0% found this document useful (0 votes)
20 views12 pages

Mad 1284 - Statistics: Module - IV Generating Functions

The document discusses Moment Generating Functions (MGF) for random variables, detailing the mean and variance as moments and providing formulas for both discrete and continuous random variables. It includes examples demonstrating how to calculate the MGF, mean, variance, and standard deviation for specific probability functions. Key formulas and calculations are presented to illustrate the application of MGFs in statistics.

Uploaded by

amarnath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views12 pages

Mad 1284 - Statistics: Module - IV Generating Functions

The document discusses Moment Generating Functions (MGF) for random variables, detailing the mean and variance as moments and providing formulas for both discrete and continuous random variables. It includes examples demonstrating how to calculate the MGF, mean, variance, and standard deviation for specific probability functions. Key formulas and calculations are presented to illustrate the application of MGFs in statistics.

Uploaded by

amarnath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

Mad 1284 – Statistics

Module -IV : Generating Functions

J. Ravinder
Assistant Professor
Department of Mathematics and Actuarial Science
MAD 1284 : Statistics Module – IV : Generating Functions

Let X be a random variable. The mean and the variance of X are also known as the 1st and 2nd moments of
X , respectively.
Moment Generating Functions (MGF) are just another way of describing probability distributions.
The nth Moment of a random variable X is denoted by n
The Moment Generating Function of a random variable X is denoted by M X ( t )

S.No. Discrete Random Variable Continuous Random Variable



1. nth Moment about the Origin n  E[ X n ]   x n P ( X  x ) n  E[ X n ]   x n f ( x ) dx



nth Moment about the Mean n  E[( X  X ) ]   ( x  X ) P ( X  x )  n  E[( X  X ) ]   ( x  X ) f ( x ) dx
n n n n
2.
(Central Moment) 


Moment Generating Function M X ( t )  E[e t x ]   e t x P ( X  x ) M X ( t )  E[e t x ]   e t x f ( x ) dx
3.
(MGF) 

Note : i ) X  E[ X ]  1
ii) The Moment about the Mean is also known as Central Moment.
M4-01_2
MAD 1284 : Statistics Module – IV : Generating Functions

Example 1. Find the m.g.f of a random variable ‘X’ whose probability function is
1
P ( x )  x , x  1, 2, 3, . . .
3
Solution 1. Consider the given probability mass function (pmf)
1
P( x)  , x  1, 2, 3, . . . . . . (1)
3x
Moment Generating Function :

1
et 
2
 et   et   et 
3

M X ( t )  E[e ]   e P ( X  x )
xt xt
 1          . . . 
3 3 3 3 

 1   equation (1)
M X ( t )  E [e x t ]   e x t  x 
3   
 e x t e t
 1 
  x  x  1,2,3, . . .   t 
 1 
 1  x  x 2  x 3  . . .
x 1 3 3  e  
  
1 1 x
 3 
e1t e 2t e 3t e4t
 1  2  3  4  ... et  3 
3 3 3 3   t 
1 2 3 4
3 3  e 
 et   et   et   et 
             ... et
3 3 3 3  M X (t ) 
3  et
M4-01_3
MAD 1284 : Statistics Module – IV : Generating Functions

 2 e 2 x if x  0
Example 2. A random variable has the pdf given by f ( x)  
0 otherwise
Find (i) Mean
(ii) Variance
(iii) Standard Deviation
and (iv) the moment generating function.
Formulas : If X is a Continuous Random Variable, then
 
i ) n  E[ X n ]   x n f ( x ) dx for n  1, 1   x f ( x ) dx  E[ X ]  Mean  X
 

 
ii ) n  E[ X n ]   x n f ( x ) dx for n  2, 2   x 2 f ( x ) dx  E[ X 2 ]
 

 
2
iii ) Var[ X ]  E[ X 2 ]   E[ X ]  2  1
2

iv ) SD    Var[ X ]

v ) M X ( t )  E[e ]   e x t f ( x ) dx
xt


M4-01_4
MAD 1284 : Statistics Module – IV : Generating Functions

Solution 2. Consider the given probability density function (pdf)


