Practice Sheet BMAS 0104
1. Find the nth differential coefficient of log(ax + x2 ).
                                h              i
    Answer: (−1)n−1 (n − 1)! x1n + (x+a)  1
                                             n   .
 2. If y = cos3 x find yn .
    Answer: 14 3n cos 3x +             nπ                     nπ
                                                                 
                                        2       + 3 cos x +    2     .
 3. If y = sin 2x sin 3x, find yn .
    Answer:                                                              
                                            1           nπ      n         nπ
                                       yn =     cos x +      − 5 cos 5x +       .
                                            2            2                 2
 4. Find n-th derivative of (sin2 x)(cos3 x).
    Answer:                                                              
                           1 n          nπ      n         nπ      n         nπ
                     yn =     2 cos x +      − 5 cos 5x +      − 3 cos 3x +       .
                          16             2                 2                 2
                 1
 5. If y =   1−5x+6x2 ,    find yn .
    Answer:
                                                         (2)n + 1      (3)n + 1                                                                                
                                        yn = (−1)n n!              +              .
                                                       (2x − 1)n+1   (3x − 1)n+1
                                           1
 6. Find the n-th derivative of         x2 −a2 .
    Answer:                                                                             
                                                                      1            1
                                            yn = (−1)n n!                   +             .
                                                                 (x − a)n+1   (x + a)n+1
                 x2
 7. If y =   (x−1)2 (x+2) ,   find the n-th derivative of y.
    Answer:
                                 (n + 1)!                  n!                   n!
                      yn = (−1)n             + 5(−1)n             + 4(−1)n             .
                               3(x − 1)n+2            9(x + 2)n+1          9(x + 2)n+1                                              
 8. Find the n-th derivative of tan−1 1−x 2x
                                             2  .
    Answer                                                                                          
                                                                                                    1
                            yn = 2(−1)n−1 (n − 1)! · sin nθ · sin θ,          where θ = tan−1          .
                                                                                                    x
                                                                                x3
 9. Prove that the value of the n-th differential coefficient of               x2 −1   for x = 0 is zero if n is even; and is
    (−n) if n is odd and greater than 1.
                   x−1
10. If y = x log   x+1 ,   show that
                                                                                         
                                                      n−2              x−n        x+n
                                       yn = (−1)            (n − 2)!           −           .
                                                                      (x − 1)n   (x + 1)n
11. If y = sin m sin−1 x , then prove that
                                                                            (1 − x2 )y2 − xy1 + m2 y = 0
    and
                                   (1 − x2 )yn+2 − (2n + 1)xyn+1 − n2 − m2 yn = 0.
                                                                          
                                                                   1
12. If y 1/m + y −1/m = 2x, prove that
                                            (x2 − 1)yn+2 + (2n + 1)xyn+1 + (n2 − m2 )yn = 0.
13. If y = a cos(log x) + b sin(log x), prove that:
     (i) x2 y2 + xy1 + y = 0,
     (ii) x2 yn+2 + (2n + 1)xyn+1 + (n2 + 1)yn = 0.
14. If y = (x2 − 1)n , prove that:
                                                 (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0.
15. If x = tan(log y), prove that:
                                            (1 + x2 )yn+1 + (2nx − 1)yn + n(n − 1)yn−1 = 0.
16. If y = sin loge (x2 + 2x + 1), prove that:
                                       (1 + x2 )yn+2 + (2n + 1)(1 + x)yn+1 + (n2 + 4)yn = 0.
17. If y = sin−1 x, prove that:
                                                (1 − x2 )yn+2 − (2n + 1)xyn+1 − n2 yn = 0.
                      −1
18. If y = em sin          x
                               , prove that:
     (i) (1 − x2 )y2 − xy1 = m2 y,
     (ii) (1 − x2 )yn+2 − (2n + 1)xyn+1 − (n2 + m2 )yn = 0.
19. Find the first-order partial derivatives of the following functions:
     (i) u = y x
     (ii) u = log(x2 + y 2 )
    (iii) u = x2 sin xy
                                  
                                   y
    (iv) u =     x
                 y    tan−1        x
    Answers:
     (i) xx log y, xy x−1
              2x        2y
     (ii)   x2 +y 2 , x2 +y 2
    (iii)   2x sin xy − y cos xy ,      −x cos xy
                                               x2
    (iv)     −x
            x2 +y 2   +    1
                           y   tan−1 xy ,   y(x2 +y 2 )   −   x
                                                              y2   tan−1   y
                                                                           x
                                                                                             
