0% found this document useful (0 votes)
13 views5 pages

Problem Set 5

The document presents solutions to three differential equations using Laplace transforms, detailing the steps taken to derive the solutions. The first equation is solved to yield y(t) = -1/2 e^(-t) + 1/2 e^(t) = sinh(t). The second and third equations involve more complex manipulations, ultimately leading to expressions for Y(s) and their inverse transforms.

Uploaded by

İlay Öztürk
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views5 pages

Problem Set 5

The document presents solutions to three differential equations using Laplace transforms, detailing the steps taken to derive the solutions. The first equation is solved to yield y(t) = -1/2 e^(-t) + 1/2 e^(t) = sinh(t). The second and third equations involve more complex manipulations, ultimately leading to expressions for Y(s) and their inverse transforms.

Uploaded by

İlay Öztürk
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

EEF 210E DIFFERENTIAL EQUATIONS

PROBLEM SET 5

1. Solve the differential equation 𝒚′′′ − 𝟐𝒚′′ − 𝒚′ + 𝟐𝒚 = 𝟎 via Laplace transform where 𝒚(𝟎) = 𝟎, 𝒚′ (𝟎) = 𝟏,
and 𝒚′′ (𝟎) = 𝟎.

𝕃{𝑦 ′′′ − 2𝑦 ′′ − 𝑦 ′ + 2𝑦}(𝑠) = 0

(𝑠 3 𝑌(𝑠) − 𝑠 2 𝑦(0) − 𝑠𝑦 ′ (0) − 𝑦′′(0)) − 2(𝑠 2 𝑌(𝑠) − 𝑠𝑦(0) − 𝑦 ′ (0)) − (𝑠𝑌(𝑠) − 𝑦(0)) + (2𝑌(𝑠)) = 0

⇒ (𝑠 3 − 2𝑠 2 − 𝑠 + 2)𝑌(𝑠) − (𝑠 2 − 2𝑠 − 1)𝑦(0) − (𝑠 − 2)𝑦 ′ (0) − (1)𝑦 ′′ (0) = 0


⇒ (𝑠 3 − 2𝑠 2 − 𝑠 + 2)𝑌(𝑠) − (𝑠 2 − 2𝑠 − 1) ⋅ 0 − (𝑠 − 2) ⋅ 1 − (1) ⋅ 0 = 0
⇒ (𝑠 3 − 2𝑠 2 − 𝑠 + 2)𝑌(𝑠) − (𝑠 − 2) = 0
⇒ (𝑠 3 − 2𝑠 2 − 𝑠 + 2)𝑌(𝑠) = (𝑠 − 2)
(𝑠 − 2)
⇒ 𝑌(𝑠) =
(𝑠 3 − 2𝑠 2 − 𝑠 + 2)
𝑠−2
⇒ 𝑌(𝑠) =
(𝑠 + 1)(𝑠 − 1)(𝑠 − 2)
1
⇒ 𝑌(𝑠) =
(𝑠 + 1)(𝑠 − 1)
𝟏 𝟏 𝟏
⇒ 𝒀(𝒔) = − ( − )
𝟐 𝒔+𝟏 𝒔−𝟏

1 1 1
𝕃−1 {𝑌(𝑠)}(𝑡) = − 𝕃−1 { − } (𝑡)
2 𝑠+1 𝑠−1
1 −1 1 1 1
⇒ 𝕃−1 {𝑌(𝑠)}(𝑡) = 𝕃 { } (𝑡) + 𝕃−1 { } (𝑡)
2 𝑠+1 2 𝑠−1

𝟏 𝟏
𝒚(𝒕) = − 𝒆−𝒕 + 𝒆𝒕 = 𝐬𝐢𝐧𝐡(𝒕)
𝟐 𝟐
𝟑
2. Solve the differential equation 𝒚′′ + 𝟐 𝒚′ − 𝒚 = 𝒕𝒆−𝟐𝒕 via Laplace transform where 𝒚(𝟎) = 𝟎 and 𝒚′ (𝟎) = −𝟐.