 2 e 2 x if x  0
f ( x)   . . . (1)
0 otherwise
(i) Mean : (Mean is a 1st Moment about the Origin)
x 

 
   e 2 x   e 2 x  
1  E[ X ]   x f ( x ) dx    E[ X ]   x f ( x ) dx 
1 n n

 1  2  x   1  2 
 (0)v2  ...
  2 
n

 ( 2) 

  
for n  1, 1  E[ X ]  1 
 x 0

1
0  x 
  x f ( x ) dx   x f ( x ) dx  xe 2 x e 2 x 
 2  
4  x  0
 0
 2
0 
 equation (1)
  x (0) dx   x (2e 2 x ) dx
e 2(  ) (0)e 2(0)  e 
2(0)
 ( )e 2(  )
  2   
4 
0
  2 4 2
 2  x e 2 x dx
1
0  2   e   0, e 0  1
4
  u dv  uv  uv1  uv 2  uv 3  . . . 
 2 x 
 where u  x , dv  e dx  1
 e 2 x   1  E[ X ]  . . . (2)
 u  1, v   dv   e 2 x dx   2
 2 
 e 2 x e 2 x 
 u  0, v1   v   dx  2 

 2  2  
M4-01_5
MAD 1284 : Statistics Module – IV : Generating Functions

(ii) Variance : (Variance is a 2nd Central Moment)


Consider  2  e 2 x   e 2 x 

 2  2  x    (2 x )  2 

 

2  E[ X 2 ]   x 2 f ( x ) dx     x f ( x ) dx   2   ( 2) 
1 n n
 n E [ X ] 

   x 
 for n  2, 21  E[ X 2 ]  2  
  e 2 x 
 (2)   
0
  x 2 f ( x ) dx   x 2 f ( x ) dx 3 
(0)v ... 
 ( 2) 
3
 0  x0
0 
 equation (1)
 x 2 e 2 x xe 2 x e 2 x 
x 
  x 2 (0) dx   x 2 (2e 2 x ) dx
 2   
4  x  0
 0

 2 2
 2  x 2 e 2 x dx
 ( )2 e 2(  ) ( )e 2(  ) e 2(  )
 0   2   
   2 2 4
 
          
(0)e 2(0)  e 
u dv uv u v u v u v . . . 2(0)

1 2 3
 (0)2 e 2(0)
 
 where u  x 2 , dv  e 2 x dx  2 2 4 
 e 2 x 
 u  2 x , v   dv   e 2 x dx  
 2  1
 e 2 x e 2 x   2   e   0, e 0  1
 u  2, v1   v   dx   4
2  2 
2
 
1

 e 2 x
e 2 x 

 2  E[ X 2 ]  . . . (3)
u  0, v 2   v1   2 dx  2
  2   2  
3

M4-01_6
MAD 1284 : Statistics Module – IV : Generating Functions

Since the Variance is the 2nd Central Moment, (iv) Moment Generating Function :

 Var[ X ]  2 M X ( t )  E[e ]   e x t f ( x ) dx
xt


 E[ X 2 ]   E[ X ]
2
0 
  e x t f ( x ) dx   e x t f ( x ) dx
 
2
 2  1  equation (2) & (3)
 0
0 
 equation (1)
1 1
2
  e x t (0) dx   e x t (2e 2 x ) dx
    0
2  2  
2 x
1 1   2e e xt
dx  2  e x t  2 x dx
  0 0
2 4 
1  2  e  ( 2 t ) x dx
 Var[ X ]  . . . (4) 0
4  e ax 
 e dx 
ax
x  
 e  ( 2 t ) x   a 
(iii) Standard Deviation (SD) :  2 
 (2  t )  x  0
We know that SD    Var[ X ]
 e  ( 2 t )(  ) e  ( 2 t )(0) 
 equation (4)  2   e   0, e 0  1
 (2  t ) 
1
4  (2  t )
1 2
 SD   M X (t ) 
2 2t
M4-01_7
MAD 1284 : Statistics Module – IV : Generating Functions

2 at x  1
 3
Exercise 1. Find the mgf for the distribution given by 
f ( x)   1 at x  2
3



0 otherwise

 2( x  1) if 1  x  2
Exercise 2. A random variable has the pdf given by f ( x)  
 0 otherwise
Find (i) Mean
(ii) Variance
(iii) Standard Deviation
and (iv) the moment generating function.