                                                                                    x2 +y 2
20. Find the first-order partial derivatives of u = tan−1                            x+y
    Answer:
                                   ∂u       x2 + 2xy − y 2                     ∂u       y 2 + 2xy − x2
                                      =                         ,                 =                         .
                                   ∂x   (x + y)2 + (x2 + y 2 )2                ∂y   (x + y)2 + (x2 + y 2 )2
                                                                           2
                                                                              
21. Find the first-order partial derivatives of u = cos−1                     x
                                                                              y .
    Answer:
                                                ∂u     −1                    ∂u     −y
                                                   =p          ,                =p          .
                                                ∂x    y 2 − x2               ∂y    y 2 − x2
22. If z = eax+by f (ax − by), show that:
                                                             ∂z    ∂z
                                                         b      +a    = 2abz.
                                                             ∂x    ∂y
23. If u = log(x2 + y 2 ) + tan−1 xy , prove that:
                                                             ∂2u ∂2u
                                                                 + 2 = 0.
                                                             ∂x2  ∂y
24. If z = f (x + ay) + ϕ(x − ay), prove that:
                                                              ∂2z       2
                                                                      2∂ z
                                                                   = a     .
                                                              ∂y 2     ∂x2
              x2 x3          x1 x3           x1 x2
25. If y1 =    x1 ,   y2 =    x2 ,    y3 =    x3 ,   then show that
                                                             ∂(y1 , y2 , y3 )
                                                                              = 4.
                                                             ∂(x1 , x2 , x3 )
26. If y1 = 1 − x1 , y2 = x1 (1 − x2 ), y3 = x1 x2 (1 − x3 ), find the value of
                                                               ∂(y1 , y2 , y3 )
                                                                                .
                                                               ∂(x1 , x2 , x3 )
27. If x = u(1 + v), y = v(1 + u), then find the value of
                                                                  ∂(x, y)
                                                                          .
                                                                  ∂(u, v)
                       u+v
28. If x = uv, y =     u−v ,   find
                                                                  ∂(u, v)
                                                                          .
                                                                  ∂(x, y)
29. If x = r cos θ, y = r sin θ, z = z, find
                                                     ∂(x, y, z)                ∂(r, θ, z)
                                                                       and                .
                                                     ∂(r, θ, z)                ∂(x, y, z)
                                     ∂(u,v,w)
30. Calculate the Jacobian           ∂(x,y,z)   of the following:
                                 u = x + 2y + z, v = x + 2y + 3z, w = 2x + 3y + 5z.
31. If u = xyz, v = x + y + zx, w = x + y + z, then compute the Jacobian
                                                                 ∂(u, v, w)
                                                                            .
                                                                 ∂(x, y, z)
                                                                   3
32. If u3 + v 3 + w3 = x + y + z, u2 + v 2 + w2 = x2 + y 2 + z 2 , and u + v + w = x2 + y 2 + z 2 , then show
    that
                                     ∂(u, v, w)    (x − y)(y − z)(z − x)
                                                =                          .
                                     ∂(x, y, z)   (u − v)(v − w)(w − u)
33. If u1 = x1 + x2 + x3 + x4 , u2 = x2 + x3 + x4 , u3 = x3 + x4 , u4 = x4 , then show that
                                                                 ∂(x1 , x2 , x3 , x4 )
                                                                                       = 1.
                                                                 ∂(u1 , u2 , u3 , u4 )
34. If u = cos xy+yz+zx
               x2 +y 2 +z 2 , prove that
                                                                 ∂u    ∂u    ∂u
                                                             x      +y    +z    = 0.
                                                                 ∂x    ∂y    ∂z
35. Show that
                       ∂u      ∂u     ∂u                                                            x3 + y 3 + z 3
                          +y       x
                                   +z     = 2 tan u,                           where u = sin−1                     .
                       ∂x      ∂y     ∂z                                                            ax + by + cz
                  √   √
36. If u(x, y) = ( x + y)5 , find the value of
                                                             ∂2u        ∂2u       2
                                                                                2∂ u
                                                        x2       + 2xy      + y       .
                                                             ∂x2       ∂x∂y      ∂y 2
                                    
37. If x = x4 y 2 sin−1             x
                                    y    + log x − log y, show that
                                                                                             
                                                        ∂     ∂                              x
                                                    x      +y    = 6x4 y 2 sin−1                .
                                                        ∂x    ∂y                             y
                          y
                       , prove that x ∂u     ∂u
                               