3
𝕃 [𝑦 ′′ + 𝑦 ′ − 𝑦] (𝑠) = 𝕃[𝑡𝑒 −2𝑡 ](𝑠)
2
3
⇒ 𝕃[𝑦 ′′ ](𝑠) + 𝕃[𝑦 ′ ](𝑠) − 𝕃[𝑦](𝑠) = 𝕃[𝑡𝑒 −2𝑡 ](𝑠)
2
3 1
⇒ 𝑠 2 𝑌(𝑠) − 𝑠𝑦(0) − 𝑦 ′ (0) + (𝑠𝑌(𝑠) − 𝑦(0)) − 𝑌(𝑠) =
2 (𝑠 + 2)2
3 3 1
⇒ (𝑠 2 + 𝑠 − 1) 𝑌(𝑠) − 𝑠 ⋅ 0 − (−2) + ⋅ 0 =
2 2 (𝑠 + 2)2
1
⇒ (𝑠 − 0.5)(𝑠 + 2)𝑌(𝑠) + 2 =
(𝑠 + 2)2
1 2 1 − 2(𝑠 + 2)2 −2𝑠 2 − 8𝑠 − 7
⇒ 𝑌(𝑠) = − = =
(𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2) (𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3
𝐴 𝐵 𝐶 𝐷 −2𝑠 2 − 8𝑠 − 7
⇒ 𝑌(𝑠) = + + + =
𝑠 − 0.5 𝑠 + 2 (𝑠 + 2)2 (𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3
𝐴(𝑠 + 2)3 𝐵(𝑠 − 0.5)(𝑠 + 2)2 𝐶(𝑠 − 0.5)(𝑠 + 2) 𝐷(𝑠 − 0.5) −2𝑠 2 − 8𝑠 − 7
⇒ 𝑌(𝑠) = + + + =
(𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3 (𝑠 − 0.5)(𝑠 + 2)3

7 3 1
⇒ (𝐴 + 𝐵)𝑠 3 + (6𝐴 + 𝐵 + 𝐶) 𝑠 2 + (12𝐴 + 2𝐵 + 𝐶 + 𝐷) 𝑠 + (8𝐴 − 2𝐵 − 𝐶 − 𝐷) = −2𝑠 2 − 8𝑠 − 7
2 2 2
⇒ 𝐴 + 𝐵 = 0 ⇒ 𝑩 = −𝑨
7 7 5 𝟓
⇒ 6𝐴 + 𝐵 + 𝐶 = −2 ⇒ 6𝐴 − 𝐴 + 𝐶 = −2 ⇒ 𝐴 + 𝐶 = −2 ⇒ 𝑪 = −𝟐 − 𝑨
2 2 2 𝟐
3 15 25 𝟐𝟓
⇒ 12𝐴 + 2𝐵 + 𝐶 + 𝐷 = −8 ⇒ 12𝐴 − 2𝐴 − 3 − 𝐴 + 𝐷 = −8 ⇒ 𝐴 + 𝐷 = −5 ⇒ 𝑫 = −𝟓 − 𝑨
2 4 4 𝟒
1 5 5 25 125 23 𝟗𝟐
⇒ 8𝐴 − 2𝐵 − 𝐶 − 𝐷 = −7 ⇒ 8𝐴 + 2𝐴 + 2 + 𝐴 + + 𝐴 = −7 ⇒ 𝐴=− ⇒ 𝑨=−
2 2 2 8 8 2 𝟏𝟐𝟓
𝟗𝟐 𝟗𝟐 𝟒 𝟐
⇒ 𝑨=− , 𝑩= , 𝑪=− , 𝑫=−
𝟏𝟐𝟓 𝟏𝟐𝟓 𝟐𝟓 𝟓

𝟗𝟐 𝟗𝟐 𝟒 𝟐
⇒ 𝒀(𝒔) = − + − 𝟐

𝟏𝟐𝟓(𝒔 − 𝟎. 𝟓) 𝟏𝟐𝟓(𝒔 + 𝟐) 𝟐𝟓(𝒔 + 𝟐) 𝟓(𝒔 + 𝟐)𝟑

92 −1 1 92 −1 1 4 1 2 2
⇒ 𝑦(𝑡) = 𝕃−1 [𝑌(𝑠)](𝑡) = − 𝕃 [ ] (𝑡) + 𝕃 [ ] (𝑡) − 𝕃−1 [ 2
] (𝑡) − 𝕃−1 [ ] (𝑡)
125 𝑠 − 0.5 125 𝑠+2 25 (𝑠 + 2) 5 (𝑠 + 2)3

