. , Graeber, K. , Knight, C. , & Leubner-Metzger, G. (2010). The evolution of seeds. New Phytologist, 186 (4), 817–831.
Liu, T. , Reinhart, B. J. , Magnani, E. , Huang, T. , Kerstetter, R. , & Barton, M. K. (2012). Of blades and branches: Understanding and
expanding the Arabidopsis ad/abaxial regulatory network through target gene identification. Cold Spring Harbor Symposia on Quantitative
Biology, 77 , 31–45.
Llorens, C. , Argentina, M. , Bouret, Y. , Marmottant, P. , & Vincent, O. (2012). A dynamical model for the Utricularia trap. Journal of The
Royal Society Interface, 9 (76), 3129–3139. https://doi.org/10.1098/rsif.2012.0512
Lloyd, F. E. (1942). The carnivorous plants. Chronica Botanica. https://www.cabdirect.org/cabdirect/abstract/19431101049
Long, R. W. , & Norstog, K. (1976). Plant biology: A laboratory manual for elementary botany. WB Saunders.
Looby, W. J. , & Doyle, J. (1944). The gametophytes of Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society, 23 ,
222–237.
Lord, E. M. (1982). Floral morphogenesis in Lamium amplexicaule L. (Labiatae) with a model for the evolution of the cleistogamous flower.
Botanical Gazette, 143 (1), 63–72.
Lothelier, A. (1893). Recherches sur les plantes à piquants. Revue Generale de Botanique, 5 , 480.
Lotsy, J. P. (1909). Vorträge über botanische Stammesgeschichte Cormophyta zoidogamia (Vol. 2). Fischer.
Lotsy, J. P. (1911). Vorträge über botanische stammesgeschichte: Bd. Cormophyta siphonogamia (Vol. 3). Gustav Fischer.
Lu, P. , & Jernstedt, J. A. (1996). Rhizophore and root development in Selaginella martensii: Meristem transitions and identity. International
Journal of Plant Sciences, 157 (2), 180–194.
Luerssen, C. (1874). Die Pflanzengruppe der Farne. Lüderitz.
Lundstrom, I. A. (1968). Morphological and ontogenetic investigations on Pinguicula heterophylla. University of California, Irvine.
Lynn, K. , Fernandez, A. , Aida, M. , Sedbrook, J. , Tasaka, M. , Masson, P. , & Barton, M. K. (1999). The PINHEAD/ZWILLE gene acts
pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development, 126 (3), 469–481.
Lyon, F. (1904). The evolution of the sex organs of plants. Botanical Gazette, 37 (4), 280–293.
Lyon, F. M. (1901). A study of the sporangia and gametophytes of Selaginella apus and Selaginella rupestris . Botanical Gazette, 32 (2),
124–141. https://doi.org/10.1086/328142
Lyshede, O. B. (2002). Comparative and functional leaf anatomy of selected Alstroemeriaceae of mainly Chilean origin. Botanical Journal
of the Linnean Society, 140 (3), 261–272.
Mabberley, D. J. (1987). The plant-book. A portable dictionary of the higher plants. Cambridge University Press. https://agris.fao.org/agris-
search/search.do?recordID=XF2015021949
Mabberley, D. J. (1997) The Plant-Book. 2nd Edition, Cambridge University Press, Cambridge, 680.
MacDougal, D. T. (1892). The tendrils of Passiflora coerulea; anatomy and morphology. Botan. Gaz, 17(7), 205–212.
MacDougal, D. T. (1896). The mechanism of curvature of tendrils. Annals of Botany, 10 (39), 373–402.
Macfarlane, J. M. (1908). Nepenthaceae. In A. Engler, Das Plfanzenreich (Vol. 4, pp. 1–92). https://ci.nii.ac.jp/naid/10014964711/
Madison, M. (1977). Vascular epiphytes: Their systematic occurrence and salient features. Selbyana, 2 (1), 1–13.
Magalhães, T. M. , & Seifert, T. (2015). Below- and aboveground architecture of Androstachys johnsonii prain: Topological analysis of the
root and shoot systems. Plant and Soil, 394 (1), 257–269. https://doi.org/10.1007/s11104-015-2527-0
Maheshwari, P. (1949). The male gametophyte of angiosperms. The Botanical Review, 15(1), 1–75.
Maheshwari, P. (1950). An introduction to the embryology of angiosperms. McGraw-Hill.
Maheshwari, P. , & Vasil, V. (1961). The stomata of Gnetum. Annals of Botany, 25(3), 313–319.
Maksymowych, R. , & Erickson, R. O. (1960). Development of the lamina in Xanthium italicum represented by the plastochron index.
American Journal of Botany, 47 (6), 451–459.
Mallory, A. C. , Reinhart, B. J. , Jones-Rhoades, M. W. , Tang, G. , Zamore, P. D. , Barton, M. K. , & Bartel, D. P. (2004). MicroRNA control
of PHABULOSA in leaf development: Importance of pairing to the microRNA 5′ region. The EMBO Journal, 23 (16), 3356–3364.
Mapes, G. , & Rothwell, G. W. (1991). Structure and relationships of primitive conifers. Neues Jahrbuch fur Geologie und Palaeontologie,
183 , 269–287.
Marchal, M. (1965). Ontogénie des bourgeons épiphylles d’Asplenium bulbiferum . Bulletin de La Société Botanique de France, 112 (7–8),
398–411.
Margulis, L. (1970). Origin of eukaryotic cells: Evidence and research implications for a theory of the origin and evolution of microbial, plant
and animal cells on the Precambrian Earth. Yale University Press.
Marinos, N. G. (1970). Embryogenesis of the pea (Pisum sativum) I. The cytological environment of the developing embryo. Protoplasma,
70 (3–4), 261–279.
Markgraf, F. (1955). Über Laubblatt-Homologien und verwandtschaftliche Zusammenhänge bei Sarraceniales. Planta, 46 , 414–446.
Marloth, R. (1908). Das Kapland: Insonderheit das Reich der Kapflora, das Waldgebiet und die Karroo, pflanzengeographisch dargestellt
(Vol. 2). G. Fischer.
Martens, I. (1971). Les gnetophytes (Handbuch d. pflanzenanatomie, band 12, teil 2). Gebrtider Borntranger , Berlin .
Martens, P. (1961). Études sur les Gnétales: Structure et ontogenèse du cône et de la fleur mâles de Welwitschia mirabilis. Libraire C.
Uystpruyst.
Martens, P. , & Waterkeyn. L. (1964). Recherches sur Welwitschia mirabilis 4. Germination et plantules. Structure, fonctionnement et
productions du meristeme caulinaire apical. (Etudes·sur les ‘Gnetales 7). Cellule, 65, 5–64.
Martens, P , & Waterkeyn, L. (1974). Études sur les gnétales. XIII. Recherches sur welwitschia mirabilis. 5. évolution ovulaire et
embryogenèse. Cellule, 70 (2), 163–258.
Martin, A. C. (1946). The comparative internal morphology of seeds. The American Midland Naturalist, 36 (3), 513–660.
Martius, C. F. P. von. (1834). Icones plantarum cryptogamicarum quas in itinere annis MDCCXVII-MDCCCXX per Brasiliam jussu et
auspiciis Maximiliani Josephi I. Bavariae regis augustissimi instituto. Impensis auctoris.
Mason, D. A. D. , Stolte, K. W. , & Tisserat, B. (1982). Floral development in Phoenix dactylifera . Canadian Journal of Botany, 60 (8),
1437–1446. https://doi.org/10.1139/b82-184
McArthur, I. C. S. , & Steeves, T. A. (1969). On the occurrence of root thorns on a Central American palm. Canadian Journal of Botany,
47(9), 1377–1382.
McArthur, I. , & Steeves, T. (2011). On the occurrence of root thorns on a central American palm. Canadian Journal of Botany, 47 ,
1377–1382. https://doi.org/10.1139/b69-196
McClure, F. (1966). A. The bamboos. A fresh perspective. https://www.cabdirect.org/cabdirect/abstract/19661607260
McConnell, J. R. , Emery, J. , Eshed, Y. , Bao, N. , Bowman, J. , & Barton, M. K. (2001). Role of PHABULOSA and PHAVOLUTA in
determining radial patterning in shoots. Nature, 411 (6838), 709–713.
McCully, M. E. , & Dale, H. M. (1961). Heterophylly in Hippuris, a problem in identification. Canadian Journal of Botany, 39 (5), 1099–1116.
McLean, R. C. , & Ivimey-Cook, W. R. (1951). Textbook of theoretical botany. (Vol. 1). Longmans, Green.
McLean, R. C. , & Ivimey-Cook, W. R. (1956). Textbook of theoretical botany. (Vol. 2). Longmans.
https://www.cabdirect.org/cabdirect/abstract/19570300973
Meierhofer, H. (1901). Beiträge zur Kenntniss der Anatomie und Entwicklungsgeschichte der Utricularia-Blasen.
Melchior, H. (1923). Uber den anatomischen Bau der Saugorgane von Viscum album L. Beitr. z. allgem. Bot., 2, 55–87.
Melville, R. , & Wrigley, F. A. (1969). Fenestration in the leaves of Monstera and its bearing on the morphogenesis and colour patterns of
leaves. Botanical Journal of the Linnean Society, 62(1), 1–16.
Merl, E. M. (1915). Beiträge zur Kenntnis der Utricularien und Genliseen. Flora Oder Allgemeine Botanische Zeitung, 108(1), 127–200.
https://doi.org/10.1016/S0367-1615(17)31720-2
Merrill, E. K. (1986). Heteroblastic seedlings of green ash. III. Cell division activity and marginal meristems. Canadian Journal of Botany,
64 (11), 2662–2668.
Metcalfe, C. R. (1933). A note on the structure of the phyllodes of Oxalis herrerae R. Knuth and O. bupléurifolia St. Hil. Annals of Botany,
47 (186), 355–359. JSTOR.
Mettenius, G. (1861a). Über seitenknospen bei farnen. S. Hirzel.
Mettenius, G. H. (1861b). Beiträge zur Anatomie der Cycadeen. S. Hirzel.
Meyer, D. E. (1958). Über ein interessantes brachsenkraut aus peru. Willdenowia, 32–40.
Mickel, J. T. (1967). The phylogenetic position of Anemia colimensis . American Journal of Botany, 54 (4), 432–437.
Mirande, M. (1905). Recherches sur le développement et l'anatomie des Cassythacées. Annates des Sciences naturelles, Botanique, 9
(2), 181–285.
