100% found this document useful (1 vote)
267 views4 pages

Race On Log

Uploaded by

vishujakhar2008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
267 views4 pages

Race On Log

Uploaded by

vishujakhar2008
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

TM

TARGET : JEE (Main + Advanced) 2016JEE (Main


NURTURE COURSE
+ Advanced) 2016
Path to success KOTA (RAJASTHAN)
NURTURE COURSE

SPECIAL RACE # 01 (LOGARITHM) MATH EM ATI CS

Solve the following equations :


1
1. logx–13 = 2 2. log 4 (2log 3 (1 + log 2 (1 + 3log 3 x))) =
2

3. log3(1 + log3(2x – 7)) = 1 4. log3(3x – 8) = 2 – x

5. log 2 (9 - 2x ) 6. log5–x(x2 – 2x + 65) = 2


=1
3- x

æ 1 ö
7. log 3 ç log9 x + + 9x ÷ = 2x
è 2 ø
8. log105 + log10(x +10) –1 = log10(21x–20) – log10(2x–1)

1 æ 1ö æ 1ö 1 æ 1ö
9. log10 x - log10 ç x - ÷ = log10 ç x + ÷ - log10 ç x + ÷
2 è 2ø è 2ø 2 è 8ø
2 5
10. (x - 2)log10 ( x -2) +log10 (x - 2) -12
= 10 2log10 (x -2)
log10 x + 7
1+ log10 x
11. x = 10x 12. x 4
= 10log10 x +1
2
log10 x + log10 x 2 - 2
æ log10 x ö
13. ç ÷ = log10 x 14. 3 log 2 x - log 2 8x + 1 = 0
è 2 ø

15. 2(log x 5) 2 - 3log x 5 + 1 = 0 16. (a log b x )2 - 5x logb a + 6 = 0

æ1ö
17.
2
log10 (100x) + log10
2
(10x) = 14 + log10 ç ÷
èxø

18. log 4 (x 2 - 1) - log 4 (x - 1) 2 = log 4 (4 - x) 2

19. 3 + 2logx +13 = 2log3(x + 1) 20. logx(9x2). log 32 x = 4

ANSWER KEY
1. {1 + 3} 2. {3} 3. {4} 4. {2} 5. {0}
6. {–5} 7. {1/3} 8. {3/2, 10} 9. {1} 10. {2 + 10–7, 3, 102}
11. {10–1, 10} 12. {10–4, 10} 13. {10–3, 10, 100} 14. {2, 16} 15. { 5, 5}
16. {2loga b , 3loga b }, a > 0, a ¹ 1, b > 0, b ¹ 1 17. { 10-9 , 10} 18. {3 + 6}
19. {-(3 - 3) / 3,8} 20. {1/9, 3}
Maths / SPECIAL RACE ON LOGARITHM 1/4
TM
JEE (Main + Advanced) 2016
Path to success KOTA (RAJASTHAN) NURTURE COURSE

SPECIAL RACE # 02 (LOGARITHM) MATH EM ATI CS


Solve the following equations :
æ x2 ö
1 log1/2 2 (4x) + log 2 ç ÷ = 8 2. log 0.5x x 2 - 14 log16x x 3 + 40log 4x x = 0
è 8 ø
4- 2log 3
3. 6 - (1 + 4.9 3
).log 7 x = log x 7, x Î Q 4. log3(4.3x – 1) = 2x + 1
æ 2+ x ö æ 2 ö
5. log 5 ç ÷ = log 5 ç ÷ 6. 1 + 2log(x+2)5 = log5(x + 2)
è 10 ø è x +1 ø
1 - 2(log10 x 2 ) 2
7. log42 = 24x log 2 4
8. =1
log10 x - 2(log10 x) 2
9. log2(4.3x – 6) – log2(9x – 6) = 1 10. log10(log10x) + log10(log10x4 – 3) = 0
4
11. 2 log 8 (2x) + log 8 (x 2 + 1 - 2x) = 12. log 2 (2x 2 ).log 4 (16x) = log 4 x 3
3
13. log 3 6 - log 3 2 = (log10 x - 2) log 3 12
2 2 2
14. log62x+3 – log6(3x – 2) = x
æ 1 ö
15. ç 1 + ÷ log10 3 + log10 2 = log10 (27 - 3)
x