𝟗𝟐 𝟏𝒕 𝟗𝟐 −𝟐𝒕 𝟒 −𝟐𝒕 𝟐 𝟐 −𝟐𝒕


⇒ 𝒚(𝒕) = − 𝒆𝟐 + 𝒆 − 𝒕𝒆 − 𝒕 𝒆
𝟏𝟐𝟓 𝟏𝟐𝟓 𝟐𝟓 𝟓
3. Solve the differential equation 𝒚′′ − 𝒚′ = 𝐜𝐨𝐬(𝟐𝒕) + 𝐜𝐨𝐬(𝟐𝒕 − 𝟔𝝅) 𝒖(𝒕 − 𝟑𝝅) via Laplace transform where
𝒚(𝟎) = −𝟒 and 𝒚′ (𝟎) = 𝟎.

First, the given equation can be rewritten as follows.


𝑦 ′′ − 𝑦 ′ = cos(2𝑡) + cos(2(𝑡 − 3𝜋)) 𝑢(𝑡 − 3𝜋)

Then, the Laplace transform of the equation can be found below.


𝕃{𝑦 ′′ − 𝑦 ′ }(𝑠) = 𝕃{cos(2𝑡) + cos(2(𝑡 − 3𝜋)) 𝑢(𝑡 − 3𝜋)}(𝑠)
⇒ 𝕃{𝑦 ′′ − 𝑦 ′ }(𝑠) = 𝕃{cos(2𝑡)}(𝑠) + 𝕃{cos(2(𝑡 − 3𝜋)) 𝑢(𝑡 − 3𝜋)}(𝑠)
𝑠 𝑒 −3𝜋𝑠 𝑠
⇒ (𝑠 2 𝑌(𝑠) − 𝑠𝑦(0) − 𝑦 ′ (0)) − (𝑠𝑌(𝑠) − 𝑦(0)) = +
𝑠 2 + 22 𝑠 2 + 22
𝑠 𝑒 −3𝜋𝑠 𝑠
⇒ 𝑠 2 𝑌(𝑠) − 𝑠(−4) − 0 − 𝑠𝑌(𝑠) + (−4) = +
𝑠2 + 4 𝑠2 + 4
𝑠 𝑒 −3𝜋𝑠 𝑠 𝑠 + 𝑒 −3𝜋𝑠 𝑠
⇒ (𝑠 2 − 𝑠)𝑌(𝑠) = + − 4𝑠 + 4 ⇒ 𝑠(𝑠 − 1)𝑌(𝑠) = − 4(𝑠 − 1)
𝑠2 + 4 𝑠2 + 4 𝑠2 + 4
(1 + 𝑒 −3𝜋𝑠 )𝑠 4(𝑠 − 1) 𝟏 + 𝒆−𝟑𝝅𝒔 𝟒
⇒ 𝑌(𝑠) = 2
− ⇒ 𝒀(𝒔) = 𝟐

𝑠(𝑠 − 1)(𝑠 + 4) 𝑠(𝑠 − 1) (𝒔 − 𝟏)(𝒔 + 𝟒) 𝒔

The partial fractions for 𝑌(𝑠) can be obtained as follows.


1 1
𝑌(𝑠) = (1 + 𝑒 −3𝜋𝑠 ) 2
−4⋅
(𝑠 − 1)(𝑠 + 4) 𝑠
1 1 𝑠+1 1
⇒ 𝑌(𝑠) = (1 + 𝑒 −3𝜋𝑠 ) ⋅ ⋅( − 2 )−4⋅
5 𝑠−1 𝑠 +4 𝑠
𝟏 𝟏 𝒔 𝟐 𝒆−𝟑𝝅𝒔 𝟏 𝒔 𝟐 𝟏
⇒ 𝒀(𝒔) = ⋅ (𝟐 ⋅ −𝟐⋅ 𝟐 − 𝟐 )+ ⋅ (𝟐 ⋅ −𝟐⋅ 𝟐 − 𝟐 )−𝟒⋅
𝟏𝟎 𝒔−𝟏 𝒔 +𝟒 𝒔 +𝟒 𝟏𝟎 𝒔−𝟏 𝒔 +𝟒 𝒔 +𝟒 𝒔

Finally, 𝑦(𝑡) is obtained by inverse Laplace transform of 𝑌(𝑠).