38.    (i) If u = f       x           ∂x + y ∂y = 0.
      (ii) If u = xf xy , prove that x ∂u     ∂u
                                                              ∂x + y ∂y = u.
                      x3 y 3
       (i) If V =    x3 +y 3 ,      prove that x ∂V     ∂V
                                                 ∂x + y ∂y = 3V .
      (ii) If u = x3 + y 3 + z 3 + 3xyz, show that x ∂u     ∂u     ∂u
                                                     ∂x + y ∂y + z ∂z = 3u.
39. Verify Euler’s theorem for the following functions:
       (i) f (x, y) = ax2 + 2hxy + by 2
                 x        y        z
      (ii) u =   y   +    z    +   x
                              −x2 (x2 −y 2 )3
      (iii) f (x, y) =         (x2 +y 2 )3
                 x1/3 +y 1/3
      (iv) z =   x1/2 +y 1/2
               x3 y 3
40. If V =    x3 +y 3 ,   prove that x ∂V     ∂V
                                       ∂x + y ∂y = 3V .
41. If u = x3 + y 3 + z 3 + 3xyz, show that x ∂u     ∂u     ∂u
                                              ∂x + y ∂y + z ∂z = 3u.
42. If                                                                                     
                                                                           xy + yz + zx
                                                         u = cos                                ,
                                                                           x2 + y 2 + z 2
      prove that
                                                                 ∂u    ∂u    ∂u
                                                             x      +y    +z    = 0.
                                                                 ∂x    ∂y    ∂z
                                                                         4
43. If u = (x1/4 + y 1/4 )(x1/5 + y 1/5 ), apply Euler’s theorem to find the value of
                                                            ∂u   ∂u
                                                        x      +y .
                                                            ∂x   ∂y
44. If                                                        
                                              4 2       −1    x
                                     z = x y sin                 + log x − log y,
                                                              y
    show that                                                             
                                           ∂z    ∂z                       x
                                       x      +y    = 6x4 y 2 sin−1          .
                                           ∂x    ∂y                       y
45. If u = sin−1 (x − y), x = 3t, y = 4t3 , show that
                                                    du     3
                                                       =√        .
                                                    dt    1 − t2
                                                                       du
46. If u = x2 − y 2 + sin yz, where y = ex and z = log x, find         dx .
47. If f (x, y) = 0, ϕ(y, z) = 0, show that
                                              ∂f ∂ϕ dz   ∂f ∂ϕ
                                                ·  ·   =   ·   .
                                              ∂y ∂z dx   ∂x ∂y
48. If u = f (2x − 3y, 3y − 4z, 4z − 2x), prove that
                                              1 ∂u 1 ∂u 1 ∂u
                                                  +     +      = 0.
                                              2 ∂x 3 ∂y   4 ∂z
49. If ϕ(cx − az, cy − bz) = 0, show that
                                                        ∂z    ∂z
                                                    a      +b    = c.
                                                        ∂x    ∂y
50. If                                                                 
                                                            y−x z−x
                                              u=u               ,             ,
                                                             xy   xz
    show that
                                                 ∂u      ∂u      ∂u
                                            x2      + y2    + z2    = 0.
                                                 ∂x      ∂y      ∂z
                                                                du
51. If u = x log(xy), where x3 + y 3 + 3xy = 1, find            dx .
52. If u = f (r, s) and r = x + y, s = x − y, show that
                                                    ∂u ∂u   ∂u
                                                      +   =2 .
                                                    ∂x ∂y   ∂r
                                                            5
  Prove that
    R π/2 √          R π/2 √                                               π
 1. 0       tan θdθ = 0      cot θdθ =                                     √
                                                                             2
                                                                               .
                                  1√
      R∞            2
 2.    0
            xe−x dx =             4 π.
      R∞√               3
                                   √
                                     π
 3.    0
              xe−x dx =             3 .
      R∞√               3
                                   √
                                     π
 4.    0
              xe−x dx =             3 .
      R∞    xc                Γ(c+1)
 5.    0    ex dx   =       (log c)c+1 ,       c > 1.
                    1 n−1
      R∞              
 6.    0
              log   x          dx = Γ(n),                  n > 0.
      R∞                      2            Γ(n)
 7.    0
            x2n−1 e−ax dx =                2an .
      R∞                                 (−1)n n!
 8.    0
            xm (log x)n dx =            (m+1)n+1 ,                 where n is a positive integer and m > −1.
      R∞√               2          R∞              2
 9.    0
              xe−x dx =             0
                                           e−x dx =              π
                                                                 √
                                                                2 2
                                                                    .
      R∞     −x 2             R∞               4
10.    0
            e√
               x
                    dx ×       0
                                   x2 e−x dx =                  π
                                                                √
                                                               4 2
                                                                   .
      R2
           (8 − x3 )−1/3 dx = 13 Γ                 1           2
                                                                  