Mishler, B. D. , & Churchill, S. P. (1984). A cladistic approach to the phylogeny of the “Bryophytes”. Brittonia, 36 (4), 406–424.
https://doi.org/10.2307/2806602
Mishler, B. D. , & Oliver, M. J. (2018). Putting Physcomitrella patens on the tree of life: The evolution and ecology of mosses. Annual Plant
Reviews Online, 36 , 1–15.
Mitchell, C. H. , & Diggle, P. K. (2005). The evolution of unisexual flowers: Morphological and functional convergence results from diverse
developmental transitions. American Journal of Botany, 92 (7), 1068–1076.
Mitchell, G. (1910). Contributions towards a knowledge of the anatomy of the genus Selaginella, Spr. Part V. The strobilus. Annals of
Botany, 24 (93), 19–33.
Mohl, H. von. (1845). Untersuchungen über die entwicklung des korkes und der borke auf der rinde der baumartigen dicotylen. Vermischte
schriften botanischen inhalts. Tübingen, L. Fr. Fues .
Monnier, M. , & Norstog, K. (1984). Developmental aspects of immature Zamia embryos cultured in vitro. Zeitschrift Für
Pflanzenphysiologie, 113 (2), 105–115.
Moody, A. , Diggle, P. K. , & Steingraeber, D. A. (1999). Developmental analysis of the evolutionary origin of vegetative propagules in
Mimulus gemmiparus (Scrophulariaceae). American Journal of Botany, 86 (11), 1512–1522.
Moore, H. E. , & Uhl, N. W. (1973). Palms and the origin and evolution of monocotyledons. The Quarterly Review of Biology, 48 (3),
414–436.
Moore, R. , & Walker, D. B. (1983). Studies of vegetative compatibility-incompatibility in higher plants. Protoplasma, 115 (2–3), 114–121.
Mora, E. (1960). Beiträge zur Entwicklungsgeschichte und vergleichenden Morphologie der Cyperaceen. Duncker & Humblot.
Mora-Osejo, L. E. (1987). Estudios morfológicos, autoecológicos y sistemáticos en angiospermas. Academia Colombiana de Ciencias
Exactas, Físicas y Naturales.
Mora-Osejo, L. E. , & Hagemann, W. (1977). Una interesante Isoëtacea del volcán Galeras (Nariño, Colombia). Mutisia, 43 , 1–11.
Moseley Jr, M. F. (1967). The value of the vascular system in the study of the flower. Phytomorphology, 17 , 159–164.
Moseley, M. F. (1971). Morphological studies of the Nymphaeaceae. VI. Development of the flower of Nuphar. Phytomorphology, 21 ,
253–283.
Mueller, R. J. (1982a). Shoot morphology of the climbing fern Lygodium (Schizaeaceae): general organography, leaf initiation, and
branching. Botanical gazette, 143(3), 319–330.
Mueller, R. J. (1982b). Shoot ontogeny and the comparative development of the heteroblastic leaf series in Lygodium japonicum (Thunb.)
Sw. Botanical Gazette, 143 (4), 424–438.
Mueller, R. J. (1983). Indeterminate growth and ramification of the climbing leaves of Lygodium japonicum (Schizaeaceae). American
Journal of Botany, 70 (5), 682–690.
Mukkada, A. J. (1962). Some observations on the embryology of Dicraea stylosa Wight. Plant embryology—a symposium (pp. 139–145).
CSIR, New Delhi.
Müller, H. , & von Guttenberg, H. (1957). Die laterale anisophyllie von coleus hybridus als korrelationsphänomen. Planta, 49 (3), 271–299.
JSTOR.
Müllerott, M. (1939). Vergleichende und entwicklungsgeschichtliche Untersuchungen über Zwischenfieder- und Stipellenbildung. Akad.
Verlagsges.
Müllerott, M. (1940): Vergleichende und entwicklungsgeschichtliche Untersuchungen über Zwischenfieder- und Stipellenbildung. Botanical
Archives 40: 258–288.
Mundry, I. (2000). Morphologische und morphogenetische Untersuchungen zur Evolution der Gymnospermen. Schweizerbart.
Mundry, I. , & Mundry, M. (2001). Male cones in Taxaceae sl-an example of Wettstein's pseudanthium concept. Plant Biology, 3 (4),
405–416.
Münter, F. (1843). Beobachtungen über das wachstum verschiedener pflanzenteile. Bot. Zeitg, 1 (1843), 69.
Naegeli, C. (1858). Über das Wachstum des Stammes und der Wurzel bei den Gefässpflanzen und die Anordnung der Gefässtränge in
Stengel. Beiträge zur Wissenschaft. Bot., 1: 1–56
Nakayama, H. , Yamaguchi, T. , & Tsukaya, H. (2013). Modification and co-option of leaf developmental programs for the acquisition of flat
structures in monocots: Unifacial leaves in Juncus and cladodes in Asparagus . Frontiers in Plant Science, 4 , 248.
Napp-Zinn, K. (1966). Anatomie des Blattes: I. Blattanatomie der Gymnospermen. In Encyclopedia of Plant Anatomy (Vol. 1). Gebrüder
Borntraeger.
Natesh, S. , & Rau, M. A. (1984). The embryo. In Embryology of angiosperms (pp. 377–443). Springer.
Naumann, A. (1887). Beiträge zur Entwicklungsgeschichte der Palmenblätter. Verlag der Redaction.
Negbi, M. , & Sargent, J. A. (1986). The scutellum of Avena: A structure to maximize exploitation of endosperm reserves. Botanical Journal
of the Linnean Society, 93 (2), 247–258.
Neubauer, H. F. (1986). Über missbildungen im bereich von blüte und blütenstand. Natur Und Museum, 116 , 19–31.
Nicholson, N. , & Briggs, W. (1972). Translocation of photosynthate in the brown alga Nereocystis . American Journal of Botany, 59 .
https://doi.org/10.2307/2441235
Niklas, K. J. (1992). Plant biomechanics: An engineering approach to plant form and function. University of Chicago Press.
Nitschke, T. (1860). Über die Reizbarkeit der Blätter von Drosera rotundifolia L. Bot. Ztg., 18: 229–250.
Noel, A. R. A. , & Van Staden, J. (1975). Phyllomorph senescence in Streptocarpus molweniensis . Annals of Botany, 39 (4), 921–929.
Norén, C. O. (1908). Zur Kenntnis der Entwicklung von Saxegothaea conspicua Lindl. Sven. Bot. Tidskr., 2 , 101–122.
Norstog, K. (1967). Fine structure of the spermatozoid of Zamia with special reference to the flagellar apparatus. American Journal of
Botany, 54 (7), 831–840.
Norstog, K. (1972). Role of archegonial neck cells of Zamia and other cycads. Phytomorphology, 22 (2), 125–130.
Norstog, K. J. (1986). The blepharoplast of Zamia pumila L. Botanical Gazette, 147 (1), 40–46.
Norstog, K. J. (1987). Cycads and the origin of insect pollination. American Scientist, 75 (3), 270–279.
Norstog, K. J. (1990). Spermatozoids of Microcycas calocoma: Ultrastructure. Botanical Gazette, 151 (3), 275–284.
Norstog, K. J. (1992). Cycad phenology. Encephalartos - Journal of the Cycad Society of South Africa, 32 , 11–13.
Norstog, K. J. , & Fawcett, P. K. (1989). Insect-cycad symbiosis and its relation to the pollination of Zamia furfuracea (Zamiaceae) by
Rhopalotria mollis (Curculionidae). American Journal of Botany, 76 (9), 1380–1394.
Norstog, K. J. , Fawcett, P. S. , & Vovides, A. (1992). Beetle pollination of two species of Zamia: Evolutionary and ecological
considerations. Palaeobotanist (Lucknow), 41, 149–158.
Norstog, K. , & Long, R. W. (1976). Plant biology. Saunders.
Norstog, K. , & Nicholls, T. J. (1997). The biology of the cycads. Comstock.
Norstog, K. , & Stevenson, D. (1980). Wind? Or insects? The pollination of cycads. Fairchild Tropical Gardens Bulletin, 35 (1), 29–30.
Norstog, K. J. , Stevenson, D. W. , & Niklas, K. J. (1986). The role of beetles in the pollination of Zamia furfuracea L. fil. (Zamiaceae).
Biotropica, 300–306.
Okada, K. , Ueda, J. , Komaki, M. K. , Bell, C. J. , & Shimura, Y. (1991). Requirement of the auxin polar transport system in early stages of
Arabidopsis floral bud formation. The Plant Cell, 3(7), 677–684.
Øllgaard, B. (1979). Studies in Lycopodiaceae, II. The branching patterns and infrageneric groups of Lycopodium sensu lato. American
Fern Journal, 69 (2), 49–61.
Øllgaard, B. (1987). A revised classification of the Lycopodiaceae s. Lat. Opera Botanica, 92 , 153–178.
Øllgaard, B. (2015). Six new species and some nomenclatural changes in neotropical Lycopodiaceae. Nordic Journal of Botany, 33 (2),
186–196.
Osborn, T. G. B. (1919). Some observations on the tuber of Phylloglossum . Annals of Botany, 33 (132), 485–516.
Otsuga, D. , DeGuzman, B. , Prigge, M. J. , Drews, G. N. , & Clark, S. E. (2001). Revoluta regulates meristem initiation at lateral positions.
The Plant Journal, 25 (2), 223–236.
Owens, J. N. , Catalano, G. L. , Morris, S. J. , & Aitken-Christie, J. (1995). The reproductive biology of Kauri (Agathis australis). I.
Pollination and prefertilization development. International Journal of Plant Sciences, 156 (3), 257–269.
Owens, J. N. , Takaso, T. , & Runions, C. J. (1998). Pollination in conifers. Trends in Plant Science, 3 (12), 479–485.
Pabón-Mora, N. , & González, F. (2012). Leaf development, metamorphic heteroblasty and heterophylly in Berberis sl (Berberidaceae).
The Botanical Review, 78 (4), 463–489.
Padmanabhan, D. (1963). Leaf development in palms. Current Science, 32 (12), 537–539.
Padmanabhan, D. (1967a). Direct evidence for schizogenous splitting in palm-leaf lamina. Current Science, 36 (17), 467–468.
Padmanabhan, D. (1967b). Some aspects of histogenesis in the leaf of Phoenix sylvestris L. Proceedings of the Indian Academy of
Sciences-Section B, 65 (5), 221–229.
