Mad 1284 – Statistics
Module -IV : Generating Functions
J. Ravinder
Assistant Professor
Department of Mathematics and Actuarial Science
MAD 1284 : Statistics Module – IV : Generating Functions
Let X be a random variable. The mean and the variance of X are also known as the 1st and 2nd moments of
X , respectively.
Moment Generating Functions (MGF) are just another way of describing probability distributions.
The nth Moment of a random variable X is denoted by n
The Moment Generating Function of a random variable X is denoted by M X ( t )
S.No. Discrete Random Variable Continuous Random Variable
1. nth Moment about the Origin n E[ X n ] x n P ( X x ) n E[ X n ] x n f ( x ) dx
nth Moment about the Mean n E[( X X ) ] ( x X ) P ( X x ) n E[( X X ) ] ( x X ) f ( x ) dx
n n n n
2.
(Central Moment)
Moment Generating Function M X ( t ) E[e t x ] e t x P ( X x ) M X ( t ) E[e t x ] e t x f ( x ) dx
3.
(MGF)
Note : i ) X E[ X ] 1
ii) The Moment about the Mean is also known as Central Moment.
M4-01_2
MAD 1284 : Statistics Module – IV : Generating Functions
Example 1. Find the m.g.f of a random variable ‘X’ whose probability function is
1
P ( x ) x , x 1, 2, 3, . . .
3
Solution 1. Consider the given probability mass function (pmf)
1
P( x) , x 1, 2, 3, . . . . . . (1)
3x
Moment Generating Function :
1
et
2
et et et
3
M X ( t ) E[e ] e P ( X x )
xt xt
1 . . .
3 3 3 3
1 equation (1)
M X ( t ) E [e x t ] e x t x
3
e x t e t
1
x x 1,2,3, . . . t
1
1 x x 2 x 3 . . .
x 1 3 3 e
1 1 x
3
e1t e 2t e 3t e4t
1 2 3 4 ... et 3
3 3 3 3 t
1 2 3 4
3 3 e
et et et et
... et
3 3 3 3 M X (t )
3 et
M4-01_3
MAD 1284 : Statistics Module – IV : Generating Functions
2 e 2 x if x 0
Example 2. A random variable has the pdf given by f ( x)
0 otherwise
Find (i) Mean
(ii) Variance
(iii) Standard Deviation
and (iv) the moment generating function.
Formulas : If X is a Continuous Random Variable, then
i ) n E[ X n ] x n f ( x ) dx for n 1, 1 x f ( x ) dx E[ X ] Mean X
ii ) n E[ X n ] x n f ( x ) dx for n 2, 2 x 2 f ( x ) dx E[ X 2 ]
2
iii ) Var[ X ] E[ X 2 ] E[ X ] 2 1
2
iv ) SD Var[ X ]
v ) M X ( t ) E[e ] e x t f ( x ) dx
xt
M4-01_4
MAD 1284 : Statistics Module – IV : Generating Functions
Solution 2. Consider the given probability density function (pdf)
2 e 2 x if x 0
f ( x) . . . (1)
0 otherwise
(i) Mean : (Mean is a 1st Moment about the Origin)
x
e 2 x e 2 x
1 E[ X ] x f ( x ) dx E[ X ] x f ( x ) dx
1 n n
1 2 x 1 2
(0)v2 ...
2
n
( 2)
for n 1, 1 E[ X ] 1
x 0
1
0 x
x f ( x ) dx x f ( x ) dx xe 2 x e 2 x
2
4 x 0
0
2
0
equation (1)
x (0) dx x (2e 2 x ) dx
e 2( ) (0)e 2(0) e
2(0)
( )e 2( )
2
4
0
2 4 2
2 x e 2 x dx
1
0 2 e 0, e 0 1
4
u dv uv uv1 uv 2 uv 3 . . .
2 x
where u x , dv e dx 1
e 2 x 1 E[ X ] . . . (2)
u 1, v dv e 2 x dx 2
2
e 2 x e 2 x
u 0, v1 v dx 2
2 2
M4-01_5
MAD 1284 : Statistics Module – IV : Generating Functions
(ii) Variance : (Variance is a 2nd Central Moment)
Consider 2 e 2 x e 2 x
2 2 x (2 x ) 2
2 E[ X 2 ] x 2 f ( x ) dx x f ( x ) dx 2 ( 2)
1 n n
n E [ X ]
x
for n 2, 21 E[ X 2 ] 2
e 2 x
(2)
0
x 2 f ( x ) dx x 2 f ( x ) dx 3
(0)v ...