1 −1 1 𝑠 2 1 −1 −3𝜋𝑠 1 𝑠 2 1
𝕃−1 {𝑌(𝑠)}(𝑠) = 𝕃 {2 ⋅ −2⋅ 2 − } (𝑠) + 𝕃 {𝑒 (2 ⋅ −2⋅ 2 − )} (𝑠) − 4𝕃−1 { } (𝑠)
10 𝑠−1 𝑠 + 4 𝑠2 + 4 10 𝑠−1 𝑠 + 4 𝑠2 + 4 𝑠
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝒚(𝒕) = ( 𝒆𝒕 − 𝐜𝐨𝐬(𝟐𝒕) − 𝐬𝐢𝐧(𝟐𝒕) − 𝟒) 𝒖(𝒕) + ( 𝒆𝒕−𝟑𝝅 − 𝐜𝐨𝐬(𝟐𝒕 − 𝟔𝝅) − 𝐬𝐢𝐧(𝟐𝒕 − 𝟔𝝅)) 𝒖(𝒕 − 𝟑𝝅)
𝟓 𝟓 𝟏𝟎 𝟓 𝟓 𝟏𝟎
4. Solve the differential equation 𝒚′′ + 𝟑𝒚′ + 𝟐𝒚 = 𝒈(𝒕) where 𝒚(𝟎) = 𝟎, 𝒚′ (𝟎) = −𝟐 and 𝒈(𝒕) given below.
𝟐, 𝟎<𝒕<𝟔
𝒈(𝒕) = {𝒕, 𝟔 ≤ 𝒕 < 𝟏𝟎
𝟒, 𝒕 ≥ 𝟏𝟎

First, 𝑔(𝑡) can be expressed in terms of unit step functions as follows.


𝑔(𝑡) = 2 + (−2 + 𝑡)𝑢(𝑡 − 6) + (−𝑡 + 4)𝑢(𝑡 − 10)
⇒ 𝑔(𝑡) = 2𝑢(𝑡) + (𝑡 − 2)𝑢(𝑡 − 6) + (4 − 𝑡)𝑢(𝑡 − 10)
⇒ 𝑔(𝑡) = 2𝑢(𝑡) + (𝑡 − 6 + 4)𝑢(𝑡 − 6) + (−(𝑡 − 10) − 6)𝑢(𝑡 − 10)
⇒ 𝑔(𝑡) = 2𝑢(𝑡) + (𝑡 − 6)𝑢(𝑡 − 6) + 4𝑢(𝑡 − 6) − (𝑡 − 10)𝑢(𝑡 − 10) − 6𝑢(𝑡 − 10)

The given equation 𝑦 ′′ + 3𝑦 ′ + 2𝑦 = 𝑔(𝑡) can be represented as below.


𝑦 ′′ + 3𝑦 ′ + 2𝑦 = 2𝑢(𝑡) + (𝑡 − 6)𝑢(𝑡 − 6) + 4𝑢(𝑡 − 6) − (𝑡 − 10)𝑢(𝑡 − 10) − 6𝑢(𝑡 − 10)

Then, the Laplace transform of the equation is found as follows.


𝕃{𝑦 ′′ + 3𝑦 ′ + 2𝑦}(𝑠) = 𝕃{2𝑢(𝑡) + (𝑡 − 6)𝑢(𝑡 − 6) + 4𝑢(𝑡 − 6) − (𝑡 − 10)𝑢(𝑡 − 10) − 6𝑢(𝑡 − 10)}(𝑠)
⇒ 𝕃{𝑦 ′′ + 3𝑦 ′ + 2𝑦}(𝑠) = 𝕃{2𝑢(𝑡)}(𝑠) + 𝕃{(𝑡 − 6)𝑢(𝑡 − 6)}(𝑠) + 𝕃{4𝑢(𝑡 − 6)}(𝑠) − 𝕃{(𝑡 − 10)𝑢(𝑡 − 10)}(𝑠) − 𝕃{6𝑢(𝑡 − 10)}(𝑠)