Padmanabhan, D. (1969a). Direct and indirect evidences for the occurrence of schizogenous splits in the young palm leaf lamina. Indian
Biology, 1 , 34–42.
Padmanabhan, D. (1969b). Leaf development in Phoenix sylvestris L. Recent advances in the anatomy of tropical seed plants (pp.
165–177). Delhi Hindustan Publishing Corporation.
Padmanabhan, D. , & Veerasamy, S. (1973). Late ‘splitting’ in the juvenile leaf of Phoenix dactylifera L. Current Science, 42 (13), 470–472.
Padmanabhan, D. , & Veerasamy, S. (1974). Ontogenetic studies on the juvenile leaves of Phoenix dactylifera L. Australian Journal of
Botany, 22 (4), 689–700.
Page, C. N. (1972). An interpretation of the morphology and evolution of the cone and shoot of Equisetum . Botanical Journal of the
Linnean Society, 65 (4), 359–397. https://doi.org/10.1111/j.1095-8339.1972.tb02279.x
Page, C. N. (1982). The ferns of Britain and Ireland. Cambridge University Press.
Page, C. N. (1997). The ferns of Britain and Ireland (2nd ed.). Cambridge University Press.
Palmae. In: A. Engler & K. Prantl, Die. Natürlichen Pflanzenfamilien 2(3). Wilhelm. Engelmann, Leipzig.
Palser, B. F. (1975). The bases of angiosperm phylogeny: Embryology. Annals of the Missouri Botanical Garden, 62 (3), 621–646. JSTOR.
https://doi.org/10.2307/2395269
Paolillo, D. J. (1963). The developmental anatomy of Isoetes. University of Illinois Press.
Paolillo Jr, D. J. (1982). Special paper: Meristems and evolution: Developmental correspondence among the rhizomorphs of the
Lycopsids. American Journal of Botany, 69 (6), 1032–1042.
Payer, J.-B. (1857). Traité de organogénie comparée de la fleur (Vol. 47). V. Masson.
Payer, J.-B. (1966). Traité d’organogénie comparée de la fleur. J. Cramer ; Stechert-Hafner Service Agency.
Pearsall, W. H. (1927). Growth studies: VI. On the relative sizes of growing plant organs. Annals of Botany, 41 (163), 549–556.
Pearson, H. H. W. (1906). VIII. some observations on Welwitschia mirabilis Hooker, f. Philosophical Transactions of the Royal Society of
London. Series B, Containing Papers of a Biological Character, 198 (239–250), 265–304.
Pearson, H. H. W. , & Seward, A. C. (1929). Gnetales. University Press.
Periasamy, K. (1966). Morphological and ontogenetic studies in palms. IV. Ontogeny of the vascular pattern in four genera. Australian
Journal of Botany, 14 (3), 277–291.
Periasamy, K. (1977). A new approach to the classification of angiosperm embryos. Proceedings of the Indian Academy of Science,
Section B, 86 (1), 1–13.
Périlleux, C. , Lobet, G. , & Tocquin, P. (2014). Inflorescence development in tomato: Gene functions within a zigzag model. Frontiers in
Plant Science, 5 , 121.
Peterson, R. L. (1967). Callus induction in Ophioglossum petiolatum Hook. Canadian Journal of Botany, 45 (11), 2225–2227.
Peterson, R. L. , & Cutter, E. G. (1969). The fertile spike of Ophioglossum petiolatum. I. Mechanism of elongation. American Journal of
Botany, 56 (5), 473–483.
Philipson, W. R. , Ward, J. M. , & Butterfield, B. G. (1971). The vascular cambium: Its development and activity. Chapman and Hall.
Poethig, R. S. (1984). Patterns and problems in angiosperm leaf morphogenesis. In: Pattern Formation, pp. 413–432, Malacinski, G.M.
Bryant, S.V. , eds. MacMillan, New York
Poethig, R. S. (1987). Clonal analysis of cell lineage patterns in plant development. American Journal of Botany, 74 (4), 581–594.
Poethig, R. S. (1988). Heterochronic mutations affecting shoot development in maize. Genetics, 119 (4), 959–973.
Prantl, K. (1876). Bemerkungen über die Verwandtschaftsverhältnisse der Gefässkryptogamen und den Ursprung der Phanerogamen.
Verh. Phys.-Med. Ges. Würzburg N.F. 9: l. u. 2. Heft: 84–97.
Prantl, K. (1883). Systematishe Uebersicht der Ophioglosseen. Ber. Deut. Bot. Ges. 1:348-353
Pretorius, W. (1988). Keelblare in transvenosus. Encephalartos - Journal of the Cycad Society of South Africa, 13 , 18–19.
Price, R. A. (1996). Systematics of the Gnetales: A review of morphological and molecular evidence. International Journal of Plant
Sciences, 157 (S6), S40–S49.
Prigge, M. J. , & Clark, S. E. (2006). Evolution of the class III HD-Zip gene family in land plants. Evolution & Development, 8 (4), 350–361.
Pryer, K. M. , Schneider, H. , Smith, A. R. , Cranfill, R. , Wolf, P. G. , Hunt, J. S. , & Sipes, S. D. (2001). Horsetails and ferns are a
monophyletic group and the closest living relatives to seed plants. Nature, 409 (6820), 618–622.
Qiu, Y.-L. , Lee, J. , Bernasconi-Quadroni, F. , Soltis, D. E. , Soltis, P. S. , Zanis, M. , Zimmer, E. A. , Chen, Z. , Savolainen, V. , & Chase,
M. W. (1999). The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature, 402 (6760), 404–407.
Raciborski, M. (1901). Rozwój botaniki w XIX stuleciu za granica i u nas. Kosmos, 26 , 83–91.
Rai, H. S. , & Graham, S. W. (2010). Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives
(monilophytes). American Journal of Botany, 97 (9), 1444–1456.
Randolph, L. F. (1936). Developmental morphology of the caryopsis in maize. Journal of Agricultural Research, 53, 881–916.
Rauh, W. (1937). Die Bildung von hypocotyl-und wurzelsprossen und ihre bedeutung fur die wuchsformen der phlanzen. Nova Acta
Leopold, 4 , 395–553.
Rauh, W. (1941). Morphologie der Nutzpflanzen (Vol. 280). Verlagsbuchhandlung Quelle u. Meyer.
Rauh, W. , & Falk, H. (1959). Stylites E. Amstutz, eine neue isoetacee aus den hochlanden perus. Springer.
Rauh, W. , & Rappert, F. (1954). Über das vorkommen und die histogenese von scheitelgruben bei krautigen dikotylen, mit besonderer
berücksichtigung der ganz-und halbrosettenpflanzen. Planta, 43 (4. H), 325–360.
Rauh, W. , & Reznik, H. (1951). Histogenetische Untersuchungen an Blüten-und Infloreszenzachsen: Teil 1: Die Histogenese
becherförmiger Blüten-und Infloreszenzachsen sowie der der Blütenachsen einiger Rosoideen (Issue 581.4).
Raven, P. H. , Evert, R. F. , & Eichhorn, S. E. (1986). The shoot: Primary structure and development. In Biology of plants (4th ed., pp.
413–435). Worth Publishers.
Reeder, J. R. (1953). The embryo of Streptochaeta and its bearing on the homology of the coleoptile. American Journal of Botany, 40 (2),
77–80.
Reeder, J. R. (1956). The embryo of Jouvea pilosa as further evidence for the foliar nature of the coleoptile. Bulletin of the Torrey Botanical
Club, 83 (1), 1–4.
Reinke, J. (1879). Untersuchungen ueber quellung. Hanstein's Botanische Abhandlungen, 4 .
Remane, A. (1952). Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Koeltz.
Reut, M. S. (1993). Trap structure of the carnivorous plant Genlisea (Lentibulariaceae). Botanica helvetica, 103 (1), 101–111.
Reynolds, L. G. (1924). Female gametophyte of Microcycas . Botanical Gazette, 77 (4), 391–403.
Richards, F. J. (1951). Phyllotaxis: Its quantitative expression and relation to growth in the apex. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 235 (629), 509–564.
Richards, J. H. (1982). Developmental potential of axillary buds of water hyacinth, Eichhornia crassipes Solms (Pontederiaceae). American
Journal of Botany, 69 (4), 615–622.
Rickson, F. R. (1969). Developmental aspects of the shoot apex, leaf, and Beltian bodies of Acacia cornigera . American Journal of
Botany, 56 (2), 195–200.
Ridley, H. N. (1897). Malay plant names. Journal of the Straits Branch of the Royal Asiatic Society, 30 , 31–283.
Robbertse, P. J. , Claassen, I. , & Schoonraad, E. (1988). A note on auxotelic cones and basitonic branching in Encephalartos . South
African Journal of Botany, 54 (4), 394–396. https://doi.org/10.1016/S0254-6299(16)31311-4
Robbins, W. J. (1957). Gibberellic acid and the reversal of adult Hedera to a juvenile state. American Journal of Botany, 44 (9), 743–746.
Robert Brown. (1832). LVIII. Remarks on the structure and affinities of Cephalotus. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 1(4), 314–317. https://doi.org/10.1080/14786443208647898
Roberts, P. R. , & Oosting, H. J. (1958). Responses of Venus fly trap (Dionaea muscipula) to factors involved in its endemism. Ecological
Monographs, 28 (2), 193–218.
Röper, J. A. C. (1859). Zur systematik und naturgeschichte der ophioglosseae.
Rosenblum, I. M. , & Basile, D. V. (1984). Hormonal regulation of morphogenesis in Streptocarpus and its relevance to evolutionary history
of the Gesneriaceae. American Journal of Botany, 71 (1), 52–64.
Ross, H. (1892). Anatomia comparata delle foglie delle Iridee: Studio anatomico-sistematico. A. Ciminago.
Ross, H. (1893). Sulla struttura fiorale della Cadia varia L’Hérit. Tipografia di Angelo Ciminago.
Rost, T. L. , Barbour, M. G. , Thornton, R. M. , Weier, T. E. , & Stocking, C. R. (1984). Botany; a brief introduction to plant biology (2nd
ed.). Wiley.
Rothfels, C. J. , Li, F.-W. , Sigel, E. M. , Huiet, L. , Larsson, A. , Burge, D. O. , Ruhsam, M. , Deyholos, M. , Soltis, D. E. , & Stewart Jr, C.