Answer 1. M X ( t )  E[e t x ]  1  2e t  e 2 t 
3

2 
e  e 2t  t e 2t 
2 t
2. 1  5 ; 2  17 ; Var[ X ]  1 ; SD  1 ; M X (t ) 
3 6 18 3 2 t
M4-01_8
MAD 1284 : Statistics Module – IV : Generating Functions
Properties :

1. The “zeroth central moment is 1”. i .e., 0  1.

2. The “first central moment is 0”. i .e., 1  0.

 
2
3. The “second central moment is called Variance”. i .e., 2  Var[ X ]  E[ X 2 ]   E[ X ]  2  1
2

 
3
4. The “third central moment is called Skewness”.  3  3  32 1  2 1

    4     6       3    
2 4
5. The “fourth central moment is called Kurtosis”.  4 4 2 1 2 1 1

6. M X Y ( t )  M X ( t ). MY ( t )
9. n ( X )  E  X  E[ X ] 
n
 
d  10. n ( X  c )  n ( X )
7.  M X ( t )   1  E[ X ]
 dt t 0
11. n (aX )  a n ( X )
n

 d2 
8.  2 M X ( t )   2  E[ X 2 ] 12. n ( X  Y )  n ( X )  n (Y )
 dt t 0
13. n (aX  bY )  a n ( X )  b n (Y )
n n

M4-01_9
MAD 1284 : Statistics Module – IV : Generating Functions

Example 1. Prove that the moment generating function of the sum of a number of independent random
variable is equal to the product of their respective moment generating functions.
Proof 1. Claim : M X Y ( t )  M X ( t ). MY ( t ) . . . (1)
(i.e., the moment generating function of the sum of a number of independent random variable
is equal to the product of their respective moment generating functions.)
Consider the LHS of equation (1),
LHS  M X Y ( t )  M X ( t )  E[e xt ]

 E  e ( x  y ) t 

 E  e xt  yt 

 E  e xt .e yt 

 E  e xt  E  e yt 

 M X ( t ) MY ( t )
 RHS
Hence the proof.
M4-01_10
MAD 1284 : Statistics Module – IV : Generating Functions
3
Example 2. If a random variable X has the moment generating function M X ( t )  ,
3t
find (i) mean, (ii) variance and (iii) standard deviation of X.
Solution 2. Consider the given Moment Generating Function
3
M X (t )  . . . (1)
3t
d
M X (t ) 
d  3  d2
M X (t ) 
d d  (i) Since Mean  1
   M X (t ) 
dt dt  3  t  dt 2
dt  dt   d 
  M X (t ) 
d  1  d  3   dt t 0
 3     2 
dt  3  t  dt  (3  t )   3 
  2 
 1 d   2 d   (3  t )  t  0
 3 (3  t )   3 (3  t ) 
 (3  t ) dt  (3  t ) dt 3
2 3
  
(3  0)2
 1   2 
 3 (  1)   3 (  1)  3
 (3  t )
2
  (3  t )
3
 
9
d 3 d2 6
M X (t )  M X (t )  Mean 
1
 1
dt (3  t )2 dt 2
(3  t )3 3
M4-01_11
MAD 1284 : Statistics Module – IV : Generating Functions

 d2  (iii)
(ii) Since 2   2 M X ( t ) 
 dt t 0 We know that SD    Var[ X ] ( ii ) Var[2 X  3]
 E[(2 X  3)2 ]   E[2 X  3]
2
 6   1
  3  9
 (3  t )  t  0  E[(2 X )2  (3)2  2(2 X )(3)]
1

6  SD    2 E[ X ]  3 
2

(3  0)3 3
6  E[4 X 2  9  12 X ]
 * * *
27   (2 E[ X ])2  32  2(2 E[ X ])(3) 
2 Example 3. Compute
2 
9 ( i ) E[2 X  3]  E[4 X 2 ]  E[9]  E[12 X ]
 Var[ X ]  2
( ii ) Var[2 X  3]
  4( E[ X ]) 2
 9  12 E[ X ]
 
2
 2  1 Solution 3.  4 E[ X 2 ]  9  12 E[ X ]
2
2 1  2  1 ( i ) E[2 X  3]  E[2 X ]  E[3]
    4( E[ X ])2  9  12 E[ X ]
9  3 9 9  2 E[ X ]  E[3]
1  2 E[ X ]  3  4  E[ X 2 ]  ( E[ X ])2 
Var[ X ]  2 
9 E[2 X  3]  2 E[ X ]  3 Var[2 X  3]  4 Var[ X ]
M4-01_12

You might also like