2 𝑒 −6𝑠 4𝑒 −6𝑠 𝑒 −10𝑠 6𝑒 −10𝑠


⇒ (𝑠 2 𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)) + 3(𝑠𝑌(𝑠) − 𝑦(0)) + 2(𝑌(𝑠)) = + 2 + − 2 −
𝑠 𝑠 𝑠 𝑠 𝑠
2 𝑒 −6𝑠 4𝑒 −6𝑠 𝑒 −10𝑠 6𝑒 −10𝑠
⇒ 𝑠 2 𝑌(𝑠) − 𝑠 ⋅ 0 − (−2) + 3(𝑠𝑌(𝑠) − 0) + 2𝑌(𝑠) = + 2 + − 2 −
𝑠 𝑠 𝑠 𝑠 𝑠
2 + 4𝑒 −6𝑠 − 6𝑒 −10𝑠 𝑒 −6𝑠 − 𝑒 −10𝑠
⇒ (𝑠 2 + 3𝑠 + 2)𝑌(𝑠) = + −2
𝑠 𝑠2
2 + 4𝑒 −6𝑠 − 6𝑒 −10𝑠 𝑒 −6𝑠 − 𝑒 −10𝑠
⇒ (𝑠 + 1)(𝑠 + 2)𝑌(𝑠) = + −2
𝑠 𝑠2
𝟐 + 𝟒𝒆−𝟔𝒔 − 𝟔𝒆−𝟏𝟎𝒔 𝒆−𝟔𝒔 − 𝒆−𝟏𝟎𝒔 𝟐
⇒ 𝒀(𝒔) = + 𝟐 −
𝒔(𝒔 + 𝟏)(𝒔 + 𝟐) 𝒔 (𝒔 + 𝟏)(𝒔 + 𝟐) (𝒔 + 𝟏)(𝒔 + 𝟐)

The partial fractions for 𝑌(𝑠) can be obtained as follows.


1 1 1
⇒ 𝑌(𝑠) = (2 + 4𝑒 −6𝑠 − 6𝑒 −10𝑠 ) + (𝑒 −6𝑠 − 𝑒 −10𝑠 ) 2 −2
𝑠(𝑠 + 1)(𝑠 + 2) 𝑠 (𝑠 + 1)(𝑠 + 2) (𝑠 + 1)(𝑠 + 2)
⇒ 𝑌(𝑠) = (2 + 4𝑒 −6𝑠 − 6𝑒 −10𝑠 )𝑭𝟏 (𝒔) + (𝑒 −6𝑠 − 𝑒 −10𝑠 )𝑭𝟐 (𝒔) − 2𝑭𝟑 (𝒔)
⇒ 𝒀(𝒔) = 2𝑭𝟏 (𝒔) + 𝑒 −6𝑠 (4𝑭𝟏 (𝒔) + 𝑭𝟐 (𝒔)) − 𝑒 −10𝑠 (6𝑭𝟏 (𝒔) + 𝑭𝟐 (𝒔)) − 2𝑭𝟑 (𝒔)
𝐹1 (𝑠), 𝐹2 (𝑠) and 𝐹3 (𝑠) are obtained below separately.
𝐴1 𝐵1 𝐶1 1 𝟏 𝟏 𝟏 𝟏 𝟏
𝐹1 (𝑠) = + + = ⇒ 𝑭𝟏 (𝒔) = ⋅ − + ⋅
𝑠 𝑠 + 1 𝑠 + 2 𝑠(𝑠 + 1)(𝑠 + 2) 𝟐 𝒔 𝒔+𝟏 𝟐 𝒔+𝟐
𝐴2 𝐵2 𝐶2 𝐷2 1 𝟑 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝐹2 (𝑠) = + 2+ + = 2 ⇒ 𝑭𝟐 (𝒔) = − ⋅ + ⋅ 𝟐 + − ⋅
𝑠 𝑠 𝑠 + 1 𝑠 + 2 𝑠 (𝑠 + 1)(𝑠 + 2) 𝟒 𝒔 𝟐 𝒔 𝒔+𝟏 𝟒 𝒔+𝟐
𝐴3 𝐵3 1 𝟏 𝟏
𝐹3 (𝑠) = + = ⇒ 𝑭𝟑 (𝒔) = −
𝑠 + 1 𝑠 + 2 (𝑠 + 1)(𝑠 + 2) 𝒔+𝟏 𝒔+𝟐