è 2x ø
SPECIAL RACE # 03 (LOGARITHM) MATH EM ATI CS
Solve the following equations :
1
1. log10 x + 3log10 2 + x = log10 x(x + 2) + 2 2. log 2 (4 x + 1) = x + log 2 (2x +3 - 6)
2
3. log3(9x + 9) = x + log3(28 – 2.3x) 4. log10(log10x) + log10(log10x3 – 2) = 0

5. log 2 (4x + 4) = log 2 2 x + log 2 (2 x +1 - 3)


1 x log10 4 3
3log10
2
x - log10 x
6. log10 (3x - 24 - x ) = 2 + log10 16 - 7. x 3
= 100 3 10
4 2
8. log2(25x+3 – 1) = 2 + log2(5x+3 + 1) 9. log 3 130 - 7 log x (6 - x) = 2
1 9
10. log 2 (4 x +1 + 4).log 2 (4 x + 1) = log1/ 2 11. log 2 (2x 2 ).log 2 (16x) = log 22 x
8 2

12.
æ
log10 4 + ç 1 +
è 2x ø
1 ö
÷ log10 3 = log10 ( x
3 + 27 ) 13. 5log10 x = 50 - x log10 5

2 2
14. | x - 1|log10 x -log10 x = | x - 1|3 15. |x – 10|log2(x – 3) = 2(x – 10)
RACE # 02 ANSWER KEY
1. {2 , 2}
–7
2. {1/ 2,1, 4} 3. {7} 4. {–1, 0} 5. {3}
6. {–9/5, 23} 7. {2} 8. {1/ 10, 3 10} 9. {1} 10. {10}
11. {2} 12. {16} 13. {10- 3 , 10 3 } 14. {log34} 15. xÎÆ
RACE # 03 ANSWER KEY
1. {98} 2. {0} 3. {–1,2} 4. {10} 5. {2} 6. {3}
7. {10-1, 10} 8. {–2} 9. {2} 10. {0} 11. {2–2/5, 16}
12. xÎf 13. {100} 14. {10–1, 2, 103} 15. {13/4, 10}
Maths / SPECIAL RACE ON LOGARITHM 2/3
TM
JEE (Main + Advanced) 2016
Path to success KOTA (RAJASTHAN) NURTURE COURSE

SPECIAL RACE # 04 (LOGARITHM) MATH EM ATI CS

[SINGAL CORRECT CHOICE TYPE]


1. If log 2 ( 4 + log 3 ( x ) ) = 3 , then sum of digits of x is-
(A) 3 (B) 6 (C) 9 (D) 18
2. Sum of all the solution(s) of the equation log10(x) + log10(x + 2) – log10(5x + 4) = 0 is-
(A) –1 (B) 3 (C) 4 (D) 5
a b
3. If 2 = 3 and 9 = 4 then value of (ab) is-
(A) 1 (B) 2 (C) 3 (D) 4
4. The product of all the solutions of the equation x1+ log10 x = 100000x is-
(A) 10 (B) 105 (C) 10–5 (D) 1

5. If x = log 2 ( )
56 + 56 + 56 + 56 + .......¥ , then which of the following statements holds good ?

(A) x < 0 (B) 0 < x < 2 (C) 2 < x < 4 (D) 3 < x < 4
2
6. If n Î N such that characteristic of n to the base 8 is 2, then number of possible values of n is-
(A) 14 (B) 15 (C) 448 (D) infinite