11.    0                                           3       Γ   3       .
      R1                                 1
12.    0
           x5 (1 − x3 )3 dx =           60 .
      R π/2
13.    0
              sin3 x cos5/2 x dx =                 8
                                                   77 .
 1. Find ∇ϕ when ϕ is given by ϕ = 3x2 y − y 3 z 2 at the point (1, −2, −1).
    Answer:
                           ∇ϕ = −12î − 9ĵ − 16k̂ at the point (1, −2, −1).
 2. If θ is the acute angle between the surfaces xy 2 z = 3x + z 2 and 3x2 − y 2 + 2z = 1 at the point
    (1, −2, 1), show that
                                                         3
                                              cos θ = √ .
                                                        7 6
 3. Find the angle between the surfaces x2 + y 2 + z 2 = 9 and z = x2 + y 2 − 3 at the point (2, −1, 2).
      Answer:                                                                                            
                                                                                         −1          8
                                                                                   θ = cos          √         .
                                                                                                   3 21
 4. Find the directional derivative of the function f (x, y, z) = xy 2 + yz 3 at the point (2, −1, 1) in the
    direction of the vector î + 2ĵ + 2k̂.
      Answer:
                                                                                             −11
                                                                                                 .
                                                                                              3
 5. Find the directional derivative of ϕ = (x2 + y 2 + z 2 )−1/2 at the point P (3, 1, 2) in the direction of
    the vector yz î + zxĵ + xy k̂.
    Answer:
                                                     −9
                                                     √ .
                                                  49 14
                                                                                         6
 6. Find the divergence and curl of the vector field F, where
                                             F = grad(x3 + y 3 + z 3 − 3xyz).
    Answer:
                                                   ∇ · F = 6(x + y + z).
                                                           ∇ × F = 0.
 7. Find the divergence and curl of the vector field V, where
                                           V = (xyz)î + (3x2 y)ĵ + (xz 2 − y 2 )k̂.
    at the point (2, −1, 1).
    Answer:
                                                 ∇ · V = 14          at (2, −1, 1).
                                         ∇ × V = 2î − 3ĵ − 14k̂               at (2, −1, 1).
 8. If r = xî + y ĵ + z k̂, show that:
     (a) div r = 3
     (b) curl r = 0
 9. If F⃗ = 3xy î − y 2 ĵ, evaluate                      Z
                                                                   F⃗ · d⃗r,
                                                            C
    where C is the arc of the parabola y = 2x2 from (0, 0) to (1, 2).
    Answer:                                            Z
                                                                     7
                                                           F⃗ · d⃗r = .
                                                         C           6
10. If u = x+y +z, v = x2 +y 2 +z 2 , w = yz +zx+xy, prove that ∇u, ∇v, and ∇w are coplanar vectors.
11. Find ∇ϕ when ϕ is given by
                                                      ϕ = 3x2 y − y 3 z 2
    at the point (1, −2, −1).
    Answer:
                                        ∇ϕ = −12î − 9ĵ − 16k̂                at (1, −2, −1).
12. Find the divergence and curl of the vector field
                                 F = (3x2 y + 5z 2 )î + (4xy 3 + 8z)ĵ + (6x + 3y 2 z)k̂.
    Answer
                                        Divergence: ∇ · F = 6xy + 12xy 2 + 3y 2 .
                             Curl: ∇ × F = (6x + 3y 2 )î + (6x2 y − 6)ĵ + (4y 3 − 3x2 )k̂.
                                                               7
13. Evaluate by Green’s theorem        I
                                            (ex sin y dx + ex cos y dy)
                                        C
   and hence verify Green’s theorem, where C is the rectangle with vertices (0, 0), (π, 0), (π, π2 ), and
   (0, π2 ).
   Answer:
                                            2(e−π − 1).
14. State Green’s Theorem.
15. State Gauss Divergence Theorem.
16. State Stoke’s Theorem.