( 2)
3
0 x0
0
equation (1)
x 2 e 2 x xe 2 x e 2 x
x
x 2 (0) dx x 2 (2e 2 x ) dx
2
4 x 0
0
2 2
2 x 2 e 2 x dx
( )2 e 2( ) ( )e 2( ) e 2( )
0 2
2 2 4
(0)e 2(0) e
u dv uv u v u v u v . . . 2(0)
1 2 3
(0)2 e 2(0)
where u x 2 , dv e 2 x dx 2 2 4
e 2 x
u 2 x , v dv e 2 x dx
2 1
e 2 x e 2 x 2 e 0, e 0 1
u 2, v1 v dx 4
2 2
2
1
e 2 x
e 2 x
2 E[ X 2 ] . . . (3)
u 0, v 2 v1 2 dx 2
2 2
3
M4-01_6
MAD 1284 : Statistics Module – IV : Generating Functions
Since the Variance is the 2nd Central Moment, (iv) Moment Generating Function :
Var[ X ] 2 M X ( t ) E[e ] e x t f ( x ) dx
xt
E[ X 2 ] E[ X ]
2
0
e x t f ( x ) dx e x t f ( x ) dx
2
2 1 equation (2) & (3)
0
0
equation (1)
1 1
2
e x t (0) dx e x t (2e 2 x ) dx
0
2 2
2 x
1 1 2e e xt
dx 2 e x t 2 x dx
0 0
2 4
1 2 e ( 2 t ) x dx
Var[ X ] . . . (4) 0
4 e ax
e dx
ax
x
e ( 2 t ) x a
(iii) Standard Deviation (SD) : 2
(2 t ) x 0
We know that SD Var[ X ]
e ( 2 t )( ) e ( 2 t )(0)
equation (4) 2 e 0, e 0 1
(2 t )
1
4 (2 t )
1 2
SD M X (t )
2 2t
M4-01_7
MAD 1284 : Statistics Module – IV : Generating Functions
2 at x 1
3
Exercise 1. Find the mgf for the distribution given by
f ( x) 1 at x 2
3
0 otherwise
2( x 1) if 1 x 2
Exercise 2. A random variable has the pdf given by f ( x)
0 otherwise
Find (i) Mean
(ii) Variance
(iii) Standard Deviation
and (iv) the moment generating function.
Answer 1. M X ( t ) E[e t x ] 1 2e t e 2 t
3
2
e e 2t t e 2t
2 t
2. 1 5 ; 2 17 ; Var[ X ] 1 ; SD 1 ; M X (t )
3 6 18 3 2 t
M4-01_8
MAD 1284 : Statistics Module – IV : Generating Functions
Properties :
1. The “zeroth central moment is 1”. i .e., 0 1.
2. The “first central moment is 0”. i .e., 1 0.
2
3. The “second central moment is called Variance”. i .e., 2 Var[ X ] E[ X 2 ] E[ X ] 2 1
2
3
4. The “third central moment is called Skewness”. 3 3 32 1 2 1
4 6 3
2 4
5. The “fourth central moment is called Kurtosis”. 4 4 2 1 2 1 1
6. M X Y ( t ) M X ( t ). MY ( t )
9. n ( X ) E X E[ X ]
n
d 10. n ( X c ) n ( X )
7. M X ( t ) 1 E[ X ]
dt t 0
11. n (aX ) a n ( X )
n
d2
8. 2 M X ( t ) 2 E[ X 2 ] 12. n ( X Y ) n ( X ) n (Y )
dt t 0
13. n (aX bY ) a n ( X ) b n (Y )
n n
M4-01_9
MAD 1284 : Statistics Module – IV : Generating Functions
Example 1. Prove that the moment generating function of the sum of a number of independent random
variable is equal to the product of their respective moment generating functions.
Proof 1. Claim : M X Y ( t ) M X ( t ). MY ( t ) . . . (1)
(i.e., the moment generating function of the sum of a number of independent random variable
is equal to the product of their respective moment generating functions.)
Consider the LHS of equation (1),
LHS M X Y ( t ) M X ( t ) E[e xt ]
E e ( x y ) t
E e xt yt
E e xt .e yt
E e xt E e yt
M X ( t ) MY ( t )
RHS
Hence the proof.
M4-01_10
MAD 1284 : Statistics Module – IV : Generating Functions
3
Example 2. If a random variable X has the moment generating function M X ( t ) ,
3t
find (i) mean, (ii) variance and (iii) standard deviation of X.
Solution 2. Consider the given Moment Generating Function
3
M X (t ) . . . (1)
3t
d
M X (t )
d 3 d2
M X (t )
d d (i) Since Mean 1
M X (t )
dt dt 3 t dt 2
dt dt d
M X (t )
d 1 d 3 dt t 0
3 2
dt 3 t dt (3 t ) 3
2
1 d 2 d (3 t ) t 0
3 (3 t ) 3 (3 t )
(3 t ) dt (3 t ) dt 3
2 3
(3 0)2
1 2
3 ( 1) 3 ( 1) 3
(3 t )
2
(3 t )
3
9
d 3 d2 6
M X (t ) M X (t ) Mean
1
1
dt (3 t )2 dt 2
(3 t )3 3
M4-01_11
MAD 1284 : Statistics Module – IV : Generating Functions
d2 (iii)
(ii) Since 2 2 M X ( t )
dt t 0 We know that SD Var[ X ] ( ii ) Var[2 X 3]
E[(2 X 3)2 ] E[2 X 3]
2
6 1
3 9
(3 t ) t 0 E[(2 X )2 (3)2 2(2 X )(3)]
1
6 SD 2 E[ X ] 3
2
(3 0)3 3
6 E[4 X 2 9 12 X ]
* * *
27 (2 E[ X ])2 32 2(2 E[ X ])(3)
2 Example 3. Compute
2
9 ( i ) E[2 X 3] E[4 X 2 ] E[9] E[12 X ]
Var[ X ] 2
( ii ) Var[2 X 3]
4( E[ X ]) 2
9 12 E[ X ]
2
2 1 Solution 3. 4 E[ X 2 ] 9 12 E[ X ]
2
2 1 2 1 ( i ) E[2 X 3] E[2 X ] E[3]
4( E[ X ])2 9 12 E[ X ]
9 3 9 9 2 E[ X ] E[3]
1 2 E[ X ] 3 4 E[ X 2 ] ( E[ X ])2
Var[ X ] 2
9 E[2 X 3] 2 E[ X ] 3 Var[2 X 3] 4 Var[ X ]
M4-01_12