If x1 & x2 are the two values of x satisfying the equation 7 2x - 2 ( 7x ) + 72x +24 = 0 , then (x1 + x2)
2 2
+ x +12
7.
equals-
(A) 0 (B) 1 (C) –1 (D) 7
8. Number of integral values of x which do not satisfy the equation |x – 1| + |x – 3| = 2|x – 2| is -
(A) 0 (B) 1 (C) 2 (D) more than 2

9. The number of solution(s) of log 3 ( 3x 2 ) .log 9 (81x) = log9 x 3 is-

(A) 0 (B) 1 (C) 2 (D) 3


10. The greatest value of (4log10x – logx(.0001)) for 0 < x < 1 is-
(A) 4 (B) –4 (C) 8 (D) –8
11. The number of integral solutions of | log5 x 2 - 4 |= 2 + | log 5 x - 3 | is-
(A) 1 (B) 2 (C) 3 (D) 0
12. If (x1,y1) and (x2,y2) are solutions of system of equations log289x + logay = 4 and logx289 – logya = 1 such
that log51(x1x2y1y2) = 12 then 'a' equals to-
(A) 729 (B) 243 (C) 81 (D) 27

13. If log a (1 - 1 + x ) = log a 2 ( 3 - 1 + x ) , then number of solutions of the equation is-


(A) 0 (B) 1 (C) 2 (D) infinitely many
n
14. If x, y Î 2 when n Î I and 1 + logxy = log2y, then the value of (x + y) is
(A) 2 (B) 4 (C) 6 (D) 8
3/2 2lnx 4
15. If x1 and x2 are the roots of equation e . x = x , then the product of the roots of the equation is -
2
(A) e (B) e (C) e3/2 (D) e–2

Maths / SPECIAL RACE ON LOGARITHM 3/3


TARGET : JEE (Main + Advanced) 2016 NURTURE COURSE

[MULTIPLE CORRECT CHOICE TYPE]

16. The equation log x 5 = log 2 5 = a has -


3 x 2 - 6x +11

(A) 3 real solutions for x (B) 4 real solutions for x

29 log 3 5
(C) sum of all real solutions for x is (D) maximum value of 'a' is log 11 - 2
3 3

17. Which of the following statements is(are) correct ?


(A) 71/7 > (42)1/14 > 1 (B) log3(5) log7(9) log11(13) > – 2

1 1
(C) 99 + 70 2 + 99 - 70 2 is rational (D) log 3 + log 3 > 3
4 7

If ( log b a ) + ( log a b ) = 79 , (a > 0, b > 0, a ¹ 1, b ¹ 1 ) then value of (logb a) + (logab) can be-
2 2
18.

(A) 7 (B) –9 (C) 9 (D) –7


19. In which of the following cases the real number 'm' is greater than the real number 'n' ?
(A) m = log345, n = log3004 (B) m = log3004, n = log4003
(C) m = log203, n = log4003 (D) m = log4928, n = log72
æ1ö
log1/ 2 ç ÷ æ 4 ö æ 1 ö
20. The expression 2 è3ø
+ log 2 ç ÷ + log 1 ç ÷ is equals to-
è 11 + 7 ø 2 è 18 + 2 77 ø

æ1ö
log1 / p ç ÷
(A) 7 (B) 7 7 7.......¥ (C) 6 (D) p è 7ø

[SUBJECTIVE]

2 æ a 4 b3 ö
21. ÷ = ap + bp + gp + d (" p Î R – {0}), then
3 2
Given log3a = p = logbc and logb9 = 2 . If log 9 ç
p è c ø
(a+b+g+d) equals
22. If log2(x2 + 1) + log13(x2 + 1) = log2(x2 + 1) log13(x2 + 1), (x ¹ 0) then log7(x2 + 24) is equal to

ANSWER KEY
1. C 2. C 3. A 4. D 5. C 6. B 7. B 8. B 9. B
10. D 11. A 12. A 13. A 14. D 15. A 16. A,D 17. A,B,D
18. B,C 19. A,B,C,D 20. A,B,D 21. 3 22. 2
4/4 Maths / SPECIAL RACE ON LOGARITHM

You might also like