N. (2015). The evolutionary history of ferns inferred from 25 low-copy nuclear genes. American Journal of Botany, 102 (7), 1089–1107.
Rouffa, A. S. (1967). Induced Psilotum fertile-appendage aberrations. Morphogenetic and evolutionary implications. Canadian Journal of
Botany, 45 (6), 855–861.
Rouffa, A. S. (1971). An appendageless Psilotum. Introduction to aerial shoot morphology. American Fern Journal, 61 (2), 75–86. JSTOR.
https://doi.org/10.2307/1547025
Rouffa, A. S. (1978). On phenotypic expression, morphogenetic pattern and synangium evolution in Psilotum . American Journal of
Botany, 65 (6), 692–713.
Rudall, P. (1984). Taxonomic and evolutionary implications of rhizome structure and secondary thickening in Iridaceae. Botanical Gazette,
145 (4), 524–534.
Rudall, P. J. , & Bateman, R. M. (2003). Evolutionary change in flowers and inflorescences: Evidence from naturally occurring terata.
Trends in Plant Science, 8 (2), 76–82.
Ruggiero, M. A. , Gordon, D. P. , Orrell, T. M. , Bailly, N. , Bourgoin, T. , Brusca, R. C. , Cavalier-Smith, T. , Guiry, M. D. , & Kirk, P. M.
(2015). A higher level classification of all living organisms. PLOS ONE, 10 (4), e0119248. https://doi.org/10.1371/journal.pone.0119248
Runions, C. J. , Rensing, K. H. , Takaso, T. , & Owens, J. N. (1999). Pollination of Picea orientalis (Pinaceae): Saccus morphology
governs pollen buoyancy. American Journal of Botany, 86 (2), 190–197.
Rury, P. M. (1978). A new and unique, mat-forming merlin's-grass (Isoëtes) from Georgia. American Fern Journal, 68 (4), 99–108. JSTOR.
https://doi.org/10.2307/1546480
Rutishauser . (1999). Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identities. International
Journal of Plant Sciences. 160(6 Suppl.): S81–S103.
Rutishauser, R. (1998). Plastochrone ratio and leaf arc as parameters of a quantitative phyllotaxis analysis in vascular plants. In Symmetry
in plants (pp. 171–212). World Scientific.
Rutishauser, R. , & Dickison, W. C. (1989). Developmental morphology of stipules and systematics of the Cunoniaceae and presumed
allies. I: Taxa with interpetiolar stipules. Botanica Helvetica, 99 (2), 147–169.
Rutishauser, R. , & Isler, B. (2001). Developmental genetics and morphological evolution of flowering plants, especially bladderworts (
Utricularia): Fuzzy Arberian morphology complements classical morphology. Annals of Botany, 88 (6), 1173–1202.
Rutishauser, R. , & Sattler, R. (1985). Complementarity and heuristic value of contrasting models in structural botany. Botanische
Jahrbücher fur Systematik , 107 , 415–455.
Rutishauser, R. , & Sattler, R. (1989). Complementarity and heuristic value of contrasting models in structural botany. III. Case study on
shoot-like “leaves” and leaf-like “shoots” in Utricularia macrorhiza and U. purpurea (Lentibulariaceae). Botanische Jahrbücher fur
Systematik . 111: 121–137.
Sacher, J. A. (1954). Structure and seasonal activity of the shoot apices of Pinus lambertiana and Pinus ponderosa. American Journal of
Botany, 749–759.
Sachs, J. (1874). Lehrbuch der Botanik: Nach dem gegenwärtigen Stand der Wissenschaft (Vol. 2). Engelmann.
Sachs, J. (1880). Stoff und Form der Pflanzenorgane. Arbeiten des Botanishen Instituts in Würzburg, 2(452–488), 2.
Sachs, J. (1882). Textbook of Botany, Morphological and Physiological. Clarendon Press, Oxford, UK
Sachs, J. (1888). Erfahrungen über die behandlung chlorotisclier gartenpflanzen. Arbeiten Des Botanischen Instituts in Würzburg, 3 ,
433–458.
Sachs, J. (1893a). Gesammelte Abhandlungen über Pflanzen-Physiologie: Bd. Ueber das Wachsthum von Sprossen und Wurzeln. Ueber
die Tropismen als Reizwirkungen an wachsenden Pflanzentheilen. Beziehungen zwischen Zellbildung und Wachsthum. Ueber die
causalen Beziehungen Vegetabilischer Gestaltungen (Vol. 2). W. Engelmann.
Sachs, J. (1893b). Physiologische notizen, I. Ueber einige beziehungen der specifischen grosse der pflanzen zu ihrer organisation. Flora,
77 , 49–81.
Sadebeck, R. (1878). Die Entwickelung des Keimes der Schachtelhalme. Fb. wiss. Bot., 2, 575.
Sahni, B. (1923). Modern Psilotaceæ and archaic terrestrial plants. Nature, 111 (2777), 84–84.
Sakisaka, M. (1929). On the seed-bearing leaves of Ginkgo . The Journal of Japanese Botany, 4 , 219–235.
Samigullin, T. K. , Martin, W. F. , Troitsky, A. V. , & Antonov, A. S. (1999). Molecular data from the chloroplast rpoC1 gene suggest a deep
and distinct dichotomy of contemporary spermatophytes into two monophyla: Gymnosperms (including Gnetales) and angiosperms.
Journal of Molecular Evolution, 49 (3), 310–315.
Sampson, F. B. , & Kaplan, D. R. (1970). Origin and development of the terminal carpel in Pseudowintera traversii. American Journal of
Botany, 57 (10), 1185–1196.
Sandt, W. (1925). Zur Kenntnis der Beiknospen. Bot. Abh. 1 (2): 1–160.
Sandt, W. , & von Goebel, K. I. E. (1925). Zur Kenntnis der beiknospen: Zugleich ein beitrag zum korrelationsproblem. Verlag von Gustav
Fischer.
Sargant, E. (1908). The reconstruction of a race of primitive angiosperms. Annals of Botany, 22 (86), 121–186.
Sattler, R. (1984). Homology - a continuing challenge. Systematic Botany, 9 (4), 382–394.
Sattler, R. (1988). Homeosis in plants. American Journal of Botany, 75 (10), 1606–1617.
Sattler, R. (1992). Partial homology of pinnate leaves and shoots: Orientation of leaflet inception. Botanische Jahrbücher fur Systematik ,
114 , 61–79.
Sattler, R. , & Rutishauser, R. (1990). Structural and dynamic descriptions of the development of Utricularia foliosa and U. australis .
Canadian Journal of Botany, 68 (9), 1989–2003.
Sattler, R. , Rutishauser, R. (1992). Partial homology of pinnate leaves and shoots—orientation of leaflet inception. Botanische Jahrbücher
für Systematik. 114: 61–79.
Scagel, R. F. (1965). Evolutionary survey of the plant kingdom. Wadsworth. https://agris.fao.org/agris-
search/search.do?recordID=US201300596315
Scagel, R. F. , Bandoni, R. J. , Rouse, G. E. , Schofield, W. B. , Stein, J. R. , & Taylor, T. M. C. (1965). An evolutionary survey of the plant
kingdom. Wadsworth Pub. Co.
Schacht, H. , & Currey, F. (1854). Reviews: The Microscope in its special application to vegetable anatomy and physiology. Journal of Cell
Science, 1 (5), 45–47.
Schaffner, M. (1906). The embryology of the shepherd's purse: A posthumous paper. The Biological Club of the Ohio State University.
https://kb.osu.edu/handle/1811/1529
Schleiden, M. J. (1838). Beiträge zur phytogenesis and Schwann, T. (1839). Mikroskopische Untersuchungen über die Übereinstimmung
in der Struktur und dem Wachsthum der Thiere und Pflanzen. Wilhelm Engelmann.
Schmid, R. (1970). Nepenthes-studien. I. Homologien von deckel (operculum, lid) und spitzchen (calcar, spur). Botanische Jahrbücher fur
Systematik. 275–296.
Schmid, R. (1972). Floral bundle fusion and vascular conservatism. Taxon, 21 (4), 429–446.
Schmidt, K. D. (1978). Ein Beitrag zum verstandnis von morphologie und anatomie der Marsileaceae. Beitrage Zur Biologie Der Pflanzen,
54 (1), 41–91.
Schmitz, G. , & Theres, K. (2005). Shoot and inflorescence branching. Current Opinion in Plant Biology, 8 (5), 506–511.
Schmucker, T. , & Linnemann, G. (1959). Carnivorie. Handbuch Der Pflanzenphysiologie, 11 , 198–283.
Schnarf, K. (1904). Beiträge zur kenntnis des sporangienwandbaues der Polypodiaceae und der Cyatheaceae … sitzungsberichte der
akademie der wissenschaften in wien. mathematisch-naturwissenschaftliche klasse. Abteilung I: Mineralogie, Biologie, Erdkunde .
Schneckenburger, S. (1989). Studien zur embryogenese und keimung verschiedener gymnospermen unter besonderer berücksichtigung
der suspensorbildung und keimwurzelgenese. Palmengarten.
Schneider, E. L. , & Moore, L. A. (1977). Morphological studies of the Nymphaeaceae. VII. The floral biology of Nuphar lutea subsp.
Macrophylla. Brittonia, 29 (1), 88–99.
Schneider, F. (1913). Beitrage zur Entwicklungsgeschichte der Marsiliaceae. Flora, cv. 347.
Schoute, J. C. (1912). Über das Dickenwachstum der Palmen. E. J. Brill.
Schoute, J. C. (1914). Beiträge zur blattstellungslehre. II. Über verästelte baumfarne und die verästelung der pteropsida im allgemeinen.
Recueil Des Travaux Botaniques Néerlandais, 11 (2), 95–193.
Schoute, J. C. (1938). Morphology and anatomy. In Verdoorn's manual of pteridology. The Hague .
Schubert, O. (1913). Bedingungen zur Stecklingsbildung und Pfropfung von Monokotylen Mit 22 Textfig. [Doctoral]. Ludwig-Maximilians
Universität München.
Schüepp, O. (1926). Meristeme. Handbuch der Pflanzenanatomie Ab. I. Teil 2: Histologie. Verlag von Gebrüder Borntraeger, Berlin,
Gemany.
Schüepp, O. (1966). Meristeme. Wachstum und Form- bildung in den Teilungsgeweben hoherer Pflanzen. Birkhauser Verlag, Basel.
Schulz, P. , & Jensen, W. A. (1969). Capsella embryogenesis: The suspensor and the basal cell. Protoplasma, 67 (2–3), 139–163.