Decomposed 𝐹1 (𝑠), 𝐹2 (𝑠) and 𝐹3 (𝑠) terms can be plugged in 𝑌(𝑠) equation.
𝑌(𝑠) = 2𝐹1 (𝑠) + 𝑒 −6𝑠 (4𝐹1 (𝑠) + 𝐹2 (𝑠)) − 𝑒 −10𝑠 (6𝐹1 (𝑠) + 𝐹2 (𝑠)) − 2𝐹3 (𝑠)
1 1 1
⇒ 𝑌(𝑠) = −2⋅ +
𝑠 𝑠+1 𝑠+2
1 1 1 3 1 1 1 1 1 1
+𝑒 −6𝑠 [(2 ⋅ + 4 ⋅ +2⋅ ) + (− ⋅ + ⋅ 2 + − ⋅ )]
𝑠 𝑠+1 𝑠+2 4 𝑠 2 𝑠 𝑠+1 4 𝑠+2
1 1 1 3 1 1 1 1 1 1
−𝑒 −10𝑠 [(3 ⋅ + 6 ⋅ +3⋅ ) + (− ⋅ + ⋅ 2 + − ⋅ )]
𝑠 𝑠+1 𝑠+2 4 𝑠 2 𝑠 𝑠+1 4 𝑠+2
1 1
−2 ⋅ +2⋅
𝑠+1 𝑠+2
𝟏 𝟏 𝟏 𝟓 𝟏 𝟏 𝟏 𝟏 𝟕 𝟏
⇒ 𝒀(𝒔) = − 𝟒 ⋅ +𝟑⋅ + 𝒆−𝟔𝒔 [ ⋅ + ⋅ 𝟐 + 𝟓 ⋅ + ⋅ ]
𝒔 𝒔+𝟏 𝒔+𝟐 𝟒 𝒔 𝟐 𝒔 𝒔+𝟏 𝟒 𝒔+𝟐
𝟗 𝟏 𝟏 𝟏 𝟏 𝟏𝟏 𝟏
− 𝒆−𝟏𝟎𝒔 [ ⋅ + ⋅ 𝟐 + 𝟕 ⋅ + ⋅ ]
𝟒 𝒔 𝟐 𝒔 𝒔+𝟏 𝟒 𝒔+𝟐

Finally, 𝑦(𝑡) is obtained by inverse Laplace transform of 𝑌(𝑠).


1 1 1 5 1 1 1 1 7 1
𝕃−1 {𝑌(𝑠)} = 𝕃−1 { − 4 ⋅ +3⋅ } (𝑠) + 𝕃−1 {𝑒 −6𝑠 [ ⋅ + ⋅ 2 + 5 ⋅ + ⋅ ]} (𝑠)
𝑠 𝑠+1 𝑠+2 4 𝑠 2 𝑠 𝑠+1 4 𝑠+2
9 1 1 1 1 11 1
−𝕃−1 {𝑒 −10𝑠 [ ⋅ + ⋅ 2 + 7 ⋅ + ⋅ ]} (𝑠)
4 𝑠 2 𝑠 𝑠+1 4 𝑠+2
𝟓 𝟏 𝟕
𝒚(𝒕) = [𝟏 − 𝟒𝒆−𝒕 + 𝟑𝒆−𝟐𝒕 ]𝒖(𝒕) + [ + (𝒕 − 𝟔) + 𝟓𝒆−(𝒕−𝟔) + 𝒆−𝟐(𝒕−𝟔) ] 𝒖(𝒕 − 𝟔)
𝟒 𝟐 𝟒
𝟗 𝟏 𝟏𝟏
+ [ + (𝒕 − 𝟏𝟎) + 𝟕𝒆−(𝒕−𝟏𝟎) + 𝒆−𝟐(𝒕−𝟏𝟎) ] 𝒖(𝒕 − 𝟏𝟎)
𝟒 𝟐 𝟒

You might also like