Schulze, G. M. (1934). Vergleichend-morphologische Untersuchungen an Laubknospen und Blättern australischer und neuseeländischer
Pflanzen. E. Schütt.
Schuster, J. (1932). Cycadaceae. in Engler, Das Pflanzenreich 99, 168. Leipzig: Verlag von Wilhelm Engelmann (Druck von Breitkopf &
Härtel in Leipzig)
Schwann, T. (1839). Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und
Pflanzen. Wilhelm Engelmann.
Schwann, T. , & Hünseler, F. (1910). Mikroskopische untersuchungen über die ubereinstimmung in der struktur und dem wachstume der
tiere und pflanzen. W. Engelmann.
http://ncco.galegroup.com/gdc/ncco/MonographsDetailsPage/MonographsDetailsWindow?disableHighlighting=false&prodId=NCCO&actio
n=1&activityType=BasicSearch&javax.portlet.action=viewPortletAction&documentId=GALE%7CBGPEQW110473728&dviSelectedPage=1
&userGroupName=
Schwarz, F. (1878). Ueber die entstehung der Löcher und Einbuchtungen an dem blatte von Philodendron pertusum Schott.
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 77 , 367–374.
Schweitzer, H.-J. (1963). Der weibliche zapfen von Pseudovoltzia liebeana und seine bedeutung für die phylogenie der koniferen.
Palaeontographica Abteilung B, 20 (1–2), 1–29.
Scott, R. A. (1960). Pollen of ephedra from the chinle formation (Upper Triassic)[Arizona] and the genus Equisetosporites .
Micropaleontology, 6 (3), 271–276.
Sculthorpe, C. D. (1967). The biology of aquatic vascular plants. Edward Arnold.
Seilacher, A. (1970). Arbeitskonzept zur konstruktions-morphologie. Lethaia, 3 (4), 393–396. https://doi.org/10.1111/j.1502-
3931.1970.tb00830.x
Shapiro, S. (1949). The presence of stomata on the nucellus of Zamia floridana . American Journal of Botany, 36 (10), 803–803.
Shapiro, S. (1951). Stomata on the ovules of Zamia floridana . American Journal of Botany, 38 (1), 47–53.
Shushan, S. (1959). Developmental anatomy of an orchid Cattleya x Trimos. The orchids. A scientific survey. The Ronald.
Siegert, A. (1964). Morphologische, entwicklungsgeschichtliche und systematische Studien an Psilotum triquetarum Sw. I. Allgemeiner
Teil. Erstärkung und primäres Dickenwachstum der Sprosse. Beiträge zur Biologie der Pflanzen, 40 , 121–157.
Siegert, A. (1965). Morphologische, entwicklungsgeschichtliche und systematische studien an Psilotum triquetrum Sw. II. Die verzweigung
(mit einer allgemeinen erorterung des begriffes “Dichotomie”). Beitrage zur Biologie der Pflanzen, 41 , 209–230.
Siegert, A. (1967). Morphologische, entwicklungsgeschichtliche und systematische Studien an Psilotum triquetrum Sw. III. Das Blatt aus
der Sicht der Homologien. Beiträge zur Biologie der Pflanzen, 43 , 285–328.
Siegert, A. (1969). Morphologische, entwicklungsgeschichtliche und systematische Studien an Psilotum triquetrum Sw. IV. Die
Bildungsabweichungen der Sporophylle. Beiträge zur Biologie der Pflanzen, 46 , 45–71.
Siegert, A. (1970). Morphologische, entwicklungsgeschichtliche und systematische Studien an Psilotum triquetrum Sw. IV. Die
Bildungsabweichungen der Sporophylle. Beiträge zur Biologie der Pflanzen, 46 , 435–459.
Siegert, A. (1973). Morphologische, entwicklungsgeschichtliche und systematische Studien an Psilotum triquetrum Sw. IV. Die
Bildungsabweichungen der Sporophylle. Beiträge zur Biologie der Pflanzen, 49 , 291–319.
Siegert, A. (1974). Verzweigung der selaginellen unter berucksichtigung der keimungsgeschichte. Beitrage zur Biologie der Pflanzen.
21–112.
Siegert, A. (1982). Zur phylogenie der wurzel: Ein morphologischer versuch (Vol. 1). Koeltz.
Siegert, A. (1989). Zur Phylogenie der Wurzel Teil 1: Die Radikula. Koeltz Scientific Books, Königstein. 105 S.
Simoncioli, C. (1974). Ultrastructural characteristics of Diplotaxis erucoides (L.) DC. suspensor. Plant Biosystem, 108 (3–4), 175–189.
Singh, H. , & Maheshwari, K. (1962). A contribution to the embryology of Ephedra gerardiana Wall. Department of Botany. University of
Delhi.
Sinnott, E. W. (1913). The morphology of the reproductive structures in the Podocarpineae. Annals of Botany, 27 (105), 39–82.
Sinnott, E. W. (1936). A developmental analysis of inherited shape differences in cucurbit fruits. The American Naturalist, 70 (728),
245–254. https://doi.org/10.1086/280661
Sinnott, E. W. (1960). Plant morphogenesis. McGraw-Hill.
Sinnott, E. W. , & Durham, G. B. (1923). A quantitative study of anisophylly in Acer . American Journal of Botany, 10 (6), 278–287. JSTOR.
https://doi.org/10.2307/2435444
Slack, A. , & Gate, J. (1980). Carnivorous plants. MIT Press.
Sledge, W. A. (1973). The dryopteroid ferns of Ceylon. British Museum (Natural History).
Smith, F. G. (1907). Morphology of the trunk and development of the microsporangium of cycads. Botanical Gazette, 43 (3), 187–204.
Smith, F. G. (1910). Development of the ovulate strobilus and young ovule of Zamia floridana . Botanical Gazette, 50 (2), 128–141.
Smith, F. G. (1929). Multiple cones in Zamia floridana . Botanical Gazette, 88 (2), 204–217.
Smith, G. M. (1938). Cryptogamic botany II. Bryophytes and pteridophytes (1st ed.). McGraw-Hill.
Smith, G. M. (1955). Cryptogamic botany (2nd ed., Vol. 2). Mac Graw-Hill Book Company.
Snow, M. , & Snow, G. R. S. (1955). Spirodistichy re-interpreted. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 239(660), 45–88.
Sonntag, P. (1887). Über die dauer des scheitelwachstums und entwicklungsgeschichte des blattes. Jahrbücher für Wissenschaftliche
Botanik, 18 , 236–262.
Sousa-Baena, M. S. , Lohmann, L. G. , Rossi, M. , & Sinha, N. R. (2014). Acquisition and diversification of tendrilled leaves in Bignonieae
(Bignoniaceae) involved changes in expression patterns of Shootmeristemless (STM), Leafy/Floricaula (LFY/FLO), and Phantastica
(PHAN). New Phytologist, 201 (3), 993–1008. https://doi.org/10.1111/nph.12582
Spurr, A. R. (1949). Histogenesis and organization of the embryo in Pinus strobus L. American Journal of Botany, 36 (9), 629–641.
Srivastava, S. K. (1967). Upper cretaceous palynology-A review. The Botanical Review, 33 (3), 260–288.
Steeves, T. A. , & Briggs, W. R. (1958). Morphogenetic studies on Osmunda cinnamomea L. The origin and early development of
vegetative fronds. Phytomorphology, 8, 60–72.
Steeves, T. A. , & Briggs, W. R. (1960). Morphogenetic studies on Osmunda cinnamomea L. The auxin relationships of expanding fronds.
Journal of Experimental Botany, 11 (1), 45–67. https://doi.org/10.1093/jxb/11.1.45
Stein, D. B. , & Stein, O. L. (1960). The growth of the stem tip of Kalanchoe cv. ´Brilliant Star´. American Journal of Botany, 47(2),
132–140.
Steingraeber, D. A. , & Fisher, J. B. (1986). Indeterminate growth of leaves in Guarea (Meliaceae): A twig analogue. American Journal of
Botany, 73 (6), 852–862.
Stenzel, K. G. (1861). Untersuchungen uber Bau und Wachstum der Fame. II. Uber Verjungungserscheinungen bei der Farnen. Nova Acta
Acad. Caes. Leo. -Car. Ger. Nat. Cur., 28.
Stern, K. (1916). Beiträge zur kenntnis der nepenthaceen. Gustav Fischer.
Stevenson, D. W. (1976). The cytohistological and cytohistochemical zonation of the shoot apex of Botrychium multifidum . American
Journal of Botany, 63 (6), 852–856.
Stevenson, D. W. (1980a). Ontogeny of the vascular system of Botrychium multifidum (SG Gmelin) Rupr. (Ophioglossaceae) and its
bearing on stelar theories. Botanical Journal of the Linnean Society, 80 (1), 41–52.
Stevenson, D. W. (1980b). Radial growth in the Cycadales. American Journal of Botany, 67 (4), 465–475.
Stevenson, D. W. (1981). Observations on ptyxis, phenology, and trichomes in the Cycadales and their systematic implications. American
Journal of Botany, 68 (8), 1104–1114.
Stevenson, D. W. (1988). Strobilar ontogeny in the Cycadales. Aspects of Floral Development. J. Cramer, Berlin , 9 (1990), 8–55.
Stevenson, D. W. (1990). Morphology and systematics of the Cycadales. Memoirs of the New York Botanical Garden, 57 , 8–55.
Stevenson, D. W. (1993). Ephedraceae. In Flora of Norteamerica Editorial Comitee (Ed.), Flora of North America (Vol. 2, pp. 428–434).
Oxford University Press
Stewart, W. N. (1983). Paleobotany and the evolution of plants (1st ed.). Cambridge University Press.
Stewart, W. N. , & Rothwell, G. W. (1993. Paleobotany and the Evolution of Plants (2nd Ed.). Cambridge University Press.
Steyn, E. M. A. , & Strydom, D. J. F. (1993). The nucellus: Its position and function in the ovule of Encephalartos. Encephalartos, 35,
14–18.
Stoffberg, E. (1991). Morphological and ontogenetic studies on southern African podocarps. Initiation of the seed scale complex and early
development of integument, nucellus and epimatium. Botanical Journal of the Linnean Society, 105 (1), 21–35.
https://doi.org/10.1111/j.1095-8339.1991.tb00198.x
Stokey, A. G. (1907). The roots of Lycopodium pithyoides. Botanical Gazette, 44(1), 57–63.
Stone, B. C. (1970). Morphological Studies in Pandanaceae. II. The “Coniferoid” Habit in Pandanus sect. Acanthostyla. Bulletin of the
Torrey Botanical Club, 144–149.
Stone, B. C. (1973). A synopsis of the African species of Pandanus . Annals of the Missouri Botanical Garden, 60 (2), 260–272. JSTOR.
https://doi.org/10.2307/2395087
Stopes, M. C. (1910). Adventitious budding and branching in Cycas . The New Phytologist, 9 (6/7), 235–241. JSTOR.
Strasburger, E. (1872). Die coniferen und die gnetaceen: Eine morphologische studie (Vol. 1). Dabis.
Strasburger, E. (1873). Ueber Azolla. H. Dabis.
Strasburger, E. (1879). Die angiospermen und die gymnospermen. Verlag Von Gustav Fischer.
Strasburger, E. , Noll, F. , Schenck, H. , Schimper, A. F. W. , Bresinsky, A. , Kömer, C. , … & Sonnewald, U. Lehrbuch der Botanik für
Hochschulen. Fischer.
Stuhlman, O. (1948). A physical analysis of the opening and closing movements of the lobes of venus’ fly-trap. Bulletin of the Torrey
Botanical Club, 75 (1), 22–44. JSTOR. https://doi.org/10.2307/2482137
Stutzel, T. , & Gailing, O. (1995). Blatter und spreuschuppen bei farnen. unterschiede und gemeinsamkeiten unter morphogenetischen und
phylogenetischen gesichtspunkten. Beitrage Zur Biologie Der Pflanzen, 69 (1), 17–30.
Stützel, T. , & Röwekamp, I. (1999). Female reproductive structures in Taxales. Flora, 194 (2), 145–157.
Sussex, I. (1975). Growth and metabolism of the embryo and attached seedling of the viviparous mangrove, Rhizophora mangle .
American Journal of Botany, 62 (9), 948–953. https://doi.org/10.1002/j.1537-2197.1975.tb14135.x
Sussex, I. M. (1951). Experiments on the cause of dorsiventrality in leaves. Nature, 167 (4251), 651–652.
Sussex, I. M. (1954). Experiments on the cause of dorsiventrality in leaves. Nature, 174(4425), 351–352.
Sussex, I. M. (1966). The origin and development of heterospory in vascular plants. Trends in Plant Morphogenesis, E. Cutter (Ed.), (pp.
140–152). John Wiley & Sons.
Sussex, I. M. (1989). Developmental programming of the shoot meristem. Cell, 56 (2), 225–229.
Swarup, R. , & Bennett, M. J. (2013). Root gravitropism. In A. Eshel & T. Beeckman (Eds.), Plant roots: The hidden half (4th ed., pp.
157–174). CRC Press.
Sykes, M. G. (1908). Note on an abnormality found in Psilotum triquetrum . Annals of Botany, 3 , 525–526.
Szymkowiak, E. J. , & Irish, E. E. (2006). Jointless suppresses sympodial identity in inflorescence meristems of tomato. Planta, 223 (4),
646–658.
Takaso, T. , & Tomlinson, P. B. (1989a). Aspects of cone and ovule ontogeny in Cryptomeria (taxodiaceae). American Journal of Botany,
76 (5), 692–705. https://doi.org/10.1002/j.1537-2197.1989.tb11364.x
Takaso, T. , & Tomlinson, P. B. (1989b). Cone and ovule development in Callitris (Cupressaceae-Callitroideae). Botanical Gazette, 150
(4), 378–390.
Takaso, T. , & Tomlinson, P. B. (1990). Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae–Coniferales). American
Journal of Botany, 77 (9), 1209–1221.
Takaso, T. , & Tomlinson, P. B. (1991). Cone and ovule development in Sciadopitys (Taxodiaceae-Coniferales). American Journal of
Botany, 78 (3), 417–428.
Takaso, T. , & Tomlinson, P. B. (1992). Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron
(Taxodiaceae—Coniferales). Botanical Journal of the Linnean Society, 109 (1), 15–37.
Takhtadzhi͡an, A. L. (1969). Flowering plants: Origin and dispersal. Smithsonian Institution Press.
https://catalog.hathitrust.org/Record/006283825
Takhtajan, A. (2009). Flowering plants. Springer Science & Business Media.
Takiguchi, Y. , Imaichi, R. , & Kato, M. (1997). Cell division patterns in the apices of subterranean axis and aerial shoot of Psilotum nudum
(Psilotaceae): Morphological and phylogenetic implications for the subterranean axis. American Journal of Botany, 84 (5), 588–596.
Talbert, P. B. , Adler, H. T. , Parks, D. W. , & Comai, L. (1995). The Revoluta gene is necessary for apical meristem development and for
limiting cell divisions in the leaves and stems of Arabidopsis thaliana . Development, 121 (9), 2723–2735.
Tattersall, A. D. , Turner, L. , Knox, M. R. , Ambrose, M. J. , Ellis, T. N. , & Hofer, J. M. (2005). The mutant crispa reveals multiple roles for
Phantastica in pea compound leaf development. The Plant Cell, 17 (4), 1046–1060.
Taylor, P. (1964). The genus Utricularia L. (Lentibulariaceae) in Africa (south of the Sahara) and Madagascar. Kew Bulletin, 18 (1),
1–245+ii.
Taylor, T. N. , & Taylor, E. L. (1993). Biology and evolution of fossil plants. Prentice Hall.
Telewski, F. W. , & Zeevaart, J. A. (2002). The 120-yr period for Dr. Beal's seed viability experiment. American Journal of Botany, 89 (8),
1285–1288.
Terrazas, T. (1991). Origin and activity of successive cambia in Cycas (Cycadales). American Journal of Botany, 78 (10), 1335–1344.
Thomas, A. P. W. (1902). The affinity of Tmesipteris with the Sphenophyllales. Proceedings of the Royal Society of London, 69 (451–458),
343–350.
Thomasson, M. (1969). De la croissance de la feuille du Jasminum nudiflorum Lindl. Bulletin de La Société Botanique de France, 116
(1–2), 49–56.
Thomasson, M. (1970). Quelques observations sur la repartition des zones de croissance de la feuille du Jasminum nudiflorum Lindley.
Candollea. 297–340.
Thompson, J. M. (1927). A study in advancing gigantism with staminal sterility, with special reference to the Lecythideae. University of
Liverpool.
Thompson, J. M. (1937). On the place of ontogeny in floral enquiry. University Press of Liverpool.
Thorspecken, A. , & Hagemann, W. (1983). Besitzt Anemia sori? Untersuchungen über die entwicklung des sporophylls von Anemia
phyllitidis (Schizaeaceae). Plant Systematics and Evolution, 143 (1), 133–150. https://doi.org/10.1007/BF00984116
Titman, P. W. , & Wetmore, R. H. (1955). The growth of long and short shoots in Cercidiphyllum . American Journal of Botany, 364–372.
Tomlinson, P. B. (1962). The leaf base in palms its morphology and mechanical biology. Journal of the Arnold Arboretum, 43 (1), 23–50.
Tomlinson, P. B. (1964). Stem structure in arborescent monocotyledons. In The formation of wood in forest trees (pp. 65–86). Elsevier.
Tomlinson, P. B. (1970). Dichotomous branching in Flagellaria indica (Monocotyledones). In New research in plant anatomy. Bot. J.
Linnean Society. 63 (Suppl. 1): 1–14
Tomlinson, P. B. (1971). The shoot apex and its dichotomous branching in the Nypa palm. Annals of Botany, 35 (4), 865–879.
Tomlinson, P. B. (1978). Branching and axis differentiation. In Tropical trees as living systems In: Tomlinson PB , Zimmermann MH (eds)
(pp. 187–207). Cambridge University Press Cambridge.
Tomlinson, P. B. (1986). The botany of mangroves. Cambridge University Press.
Tomlinson, P. B. , Takaso, T. , & Rattenbury, J. A. (1989). Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Botanical Journal
of the Linnean Society, 99(3), 209–221.
Tomlinson, P. B. (1990). The structural biology of palms. Oxford University Press.
Tomlinson, P. B. (2000). Structural features of saccate pollen types in relation to their functions. Pollen and Spores: Morphology and
Biology, 147–162.
Tomlinson, P. B. , & Posluszny, U. (1977). Features of dichotomizing apices in Flagellaria indica (Monocotyledones). American Journal of
Botany, 64 (9), 1057–1065.
Tomlinson, P. B. , Takaso, T. , & Cameron, E. K. (1993). Cone development in Libocedrus (Cupressaceae)—Phenological and
morphological aspects. American Journal of Botany, 80(6), 649–659.
Tomlinson, P. B. , Takaso, T. , Owens, S. J. , & Rudall, P. J. (1998). Hydrodynamics of pollen capture in conifers. Reproductive Biology.
Royal Botanic Gardens, Kew, 265–275.
Tomlinson, P. B. , Takaso, T. , & Rattenbury, J. A. (1989). Developmental shoot morphology in Phyllocladus (Podocarpaceae). Botanical
Journal of the Linnean Society, 99 (3), 223–248.
Tomlinson, P. B. , & Zacharias, E. H. (2001). Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus
(Coniferales). Botanical Journal of the Linnean Society, 135 (3), 215–228.
Trapp, A. (1956). Zur morphologie und entwicklungsgeschichte der staubblätter sympetaler blüten. Gustav Fischer.
Trécul, A. (1854). Note sur la formation des perforations que présentent les feuilles de quelques Aroïdèes. Annales des sciences
naturelles. Botanique.
Trécul, M. A. (1853). VII.—On the structure of the leaves of palms. Annals and Magazine of Natural History, 12 (67), 27–31.
Treub, M. (1883). Sur une nouvelle catégorie de plantes grimpantes. Annales du Jardin Botanique de Buitenzorg 3: 44–75.
Treub, M. (1886). Etude sur les lycopodiacees II. Le prothalle du Lycopodium phlegmaria. Annales du Jardin Botanique de Buitenzorg, 5,
87–114.
Treub, M. (1890). Etude sur les Lycopodiace es. VIII. Les tubercles radicaux du Lycopodium cernuum L. Annales du Jardin Botanique de
Buitenzorg, 8 , 15–23.
Troll, W. (1928). Organisation und gestalt im bereich der blute. Springer.
Troll, W. (1932). Morphologie der schieldförmigen Blätter. Planta, 17 (2), 231–314.
Troll, W. (1933). Ueber die Blattbildung der Ophioglossaceen, insebesondere von Ophioglossum. Planta 19: 547–573.
Troll, W. (1934a). Beiträge zur morphologie des gynaeceums. IV. Über das gynaeceum der Nymphaeaceen. Zeitschrift Für
Wissenschaftliche Biologie. Abteilung E. Planta, 21 (3), 447–485. JSTOR.
Troll, W. (1934b). Über den bau der rhachis und seinen Einfluß auf die spreitenbildung von fiederblättern. Planta, 80–108.
Troll, W. (1935). Vergleichende morphologie der fiederblätter. Nova Acta Leopoldina NF, 3 (4), 315–455.
Troll, W. (1937). Vergleichende morphologie der hoheren pflanzen, Band I: Vegetationsorgane 1. Teil. Borntraeger.
Troll, W. (1939). Vergleichende morphologie der höheren pflanzen. Band I: Vegetationsorgane, 2. Teil. Gebrüder Borntraeger O. Koeltz.
Troll, W. (1943). Vergleichende Morphologie der höheren pflanzen. Band 1: Vegetationsorgane, 3. Teil. Bornträger.
Troll, W. (1949). Die urbildlichkeit der organischen gestaltung und goethes prinzip der “Variablen Proportionen”. Experientia, 5 (12),
491–495.
Troll, W. (1954). Praktische einführung in die pflanzenmorphologie (Vol. 1). Gustav Fischer.
Troll, W. (1955). Über den morphologischen Wert der sogenannten Vorläuferspitze von Monokotylenblättern: Ein Beitrag zur Typologie des
Monokotylenblattes. Beitr Biol Pflanz 31:525–558.
Troll, W. (1957). Praktische Einführung in die Pflanzenmorphologie. Teil 1 u. 2. Gustav Fischer Verlag.
Troll, W. (1959). Morphologie einschließlich anatomie. In Fortschritte der botanik (pp. 14–48). Springer.
Troll, W. (1964). Die Infloreszenzen: Typologie und Stellung im Aufbau des Vegetationskörpers. Fischer.
Troll, W. , & Dietz, H. (1954). Morphologische und histogenetische untersuchungen an Utricularia-arten. Österreichische Botanische
Zeitschrift, 101 (1/2), 165–207.
Troll, W. , Dragendorff, O. , & Fromherz, H. (1931). Über die luftwurzeln von sonneratia Linn. F. Und ihre biologische bedeutung. Planta,
13 (2), 311–473. https://doi.org/10.1007/BF01908930
Troll, W. , & Rauh, W. (1950). Das Erstarkungswachstum krautiger Dikotylen, mit besonderer Berücksichtigung der primären
Verdickungsvorgänge. (pp 3–86). Springer. pp. 92.
Troll, W. , & Weberling, F. (1981). Inflorescence studies on Aizoaceae, Mesembryanthemaceae and Tetragoniaceae. Franz Steiner.
Troll, W. , & Weberling, F. (1989). Infloreszenzuntersuchungen an monotelen Familien: Materialien zur Infloreszenzmorphologie. Gustav
Fischer.
Tschirch, A. (1904). Sind die antheren der kompositen verwachsen oder verklebt? Flora, 93 , 51–55.
Tschudy, R. H. (1939). The significance of certain abnormalities in Equisetum . American Journal of Botany, 744–749.
Tucker, S. C. (1962). Ontogeny and phyllotaxis of the terminal vegetative shoots of Michelia fuscata . American Journal of Botany, 49 (7),
722–737.
Tucker, S. C. (1984). Unidirectional organ initiation in leguminous flowers. American Journal of Botany, 71 (8), 1139–1148.
Tucker, S. C. (1989). Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae).
American Journal of Botany, 76 (5), 714–729.
Tulecke, W. (1957). The pollen of Ginkgo biloba: In vitro culture and tissue formation. American Journal of Botany, 44: 602–608.
Uhl, N. W. , & Dransfield, J. (1987). Genera Palmarum: A classification of palms based on the work of Harold E. Moore, Jr. Lawrence, LH
Bailey Hortorium and the International Palm Society.
Uhlitzsch, P. G. (1887). Untersuchungen über das wachstum der blattstiele. Druck von Max Hoffmann.
van Alderwerelt, C. R. W. K. (1908). Malayan Ferns: Handbook to the Determination of the Ferns of the Malayan Islands (incl. Those of the
Malay Peninsula, the Philippines and New Guinea). Landsdrukkerij.
Van Lammeren, A. A. M. (1986). Developmental morphology and cytology of the young maize embryo (Zea mays L.). Acta Botanica
Neerlandica, 35 (3), 169–188.
van Leeuwen, W. D. (1928). Einige beobachtungen ueber das zusammenleben von Camponotus quadriceps F. Smith mit dem
ameisenbaum endospermum formicarum becc. Aus neu-guinea. Treubia, 10 (4), 421–437.
Van Tieghem, M. P. , & Douliot, H. (1887). Origine Des Radicelles et Des Racines Latérales Dans Les Rubiacées, Les Violacées et Les
Apocynées. Bulletin de la Société Botanique de France, 34(4), 150–154.
van Tieghem, P. , & Douliot, H. (1889). Recherches comparatives sur l’origine des membres endogenes dans les plantes vasculaires.
Masson.
vanBeek, T. A. (2000). Ginkgo biloba. CRC Press.
Vasco, A. , Smalls, T. L. , Graham, S. W. , Cooper, E. D. , Wong, G. K.-S. , Stevenson, D. W. , Moran, R. C. , & Ambrose, B. A. (2016).
Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. New Phytologist, 212 (3), 745–758.
Vasil, V. (1959). Morphology and embryology of Gnetum ula brongn. Phytomorphology, 9 , 167–215.
Vassal, J. (1970). Contribution à l’étude de la morphologie des plantules d’acacia: Acacias insulaires des Océans Indien et Pacifique:
Australie, Formose, îles Maurice et Hawaii. Societe d’Histoire Naturelle.
Vaucheret, H. , Vazquez, F. , Crété, P. , & Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by
the miRNA pathway are crucial for plant development. Genes & Development, 18 (10), 1187–1197.
Velenovský, J. (1905). Vergleichende morphologie der pflanzen. F. R̆ivnáč. http://catalog.hathitrust.org/Record/007461564
Velenovsky, J. (1907a). Vergleichende Morphologie der Pflanzen, teil II. Verlagsbuchhandlung von Fr. Rivnac. Druck von Eduard
Leschinger, Prague.
Velenovský, J. (1907b). Všeobecná botanika. Nákladem České Akademie Císaře Františka Josefa, 3(9), 964–985.
Velenovský, J. (1910a). Vergleichende morphologie der pflanzen (Vol. 3). Prag,F. Řivnáč,1905–13..
Velenovský, J. (1910b). Všeobecná botanika, srovnávací morfologie. III. Allgemeine botanik. vergleichende morphologie. III.). Prag .
Velenovský, J. (1913). Vergleichende Morphologie der Pflanzen. IV. Teil (Supplement). –Prag.
Venkatanarayana, G. (1957). On certain aspects of the development of the leaf of Cocos nucifera L. Phytomorphology, 7 , 297–305.
Verbeke, J. A. (1989). Stereological analysis of ultrastructural changes during induced epidermal cell redifferentiation in developing flowers
of Catharanthus roseus (Apocynaceae). American Journal of Botany, 76 (7), 952–957.
Verbeke, J. A. (1991). Cell-Cell Interactions in Early Development, pages 241–247© 1991 Wiley-Liss, Inc. In Cell-cell interactions in early
development: The Forty-Ninth Annual Symposium of the Society for Developmental Biology, Washington, DC, June 27–30, 1990 (Vol. 49,
p. 241). Wiley-Liss.
Verbeke, J. A. (1992a). Fusion events during floral morphogenesis. Annual Review of Plant Biology, 43 (1), 583–598.
Verbeke, J. A. (1992b). Intercellular communication during plant epidermal cell redifferentiation. In Progress in plant growth regulation (pp.
332–339). Springer.
Verbeke, J. A. , & Walker, D. B. (1985). Rate of induced cellular dedifferentiation in Catharanthus roseus . American Journal of Botany, 72
(8), 1314–1317.
Verbeke, J. A. , & Walker, D. B. (1986). Morphogenetic factors controlling differentiation and dedifferentiation of epidermal cells in the
gynoecium of Catharanthus roseus . Planta, 168 (1), 43–49.
Voeller, B. R. (1966). Gibberellins and growth in ferns. Proceedings of the International Symposium on Plant Stimulation, 247–258.
Vogl, M. , Polster, H. , & Fuchs, S. (1972). Uber den Einfluss der Bodentemperatur auf den Gaswechsel der Nadeln von
Koniferenjungpflanzen. Biologisches Zentralblatt.
von Goebel, K. (1880). Beiträge zur Morphologie und Physiologie des Blattes. Breitkopf & Härtel.
von Goebel, K. (1924). Organographie der Pflanzen insbesondere der Archegoniaten und Samenpflanzen.[1.] Ergänzungsband. Die
Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung. Fischer.
von Willert, D. J. (1985). Welwitschia mirabilis—New aspects in the biology of an old plant. In Advances in botanical research (Vol. 11, pp.
157–191). Elsevier.
Vouk, V. (1918). Fiziologički prilog poznavanju nepenthes-lista. Jugoslavenska Akademija Znanosti i Umjetnosti, 63 , 15–25.
Wagner, W. H. (1977a). Fertile-sterile leaf dimorphy in ferns. Gard Bull Singapore, 30 , 251–267.
Wagner, W. H. (1977b). Systematic implications of the Psilotaceae. Brittonia, 29 (1), 54–63.
Wagner, W. H.,Jr. , & Beitel, J. M. (1992). Generic classification of modern north American Lycopodiaceae. Annals of the Missouri
Botanical Garden, 79 (3), 676–686.
Wagner, W. H. , Beitel, J. M. , & Wagner, F. S. (1982). Complex venation patterns in the leaves of Selaginella: Megaphyll-like leaves in
lycophytes. Science, 218 (4574), 793–794.
Wagner, W. H. , & Wagner, F. S. (1977). Fertile-sterile leaf dimorphy in ferns. Gard Bull Singapore, 30 , 251–267.
Waisel, Y. (1972). Phenology and vegetative reproduction in some submerged water weeds. Proceedings 4th Israeli Weed Control
Conference, Rehovoth , 1970. https://www.cabdirect.org/cabdirect/abstract/19732301821
Walker, D. B. (1975). Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). I. Light and scanning electron microscopic study of
gynoecial ontogeny. American Journal of Botany, 62 (5), 457–467.
Walker, D. B. (1978). Morphogenetic factors controlling differentiation and dedifferentiation of epidermal cells in the gynoecium of
Catharanthus roseus. Planta, 142 (2), 181–186.
Walton, J. (1953). An introduction to the study of fossil plants. Adams and Charles Black.
Wang, C.-N. , & Cronk, Q. C. (2003). Meristem fate and bulbil formation in Titanotrichum (Gesneriaceae). American Journal of Botany, 90
(12), 1696–1707.
Wardlaw, C. W. (1955). Embryogenesis in plants. Wiley.
Wardlaw, C. W. (1965). The organization of the shoot apex. In Differenzierung und Entwicklung/Differentiation and Development (pp.
966–1076). Springer.
Warming, E. , 1881. Familien Podostemaceae I. Kgl. Danske Vidensk. Selsk., Nat. Math. Afd., 2:1–34 (6 plates).
Warming, E. , 1882. Familien Podostemaceae II. Kgl. Danske Vidensk. Selsk., Nat. Math. Afd., 2:77–130 (plates VII-X1V).
Waterhouse, J. T. , & Quinn, C. J. (1978). Growth patterns in the stem of the palm Archontophoenix cunninghamiana . Botanical Journal of
the Linnean Society, 77 (2), 73–93.
Watson, M. A. (1980). Patterns of habitat occupation in mosses-relevance to considerations of the niche. Bulletin of the Torrey Botanical
Club, 346–372.
Weaver, J. E. , Jean, F. C. , & Crist, J. W. (1922). Development and activities of roots of crop plants: A study in crop ecology (Issue 316).
Carnegie institution of Washington.
Webb, E. (1975). Stem anatomy and phyllotaxis in Ophioglossum petiolatum . American Fern Journal, 65 (3), 87–94.
Webb, E. (1981). Stem anatomy, phyllotaxy, and stem protoxylem tracheids in several species of Ophioglossum. I.O. petiolatum and O.
crotalophoroides . Botanical Gazette, 142 (4), 597–608.
Weber, H. 1954. Wurzelstudien an tropischen Pflanzen. Abh. d. Math. Nat. Kl. Akad. Wiss. Mainz. 6: (21) 1–249
Weber, H. (1956). Histogenetische untersuchungen am sproßscheitel von Espeletia . Akademie der Wissenschaften und der Literatur.
Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, 9 .
Weber, H. (1958). Konstruktionsmorphologie. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere , 68 ,
1–112.
Weberling, F. (1967). Nebenblattbildungen als systematisches merkmal. Naturwissenschaften Rundschau, 20 , 518–525.
Weberling, F. (1981). Morphologie der blüten und der blütenstände. E. Ulmer, Stuttgart.
Weberling, F. (1989). Morphology of flowers and inflorescences ( R. J. Pankhurst , Trans.). Cambridge University Press.
Weberling, F. (1989). Morphology of flowers and inflorescences. Cambridge University Press.
Weberling, F. (1992). Morphology of flowers and inflorescences ( R. J. Pankhurst , Trans.). Cambridge University Press.
Weberling, F. , & Troll, W. (1964). Die infloreszenzen: Typologie und stellung im aufbau des vegetationskörpers. 1. Fischer.
Weberling, F. , & Troll, W. (1998). Die infloreszenzen: Typologie und stellung im aufbau des vegetationskörpers. 2: 2. Monotele und
polytele synfloreszenzen. Fischer.
Webster, T. R. (1969). An investigation of angle-meristem development in excised stem segments of Selaginella martensii . Canadian
Journal of Botany, 47 (5), 717–722. https://doi.org/10.1139/b69-102
Webster, Terry R. (1992). Developmental problems in Selaginella (Selaginellaceae) in an evolutionary context. Annals of the Missouri
Botanical Garden, 79 (3), 632–647.
Weier, T. E. , Stocking, C. R. , Barbour, M. G. , & Robbins, W. W. (1982). Botany: An introduction to plant biology (6th ed.). Wiley.
Weiss, P. (1939). Principles of development (pp. Xix and 601). New York, NY: Henry Holt and Company.
Weiss, P. (1940). The problem of cell individuality in development. The American Naturalist, 74 (750), 34–46.
Wenck, S. (1935). Entwicklungsgeschichtliche Untersuchungen über die Assimilationsorgane von Semele, Ruscus, Danaë und
Myrsiphyllum . Beihefte zum botanischen Centralblatt, 53A , 1–25.
Wetter, R. , & Wetter, C. (1954). Studien über das erstarkungswachstum und das primäre dickenwachstum bei leptosporangiaten farnen.
Flora Oder Allgemeine Botanische Zeitung, 141 (4), 598–631.
Wettstein, R. (1911). Handbuch der systematischen botanik. F. Deuticke.
Whaley, W. G. , & Whaley, C. Y. (1942). A developmental analysis of inherited leaf patterns in Tropaeolum . American Journal of Botany,
29 (3), 195–200. JSTOR. https://doi.org/10.2307/2437668
Whittaker, R. H. (1969). New concepts of kingdoms of organisms. Science, 163 (3863), 150–160.
Wickett, N. J. , Mirarab, S. , Nguyen, N. , Warnow, T. , Carpenter, E. , Matasci, N. , Ayyampalayam, S. , Barker, M. S. , Burleigh, J. G. , &
Gitzendanner, M. A. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National
Academy of Sciences, 111 (45), E4859–E4868.
Wiegand, K. M. (1906). Some studies regarding the biology of buds and twigs in winter. Botanical Gazette, 41 (6), 373–424.
Wiesner, J. von. (1891). Elemente der wissenschaftlichen botanik. A. Hölder. http://catalog.hathitrust.org/Record/009125312
Wikström, N. , & Kenrick, P. (1997). Phylogeny of Lycopodiaceae (Lycopsida) and the relationships of Phylloglossum drummondii Kunze
based on rbcL sequences. International Journal of Plant Sciences, 158 (6), 862–871.
Wikström, N. , & Kenrick, P. (2001). Evolution of Lycopodiaceae (Lycopsida): Estimating divergence times from rbcL gene sequences by
use of nonparametric rate smoothing. Molecular Phylogenetics and Evolution, 19 (2), 177–186.
Wilde, M. H. (1944). A new interpretation of coniferous cones: I. Podocarpaceae (Podocarpus). Annals of Botany, 8 (29), 1–41. JSTOR.
Wilder, G. J. (1976). Structure and development of leaves in Carludovica palmata (Cyclanthaceae) with reference to other Cyclanthaceae
and Palmae. American Journal of Botany, 63 (9), 1237–1256.
Willemse, M. T. M. , & Linskens, H. F. (1969). Développement du microgamétophyte chez le Pinus sylvestris entre la méiose et la
fécondation. Revue de Cytologie et de Biologie Vegetales, 32 , 121–128
Willemse, M. T. M. , & Van Went, J. L. (1984). The female gametophyte. In Embryology of angiosperms (pp. 159–196). Springer, Berlin,
Heidelberg.
Williams, M. A. J. , Beckett, A. , & Read, N. D. (1985). Differentiation in Flammulina velutipes. Developmental Biology of Higher Fungi:
Symposium of the British Mycological Society Held at the University of Manchester April 1984, 10, 429.
Williams, R. F. (1975). The shoot apex and leaf growth. Cambridge University Press.
Williams, R. F. , & Williams, W. (1974). Shoot apex and leaf growth. Cambridge University Press.
Williams, S. E. , & Bennett, A. B. (1982). Leaf closure in the Venus flytrap: An acid growth response. Science, 218 (4577), 1120–1122.
Wirth, M. , & Withner, C. L. (1959). Embryology and development in the Orchidaceae. In C.L. Withner (Ed.), The orchids: A scientific
survey (pp. 155–188). Ronald Press.
Wolff, H. 1927: Umbelliferae — Apioideae — Ammineae — Carinae, Ammineae novemjugatae et genuinae. — In: Engler, A. Das
Pflanzenreich. 90: 1–398. — Leipzig: Engelmann
Yamaguchi, T. , Nukazuka, A. , & Tsukaya, H. (2012). Leaf adaxial–abaxial polarity specification and lamina outgrowth: Evolution and
development. Plant and Cell Physiology, 53 (7), 1180–1194.
Yamaguchi, T. , & Tsukaya, H. (2010). Evolutionary and developmental studies of unifacial leaves in monocots: Juncus as a model
system. Journal of Plant Research, 123 (1), 35.
Yamaguchi, T. , Yano, S. , & Tsukaya, H. (2010). Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus
prismatocarpus . The Plant Cell, 22 (7), 2141–2155.
Yamashita, T. (1976). Über die Embryo- und wurzelentwicklung bei Aponogeton madagascariensis (Mirbel) van Brüggen. Journal of the
Faculty of Science, University of Tokyo, Section III. Botany, 12 , 37–64.
Yampolsky, C. , & Yampolsky, H. (1966). Distribution of sex forms in the phanerogamic flora (Vol. 3). Swets & Zeitlinger.
Yeung, Edward C. (1980). Embryogeny of Phaseolus: The role of the suspensor. Zeitschrift Für Pflanzenphysiologie, 96 (1), 17–28.
Yeung, E. C. , & Clutter, M. E. (1978). Embryogeny of Phaseolus coccineus: Growth and microanatomy. Protoplasma, 94 (1–2), 19–40.
Zimmermann, W. (1930). Die Phylogenie der Pflanzen: Ein Überblick über Tatsachen und Probleme (1st ed.). Fischer.
Zimmermann, W. (1938). Phylogenie. In Manual of pteridology (pp. 558–618). Springer.
Zimmermann, W. (1942). Die phylogenie des ophioglossaceen blattes. Berichte Der Deutschen Botanischen Gesellschaft, 60 (9),
416–433.
Zimmermann, W. (1952). Main results of the telome theory. Palaeobotanist, 1 , 456–470.
Zimmermann, W. (1959). Die phylogenie der pflanzen: Ein uberblick über Tatsachen und probleme. Gustav Fischer.
Zurakowski, K. A. , & Gifford, E. M. (1988). Quantitative studies of pinnule development in the ferns Adiantum raddianum and Cheilanthes
viridis . American Journal of Botany, 75 (10), 1559–1570.